Dr. Kauser Jahan, P.E. Homework #2 Due Wednesday February 1, 2017 Problems from Textbook on Units Problem 5-2 Problem 5-4

Problem 5-6

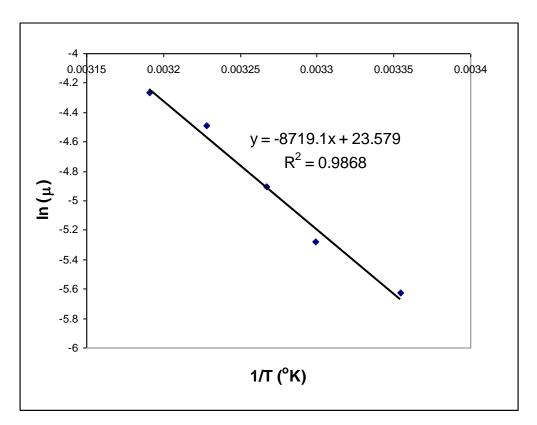
4. An engineer plans to treat a chromium waste in a concrete tank. A chemist friend pointed out that chromium could cause deterioration of the concrete according to the following reaction:

 $3Fe^{+2} aq + CrO_4^{2-} + 8H^+ = 3Fe^{+3} + Cr^{+3} + 4H_2O$

Loss of iron from the concrete can produce a porous concrete. Can this reaction occur and impact the concrete?

You can find relevant information for chromium at http://www.dipteris.unige.it/geochimica/Pesto/Cr(VI)%20by%20PESTO.pdf

5. *Acidithiobacillus ferrooxidans* is an iron oxidizing bacteria that oxidizes ferrous iron (to obtain energy for growth) to ferric iron as follows:


$$Fe^{+2}(aq) + 4H^{+}(aq) + O_{2}(g) = 4Fe^{+3}(aq) + 2H_{2}O(aq)$$

Using the Gibbs Free energy values prove that this reaction is feasible in nature. The bacteria use carbon dioxide as a carbon source.

6. The following data was obtained for conducting experiments on the effect of temperature on the growth rate of a certain bacterial species on an organic pollutant.

Temp °C (T)	μ Growth rate (hr-1)
40.4	0.014
36.8	0.0112
33.1	0.0074
30.1	0.0051
25.1	0.0036

The following plot was obtained from the above data to determine the activation energy E_a and Arrhenius constant A. What are the values and units of these parameters?

Given

Arrhenius Equation $\mu = Ae^{-Ea/RT}$ R universal gas constant = 1.987 cal mol⁻¹ K⁻¹ Units of E_a = cal/mole and A = hr⁻¹

pecies	Δ <i>H</i> [°] kcal/mole	ΔG,° kcal/mole
	129.77 em	132.18
CaCO _{3(s)} , calcite	-288.45	-269.78
CaO _(s)	-151.9	-144.4
(s), graphite	- 10 0 EVI	37 O
O ₂₍₉₎	-94.05	-94.26
O2(aq)	-98.69	-92.31
CH4(9)	-17.889	-12.140
2CO3(aq)	-167.0	-149.00
CO _{3(aq)}	-165.18	-140.31 -126.22
CO _{3(aq)} H ₃ COO ⁻ , acetate	-161.63 atb) noi1116.840 noo	-89.0
and I atmospher	ol specter i at 25°C	erg o /mole
	Vilg sold of	a develop
e ²⁺ (ag)	-21.0	-20.30
e ³⁺ (aq)	titana -11.4 hunt	-2.52
e(OH) _{3(s)}	-197.0	-166.0
In ²⁺ (ag)	-53.3	-54.4
InO _{2(s)}	-124.2	-111.1
(g ²⁺ (ag)	O_110.41aud1	-108.99
Ig(OH) _{2(s)}	1003 0 -221.00 3901	-199.27
(O _{3(aq)}	11 noitu 49.372	-26.43
H ₃₍₉₎	inoticia_in.04	-3.976
H _{3(aq)}	-19.32	-6.37
H4(aq)	92000-31.749229	in 19.00
NO _{3(aq)}		- 26.41
Dia io alconicio di 2(aq)	ores to autor p go	101212123.93
DOVICY II SUMDE	o ypions oot or	amar o am
$H_{(aq)}$	ateo tier - 54.957 et p	-37.595
he standard (0)	1 Bellio -57.7979 d	-54.635
On DA la ym	ノモー ションボルト ちょうさん たいちょう ひょうしょう しょうない みつかい	E el-56.690
Of (aq)	efnw ni-216.90 nbo	
S(ag) ODDOI 'en	olos to not 22 mot	. edi 103.01
I ₂ S ₍₉₎ .701ette	een gniv.4.815edt	
$I_2 S_{(aq)}$	-9.4	-6.54

TABLE 3-1 Thermodynamic Constants for Species of Importance in Water Chemistry.^a

Source. Condensed from the listing of R. M. Garrels and C. L. Christ, Solutions, Minerals, and Equilibria, Harper & Row, New York, 1965; and Handbook of Chemistry and Physics, Chemical Rubber Publishing Company, Cleveland, Ohio.

^a For a hypothetical ideal state of unit molality, which is approximately equal to that of unit molarity.