Dr. Kauser Jahan, P.E. Homework #2 Due Wednesday February 3, 2016 Problems from Textbook on Chemistry Problem 5-2 Problem 5-4 Problem 5-14 Problem 5-15

Problem 5-33

6. An engineer plans to treat a chromium waste in a concrete tank. A chemist friend pointed out that chromium could cause deterioration of the concrete according to the following reaction:

 $3Fe^{+2}aq + CrO_4^{2-} + 8H^+ = 3Fe^{+3} + Cr^{+3} + 4H_2O$

Loss of iron from the concrete can produce a porous concrete. Can this reaction occur and impact the concrete?

You can find relevant information for chromium at http://www.dipteris.unige.it/geochimica/Pesto/Cr(VI)%20by%20PESTO.pdf

7. *Acidithiobacillus ferrooxidans* is an iron oxidizing bacteria that oxidizes ferrous iron (to obtain energy for growth) to ferric iron as follows:

$$Fe^{+2} + 4H^{+} + O_2(g) = 4Fe^{+3} + 2H_2O(l)$$

Using the Gibbs Free energy values prove that this reaction is feasible in nature. The bacteria use carbon dioxide as a carbon source.

8. The following data was obtained for conducting experiments on the effect of temperature on the growth rate of a certain bacterial species on an organic pollutant.

Temp °C (T)	μ Growth rate (hr-1)
40.4	0.014
36.8	0.0112
33.1	0.0074
30.1	0.0051
25.1	0.0036

The following plot was obtained from the above data to determine the activation energy E_a and Arrhenius constant A. What are the values of these parameters?

Given

Arrhenius Equation $\mu = Ae^{-Ea/RT}$ R universal gas constant = 1.987 cal mol⁻¹ K⁻¹ Units of E_a = cal/mole and A = hr⁻¹

Species	Δ <i>H</i> _f ° kcal/mole	ΔG,° kcal/mole
Ca ²⁺	-129.77	-132.18
CaCO _{3(s)} , calcite	-288.45	-269.78
CaO _(s)	-151.9	-144.4
C _(s) , graphite	() news-0-tor - 1	0 ~
CO ₂₍₉₎	-94.05	-94.26
CO _{2(aq)}	-98.69	-92.31
CH4(9)	-17.889	-12.140
H ₂ CO [*] _{3(aq)}	-167.0	-149.00
HCO _{3(aq)}		-140.31
CO _{3(aq)}	-161.63	-126.22
CH ₃ COO ⁻ , acetate	116.84 http://	-89.0
and I atmospice	a spectes i at 25°C	nerg 0 /mole c
H ₂₍₉₎	d in more detail to	dolaveb el 0
	-21.0	-20.30
	alution all 4 biot	-2.52
Fe(OH) _{3(s)}	obunia -197.0	_166.0
Mn ²⁺ _(ag)	-53.3	-54.4
MnO _{2(s)}	niasp at-124.2 ale	
Mg ²⁺	-110.41aud1	-108.99
Mg(OH) _{2(s)}	100% -221.00 evi	-199.27
NO and	-49.372	-26.43
NH _{3(g)}	-11.04	-3.976
NH _{3(ag)}	-19.32	-6.37
NH ⁺ (ag)	1 92000-31.740889	-19.00 T
HNO _{3(aq)}	-49.372	9 26.41
O2(aq)	-3.9 D - 3.9	3.93
O2(9)	TO TO OBLI D	o bookana i
OH(aq)	-54.957	-37.595
H ₂ O ₍₉₎	-57.7979 ^{on}	-54.6357
H ₂ O ₁₀ DA IO 1	emmua e =68.3174 1	
SO4(aq)	-216.90	-177.34
HS _(aq)	15165 10 104,22 1101	3.01
H ₂ S ₍₉₎	o eeu purv4.815en	7.892
H ₂ S _(aq)	-9.4 nd +	-6.54

TABLE 3-1 Thermodynamic Constants for Species of Importance in Water Chemistry.^a

Source. Condensed from the listing of R. M. Garrels and C. L. Christ, Solutions, Minerals, and Equilibria, Harper & Row, New York, 1965; and Handbook of Chemistry and Physics, Chemical Rubber Publishing Company, Cleveland, Ohio.

^a For a hypothetical ideal state of unit molality, which is approximately equal to that of unit molarity.