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Abstract

Early diagnosis of Alzheimer’s disease (AD) is becoming an increasingly important healthcare concern. Prior approaches analyzing event-
related potentials (ERPs) had varying degrees of success, primarily due to smaller study cohorts, and the inherent difficulty of the problem. A
new effort using multiresolution analysis of ERPs is described. Distinctions of this study include analyzing a larger cohort, comparing different
wavelets and different frequency bands, using ensemble-based decisions and, most importantly, aiming the earliest possible diagnosis of the
disease. Surprising yet promising outcomes indicate that ERPs in response to novel sounds of oddball paradigm may be more reliable as a
biomarker than the more commonly used responses to target sounds.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Neurological disorders that cause gradual loss of cognitive
function are collectively known as dementia. Among several
forms of dementia, perhaps the most infamous and the most
common form is the irreversible and incurable senile dementia
of Alzheimer’s type, or just Alzheimer’s disease (AD), in short.
AD, first described by Alois Alzheimer in 1906, was once
considered a rare disease, and it was mostly ignored due to el-
derly people being its primary victim. Today, on the centennial
anniversary of the disease’s discovery, the situation is much
different: as the world’s population ages rapidly—primarily
in developed countries—so does the number of people af-
fected by the disease. Different estimates vary considerably;
however, it is now estimated that there are 18–24 million
people suffering from AD worldwide, two-thirds of whom
are living in developed or developing countries. This number
is expected to reach 34 million by 2025. Up to age 60, AD
appears in less than 1% of the population, but its prevalence
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increases sharply, doubling every 5 years thereafter: AD affects
5% of 65-year olds, and over 30% of 85-year olds. Beyond age
85, the odds of developing AD approaches a terrifying ratio of
1 in 2 [1,2].

The specific causes of AD are unknown; however, the dis-
ease is associated with two abnormal proteins: neurofibrillary
tangles clustering inside the neurons, and amyloid plaques that
accumulate outside of the neurons of primarily the cerebral cor-
tex, amygdale and the hippocampus. These unusual proteins
cause a gradual but irreversible decline in all cognitive (and
eventually motor) skills, leaving the victim incapable of caring
for him/herself. Furthermore, these proteins can only be identi-
fied by examining the brain tissue under a microscope, leaving
autopsy as the only method for positive diagnosis. AD not only
incapacitates its victim, but it also causes an unbearable grief
on the victim’s caregiver, and a devastating financial toll on the
society with an annual cost of over $100 billion.

Several biomarkers have been linked to AD, such as the
cerebrospinal fluid tau, �-amyloid, urine F2-isoprostane,
brain atrophy and volume loss detected by PET or MRI
scan [3,4]. However, these methods have either not proven
to be conclusive, or remain primarily university or research
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hospital-based tools. While clinical and neuropsychological
evaluations achieve an average positive predictive value (PPV)
of 85–90%, this level of expertise is typically available only
at university or research hospitals, and hence remain beyond
reach for most patients. Therefore, these patients are evaluated
by local community healthcare providers where the exper-
tise and accuracy of AD-specific diagnosis remains uncertain.
Our sole metric for community clinics is a recent study that
reported 83% sensitivity, 55% specificity and 75% overall
accuracy on AD diagnosis by a group of Health Maintenance
Organization-based physicians, despite having the advantage
of longitudinal followup [5]. Meanwhile, recent development
of pathologically targeted medications requires an accurate
diagnosis at the earliest stage possible, so that the patient’s
life expectancy, as well as his/her quality of life, may be sig-
nificantly improved. Therefore, to have a meaningful impact
on healthcare, the diagnostic tool must be inexpensive, non-
invasive, accurate, available to community physicians, and be
able to diagnose the disease at its earliest stages.

Event related potentials (ERPs) of the electroencephalogram
(EEG) may provide such a tool. It is a well-established and reli-
able procedure, it is non-invasive and readily available to com-
munity clinics. However, the ability of EEG signals to resolve
AD-specific information is typically masked by changes due
to normal aging, coexisting medical illness and levels of anx-
iety or drowsiness during measurements. Various components
of the ERPs, obtained through the oddball paradigm protocol,
have previously been linked to cognitive functioning, and are
believed to be relatively insensitive to above-mentioned param-
eters [6–10].

In oddball paradigm, subjects are instructed to respond,
typically by pressing a button, to an occasionally occurring
target (oddball) tone of 2 kHz, within a series of regular 1 kHz
tones. The ERPs then show a series of peaks, among which the
P300—a positive peak with an approximate latency of 300 ms
that occurs only in response to the oddball stimulus—is of
particular interest. Changes in the amplitude and latency of the
P300 (P3, for short) are known to be altered by neurological dis-
orders, such as the AD, that affect the temporal–parietal regions
of the brain [11]. Polich et al. have shown that increased latency
and decreased amplitude of P300 is associated with AD [6,12].
Several other efforts, such as [9,11,13–17], have later confirmed
the strong link between AD and P300. More recently, task-
irrelevant novel sounds have been included in the protocol that
may help distinguish AD from other forms of dementia using
the amplitude and latency of the P300 [11]. However, looking at
just the P300 component—while provides statistical correlation
with AD—does not help in identifying individual patients: cog-
nitively normal people may have delayed or absent P300, and
those with AD, in particular in early stages, may still have strong
P300, as shown in Fig. 1. The inability of classical statistical
approaches in individually identifying specific cases demands
sophisticated approaches for such individual identification.

Automated classification algorithms, such as neural net-
works, can be used for case-by-case identification of individual
patient ERPs. The success of such automated classification
algorithms strongly depends on the quantity and the quality

of the training data: the available data must adequately sam-
ple the feature space, and the features themselves must carry
discriminatory information among different classes. Tradi-
tionally, the features of the ERPs are obtained either in time
(e.g., amplitude and latency of the P300) [11,15–22] or in
frequency domain (e.g., power of different spectral bands of
the ERP) [23–31]. However, both are suboptimal, since the
ERP is a time and frequency-varying non-stationary signal;
and a time–frequency-based analysis is more suitable. Despite
its now mature history, studies applying time–frequency tech-
niques, such as wavelets, to ERPs have only recently started,
and mostly on non-AD-related studies designed specifically
for structural analysis of the P300 [32–44].

Other studies investigated the feasibility of wavelet analysis
of EEGs, along with neural networks, but they either did not
use ERPs [27,45] or did not specifically target AD diagnosis.
For individual AD-specific diagnosis, there have been very few
studies that use an appropriate time–frequency analysis, such
as discrete wavelet transform (DWT), followed by neural net-
work classification. The results of these primarily pilot studies,
such as [46,47], including our previous efforts [48,49] can be
characterized as only limited success, due to several reasons:
relatively small study cohort with typically 10–30 patients, not
targeting diagnosis at the earliest stages, suboptimal selection
of classifier model and/or its parameters, as well as the sheer
inherent difficulty of the problem. The results therefore remain
largely inconclusive.

In this study, we describe a new effort that investigates the
feasibility of an automated classification approach that em-
ploys multiresolution wavelet analysis; however several factors
set this study apart from previous efforts: (i) a very strict and
controlled recruitment protocol along with a very detailed
and thorough clinical evaluation protocol (see Section 2) is
followed to ensure the quality of study cohort; (ii) the study
cohort recruited for this study constitutes one of the largest
of similar prior efforts; (iii) several different types of wavelets
commonly used for analysis of biological signals are compared
instead of a single generic wavelet; (iv) single classifier, as well
as multiclassifier based ensemble approaches are implemented
and compared; (v) analysis is done not only with respect to
the general classification performance, but also with respect to
commonly used medical diagnostic quantities, such as sensitiv-
ity, specificity and PPV, and most importantly; (vi) this study
uniquely targets diagnosing the disease at its earliest stage pos-
sible, typically before commonly recognized symptoms appear.

In P300 studies, the ERPs are typically obtained from one of
the so-called PZ , CZ or FZ electrodes of the 10–20 EEG elec-
trode placement system shown in Fig. 2, primarily the former
one. The common choice of PZ electrode is well justified, as
ERPs are known to be most prominent in the central parietal
regions of the cortex [40]. Furthermore, since the P300 is tradi-
tionally associated with the oddball tone, only responses to this
tone are typically analyzed. In our previous preliminary stud-
ies, we have also analyzed the oddball responses from the PZ

electrode. We now investigate the diagnostic information that
may reside in data obtained from the other two electrodes, CZ

and FZ , and obtained in response to the novel tones, as well
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Fig. 1. (a and b) Expected P300 behavior from normal and AD patients, (c and d) not all cases follow this behavior.
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as the target tones. Our justification for analyzing the remain-
ing two electrodes is the relative and symmetric proximity of
CZ and FZ electrodes to the PZ electrode. Our justification for
analyzing the responses to the novel tones is the potential in-
formation that may be present in other components of the ERP,
such as the P3a, that may be more prominent in responses to
the novel tones.

2. Experimental setup

2.1. Research subjects and the gold standard

The current gold standard for AD diagnosis is clinical eval-
uation through a series of neuropsychological tests, including
interviews with the patient and their caregivers. Seventy-two
patients have been recruited so far by the Memory Disorders
Clinic and Alzheimer’s Disease Research Center of University
of Pennsylvania, according to the following inclusion and ex-
clusion criteria for each of the two cohorts: probable AD and
cognitively normal.

Inclusion criteria for cognitively normal cohort: (i) Age >

60; (ii) Clinical Dementia Rating Score = 0; (iii) Mini Mental
State Exam (MMSE) Score > 26; (iv) no indication of func-
tional or cognitive decline during the 2 years prior to enrollment
based on a detailed interview with the subject’s knowledgeable
informant.

Exclusion criteria for cognitively normal cohort: (i) Evidence
of any central nervous system neurological disease (e.g., stroke,
multiple sclerosis, Parkinson’s disease or other form dementia)
by history or exam; (ii) use of sedative, anxiolytic or anti-
depressant medications within 48 h of ERP acquisition.

Inclusion criteria for AD cohort: (i) Age > 60; (ii) Clinical
Dementia Rating Score >0.50; (iii) MMSE Score �26; (iv)
presence of functional and cognitive decline over the previous
12 months based on detailed interview with a knowledgeable
informant; (v) satisfaction of National Institute of Neurological
and Communicative Disorders and Stroke—Alzheimer’s Dis-
ease and Related Disorders Association (NINCDS-ADRDA)
criteria for probable AD [50].

Exclusion criteria for AD cohort: Same as for the cognitively
normal controls.

All subjects received a thorough medical history and neu-
rological exam. Key demographic and medical information,
including their current medications (prescription, over-the-
counter, or any alternative medications) were noted. The eval-
uation included standardized assessments for overall impair-
ment, functional impairment, extrapyramidal signs, behavioral
changes and depression. The clinical diagnosis was made as a
result of these analyses as described by the NINCDS-ADRDA
criteria for probable AD [50].

The inclusion criteria for AD cohort were designed to en-
sure that subjects were at the earliest stages of the disease.
One metric is the MMSE, a widely used standardized test for
evaluating cognitive mental status. The test assesses orienta-
tion, attention, immediate and short-term recall, language and
the ability to follow simple verbal and written commands. It
also provides a total score placing the individual on a scale of

cognitive function. Cognitive performance as measured by the
MMSE shows an inverse relationship between MMSE scores
and age/education, ranging from a median of 29 for those 18–24
years of age, to 25 for individuals 80 years of age and older.
The median MMSE score is 29 for individuals with at least
9 years of schooling, 26 for those with 5–8 years of school-
ing and 22 for those with 0–4 years of schooling [51,52].
A grade less than 19 usually indicates cognitive impairment.
MMSE is not used for diagnosis alone, but rather for assess-
ing the severity of disease. The AD diagnosis itself is made
based on the above-mentioned NINCDS-ADRDA criteria for
probable AD.

Of the 72 patients initially recruited, 20 were removed due
to various reasons, including those AD patients who—despite
satisfying the above requirements—were too demented to be
considered at the earliest stage of the disease. Of the 52 re-
maining patients, 28 were probable Alzheimer’s (�AGE = 79,
�MMSE = 24.7), and 24 were cognitively normal (�AGE = 76,
�MMSE = 29.6). Note that with an average MMSE score of 25,
the AD cohort represents those who are at the earliest stage
of the disease, a stage during which the symptoms of the dis-
ease may not even be noticeable. While this distinction makes
the classification problem all the more challenging, it also sets
this study apart from similar earlier efforts. Also, with 52 pa-
tients, this effort constitutes one of the larger studies of its kind
to date.

2.2. ERPs acquisition protocol

The ERPs were obtained using an auditory oddball paradigm
while the subjects were comfortably seated in a specially des-
ignated room. We used the protocol described by Yamaguchi et
al. [11], with slight modifications. Binaural audiometric thresh-
olds were first determined for each subject using a 1 kHz tone.
The evoked response stimulus was presented to both ears us-
ing stereo earphones at 60 dB above each individual’s auditory
threshold. The stimulus consists of tone bursts 100 ms in dura-
tion, including 5 ms onset and offset envelopes. A total of 1000
stimuli, including frequent 1 kHz normal tones (n=650), infre-
quent 2 kHz oddball (target) tones (n = 200) and novel sounds
(n=150) were delivered to each subject with an inter-stimulus
interval of 1.0–1.3 s. The subjects were instructed to press a
button each time they heard the 2 kHz oddball tone. The sub-
jects were not told about the presence of novel sounds ahead
of time, which consisted of unique sound bytes that were not
repeated. With frequent breaks (approximately 3 min of rest ev-
ery 5 min), data collection typically took less than 30 min. The
experimental session was preceded by a 1-min practice session
without the novel sounds.

ERPs were recorded from 19 electrodes embedded in an
elastic cap. The electrode impedances were kept below 20 k�.
Artifactual recordings were identified and rejected by the EEG
technician. The potentials were finally amplified, digitized at
256 Hz/channel, lowpass filtered, averaged, notched filtered at
59–61 Hz and baselined with respect to the prestimulus interval
for a final 257 sample, 1-s long signal. ERPs are often difficult
to extract from a single response, due to many variations in
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cortical activity. Consecutive successful responses to each tone
are therefore synchronized and averaged (after responses with
artifacts, responses to missed targets, etc. are removed by the
EEG technician) to obtain a robust ERP response. The averag-
ing process, a routine portion of the oddball paradigm proto-
col, consisted of averaging 90–250 responses per stimulus type
each, per patient.

3. Methods

3.1. Multiresolution wavelet analysis for feature extraction

Time localizations of spectral components can be obtained
by multiresolution wavelet analysis, as this method provides
the time–frequency representation of the signal. Among many
time–frequency representations, the DWT is perhaps the most
popular one due to its many desirable properties, and its ability
to solve a diverse set of problems, including data compression,
biomedical signal analysis, feature extraction, noise suppres-
sion, density estimation and function approximation, all with
modest computational expense. Considering the audience of
this journal, the well-established nature of the wavelet theory,
as well as for brevity, we only describe the specific main points
of DWT implementation here, and refer the interested readers
to many excellent references listed in [53].

The DWT analyzes the signal at different resolutions (hence,
multiresolution analysis) through the decomposition of the sig-
nal into several successive frequency bands. The DWT utilizes
two sets of functions, a scaling function, �(t), and a wavelet
function, �(t), each associated with lowpass and highpass fil-
ters, respectively. An interesting property of these functions is
that they can be obtained as a weighted sum of the scaled (di-
lated) and shifted versions of the scaling function itself:

�(t) =
∑
n

h[n]�(2t − n), (1)

�(t) =
∑
n

g[n]�(2t − n). (2)

Conversely, a scaling function �j,k(t) or wavelet function
�j,k(t) that is discretized at scale j and translation k can be
obtained from the original (prototype) function �(t) = �0,0(t)

or �(t) = �0,0(t) by

�j,k(t) = 2−j/2�(2−j t − k), (3)

�j,k(t) = 2−j/2�(2−j t − k). (4)

Different scale and translations of these functions allow us to
obtain different frequency and time localizations of the signal.
The coefficients (weights) h[n] and g[n] that satisfy (1) and (2)
constitute the impulse responses of the lowpass and highpass
filters used in the wavelet analysis, and define the type of the
wavelet used in the analysis. Decomposition of the signal into

different frequency bands is therefore accomplished by suc-
cessive highpass and lowpass filtering of the time domain
signal. The original time domain signal x(t) sampled at 256
samples/s formed the discrete time signal x[n], which is first
passed through a halfband highpass filter g[n], and a low-
pass filter h[n]. In terms of normalized angular frequency, the
highest frequency in the original signal is �, corresponding to
the linear frequency of 128 Hz. According to Nyquist’s rule,
half the samples can be removed after the filtering, since the
bandwidth of the signal is reduced to �/2 radians upon filter-
ing. This is accomplished by downsampling with a factor of
2. Filtering followed by subsampling constitutes one level of
decomposition, and it can be expressed as follows:

d1[k] = yhigh[k] =
∑
n

x[n] · g[2k − n], (5)

a1[k] = ylow[k] =
∑
n

x[n] · h[2k − n], (6)

where yhigh[k] and ylow[k] are the outputs of the highpass and
lowpass filters, respectively, after the subsampling. The out-
put of the highpass filter, yhigh[k], represents level 1 DWT co-
efficients, also called d1: level 1 detail coefficients. The out-
put of the lowpass filter, a1: the level 1 approximation coeffi-
cients, is further decomposed by passing ylow[k] through an-
other set of highpass and lowpass filters to obtain level 2 de-
tail coefficients d2 and level 2 approximation coefficients a2,
respectively.

This procedure, called subband coding, is repeated for fur-
ther decomposition as many times desired, or until no more
subsampling is possible. At each level, the procedure results in
half the time resolution (due to subsampling) and double the
frequency resolution (due to filtering), allowing the signal to
be analyzed at different frequency ranges with different reso-
lutions. Fig. 3 illustrates this procedure, where the frequency
range analyzed with each set of coefficients is marked with
“F ”. The length of each set of coefficients is also provided,
which depends on the specific wavelet used in the analysis. The
numbers given in Fig. 3 are for Daubechies wavelets with four
vanishing moments, whose corresponding filters h[n] and g[n]
are of length 2×4=8. For example, starting with 257-long sig-
nal, the output of each level 1 filter is 257 + 8 − 1 = 265 points
long, which reduces to 132 after subsampling. A wraparound or
truncation can also be used to keep the number of coefficients
exactly half of that of the previous level. The total number of
all coefficients then adds up to the original signal length (±1
for odd length signals).

An approximation signal Aj(t) and a detail signal Dj(t) can
be reconstructed from level j coefficients:

Aj(t) =
∑

k

aj [k] · �j,k(t), (7)

Dj(t) =
∑

k

dj [k] · �j,k(t). (8)
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The original signal x(t) can then be reconstructed from the
approximation signal Aj(t) at any level j and the sum of all
detail signals up to and including level j:

x(t) = Aj(t) +
j∑

j=−∞
Dj(t)

=
∑

k

aj [k] · �j,k(t) +
j∑

j=−∞

∑
k

dj [k] · �j,k(t). (9)

Figs. 4 and 5 illustrate the reconstructed signals obtained
at each level of a seven-level decomposition, for the analysis
of a cognitively normal and probable-AD patient, respectively.
Daubechies wavelets with four vanishing moments were used
for these analyses. Whereas signal reconstruction is not required
as part of this work, the reconstructed signals in Figs. 4 and 5
indicate that majority of the signals’ energy lies in D4–D7 and
A7. The results presented in Section 4 will later confirm this
observation.

In this study, we compared four different types of wavelets,
including the Daubechies wavelets with four (Db4) and eight
(Db8) vanishing moments, symlets with five vanishing mo-
ments (Sym5) and the quadratic B-spline wavelets (Qbs). The
quadratic B-spline wavelet was chosen due to its reported suit-
ability in analyzing ERP data in several studies [34,35,54–56].
Db4 and Db8 were chosen for their simplicity and general pur-
pose applicability in a variety of time–frequency representation
problems, whereas Sym5 was chosen due to its similarity to
Daubechies wavelets with additional near symmetry property.

3.2. An ensemble of classifiers-based classification

One of the novelties of this work is the investigation of
an ensemble of classifiers-based approach for the classifica-
tion of ERP signals. An ensemble-based system, also known as
a multiple classifier system (MCS), combines several, prefer-
ably diverse, classifiers. The diversity in the classifiers is typ-
ically achieved by using a different training data set for each
classifier, which then allows each classifier to generate differ-
ent decision boundaries. The expectation is that each classifier
will make a different error, and strategically combining these
classifiers can reduce the total error. Numerous studies have
shown that such an approach can often outperform a single
classifier system, is usually resistant to overfitting problems,
and can often provide more stable results. Since its humble be-
ginnings with such seminal works including, but not limited
to [57–65], research in MCSs have expanded rapidly, and be-
come an important research topic [66–68]. A sample of the
immense literature on classifier combination can be found in
Kuncheva’s [66] recent book, the first text devoted to theory and
implementation of ensemble-based classifiers, and references
therein. The field has been developing so rapidly that an inter-
national workshop on MCS has recently been established, and
the most current developments can be found in its proceedings
[69].

The ensemble classification algorithm of choice for this study
was Learn++, originally developed for efficient learning of
novel information [70,71]. Inspired in part by AdaBoost [64],
Learn++ generates an ensemble of diverse classifiers, where
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Fig. 5. Reconstructed detail and approximation signals of a probable-AD patient.

each classifier is trained on a strategically updated distribution
of the training data that focuses on instances previously not seen
or learned. The inputs to Learn++ algorithm are (i) the training
data S comprised of m instances xi along with their correct la-
bels yi ∈ � = {�1, . . . ,�C}, i = 1, 2, . . . , m, for C number of
classes; (ii) a supervised classification algorithm BaseClassi-
fier, generating individual classifiers (henceforth, hypotheses);
and (iii) an integer T, the number of classifiers to be gener-
ated. The pseudocode of the algorithm and its block diagram
are provided in Figs. 6 and 7, respectively, and described below
in detail.

The BaseClassifier can be any supervised classifier, whose
instability can be adjusted to ensure adequate diversity, so that
sufficiently different decision boundaries can be generated each
time the classifier is trained on a different training data set. This
instability can be controlled by adjusting training parameters,
such as the size or error goal of a neural network, with respect
to the complexity of the problem. However, a meaningful min-
imum performance is enforced: the probability of any classi-
fier to produce the correct labels on a given training data set,
weighted proportionally to individual instances’ probability of
appearance, must be at least 1

2 . If classifiers’ outputs are class-
conditionally independent, then the overall error monotonically
decreases as new classifiers are added. Originally known as the
Condorcet jury theorem (1786) [72–74], this condition is nec-
essary and sufficient for a two-class problem (C = 2), and it is
sufficient, but not necessary, for C >2.

An iterative process sequentially generates each classifier of
the ensemble: during the t th iteration, Learn++ trains the Base-

Fig. 6. Learn++ pseudocode.

Classifier on a judiciously selected subset TRt (about 2
3 ) of

the current training data to generate hypothesis ht . The training
subset TRt is drawn from the training data according to a dis-
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tribution Dt , which is obtained by normalizing a set of weights
wt maintained on the entire training data S. The distribution
Dt determines which instances of the training data are more
likely to be selected into the training subset TRt . Unless a pri-
ori information indicates otherwise, this distribution is initially
set to be uniform, giving equal probability to each instance to
be selected into TR1. At each subsequent iteration loop t, the
weights previously adjusted at iteration t − 1 are normalized
(in step 1 of the loop),

Dt = wt

/
m∑

i=1

wt(i) (10)

to ensure a proper distribution. Training subset TRt is drawn
according to Dt (step 2), and the BaseClassifier is trained on
TRt (step 3). A hypothesis ht is generated by the t th classifier,
whose error 	t is computed on the current data set S as the

sum of the distribution weights of the misclassified instances
(step 4),

	t =
∑

i:ht (xi )�=yi

Dt (i) =
m∑

i=1

Dt (i)[|ht (xi ) �= yi |], (11)

where [| · |] evaluates to 1, if the predicate holds true, and 0
otherwise. As mentioned above, we insist that 	t be less than
1
2 . If this is the case, the hypothesis ht is accepted, and its error
is normalized to obtain

�t = 	t
1 − 	t

, 0 < �t < 1. (12)

If 	t > 1
2 , the current hypothesis is discarded, and a new

training subset is selected by returning to step 2. All hypotheses
generated thus far are then combined using weighted majority
voting to obtain the composite hypothesis Ht (step 5), for which
each hypothesis ht is assigned a weight inversely proportional
to its normalized error. Those hypotheses with smaller training
error are awarded a higher voting weight, and thus have more
say in the decision of Ht , which then represents the current
ensemble decision:

Ht = arg max
y∈�

∑
t :ht (x)=y

log(1/�t ). (13)

It can be shown that the weight selection of log(1/�t ) is op-
timum for weighted majority voting [66]. The error of the com-
posite hypothesis Ht is computed as the sum of the distribution
weights of the instances that are misclassified by the ensemble
decision Ht (step 6),

Et =
∑

i:Ht (xi )�=yi

Dt (i) =
m∑

i=1

Dt (i)[|Ht(xi ) �= yi |]. (14)

Since individual hypotheses that make up the composite hy-
pothesis all have individual errors less than 1

2 , so too will the
composite error, i.e., 0�Et < 1

2 . We normalize the composite
error Et to obtain

Bt = Et

1 − Et

, 0 < Bt < 1, (15)

which is then used for updating the distribution weights as-
signed to individual instances,

wt+1(i) = wt(i) × B
1−[|Ht (xi )�=yi |]
t

= wt(i) ×
{

Bt if Ht(xi ) = yi,

1 otherwise.
(16)

Eq. (16) indicates that the distribution weights of the in-
stances correctly classified by the composite hypothesis Ht are
reduced by a factor of Bt . Effectively, this increases the weights
of the misclassified instances, making them more likely to be
selected into the training subset of the next iteration. Read-
ers familiar with the AdaBoost algorithm have undoubtedly
noticed the overall similarities, but also the key difference be-
tween the two algorithms: the weight update rule of Learn++
specifically targets learning novel information from data by
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focusing on those instances that are not yet learned by the
ensemble, whereas AdaBoost focuses on instances that have
been misclassified by the previous classifier. This is because,
the weight distribution of AdaBoost is updated based on the
decision of a single previously generated hypothesis ht [64],
whereas Learn++ updates its distribution based on the deci-
sion of the current ensemble through the use of the composite
hypothesis Ht . This procedure forces Learn++ to focus on in-
stances that have not been properly learned by the ensemble. It
can be argued that AdaBoost also looks, albeit indirectly, at the
ensemble decision since, while based on a single hypothesis,
the distribution update is cumulative. However, the update in
Learn++ is directly tied to the ensemble decision, and hence
been found to be more efficient in learning new information
in our previous trials on benchmark data sets.

The final hypothesis is obtained by combining all hypotheses
that have been generated thus far:

Hf inal(x) = arg max
y∈�

∑
t :ht (x)=y

log

(
1

�t

)
, t = 1, . . . , T . (17)

For any given data instance x, Hf inal chooses the label y ∈
� : {�1, . . . ,�C} that receives the largest total vote from all
classifiers ht , where the vote of ht is weighted by its normalized
performance log(1/�t ).

3.3. Implementation details

As mentioned in the Introduction, several factors set this
study apart from previous efforts: a large cohort; analysis us-
ing three different electrodes PZ , FZ and CZ , instead of just
the standard PZ , and two different stimuli target and novel
tones; analysis with four different wavelets and several differ-
ent frequency bands; analysis with an ensemble of classifiers
approach, as well as a single classifier; and the effect of the
above-mentioned variables on commonly used medical diag-
nostic quantities, including sensitivity, specificity and PPV, in-
stead of just overall generalization performance (OGP).

3.3.1. Feature extraction
For each patient, six sets of ERPs were extracted and av-

eraged: responses to novel and target tones, from each of the
PZ , CZ and FZ electrodes. All averaged ERPs were decom-
posed into seven levels using one of the four types of wavelets:
Daubechies with four and eight vanishing moments (Db4, Db8),
symlets with five vanishing moments (Sym5) and quadratic B-
splines (Qbs). Of the eight frequency bands created by the de-
composition, the following bands were used for further analy-
sis: approximation at 0–1 Hz, and details at 1–2, 2–4, 4–8 and
8–16 Hz. Detail coefficients at 16–32, 32–64 and 64–128 Hz
were not considered for analysis, as the ERPs are known not
to include any relevant frequency components in these inter-
vals. In fact, the P300 is known to reside in 0–4 Hz interval,
primarily around 3 Hz.

The number of coefficients created at each level depends on
the analysis wavelet, more specifically the number of its filter
tabs. Since each recording started 200 ms before the stimulus

and lasted for exactly 1 s, the middle coefficients were extracted
in each case to remove those DWT coefficients corresponding
to prestimulus baseline as well as large latency poststimulus
baseline. The extracted coefficients corresponded to approxi-
mately 50–600 ms duration after the stimulus.

3.3.2. Classification
We have first tried a single classifier system, using the mul-

tilayer perceptron as the base model. We have experimented
with several architectural parameters, such as the number of
hidden layer nodes in the 5–50 range, and the error goal in the
0.005–0.1 range. As a result of thousands of independent trials,
an MLP architecture of 10 hidden layer nodes and 0.01 error
goal was decided as the common architecture for all experi-
ments. We have then implemented a Learn++-based ensemble
system, where we have tried several different numbers of clas-
sifiers in the ensemble, from 3 to 25. In general, a five-classifier
ensemble provided good results. While Learn++ is independent
of the base classifier, and can work with any supervised classi-
fication algorithm, MLP with the same architecture mentioned
above was chosen as the base classifier for a fair comparison.

3.3.3. Validation process: leave-one-out
In all cases listed below, generalization performance was

obtained through leave-one-out cross-validation. According to
this procedure, a classifier is trained on all but one of the avail-
able training data instances, and tested on the remaining in-
stance. Its performance on this instance, 0% or 100%, is noted.
The classifier is then discarded and a new one—with identical
architecture—is trained again on all but one training data in-
stance, this time leaving a different data instance out. Assuming
that there are m training data points, the entire training and test-
ing procedure is repeated m times, leaving a different instance
as a test instance in each case. The mean of m individual per-
formances is then accepted as the estimate of the performance
of the system.

The leave-one-out process is considered as the most
conservative—and, of course, computationally most costly—
estimate of the true performance of the system, as it removes
the bias of choosing particularly easy or difficult instances into
training or test data. Due to the delicate nature of the appli-
cation, and in order to obtain a reliable estimate of the true
performance of this approach, we decided to use the leave-
one-out procedure (instead of two-way splitting of the data
into training and test data sets, or a k-fold cross-validation) de-
spite its computational complexity. In order to further confirm
the validity of the results, all leave-one-out validations were
repeated three times.

3.3.4. Diagnostic performance figures
While generalization performance is the traditional figure of

merit in evaluating machine learning algorithms, more descrip-
tive quantities are often used to evaluate medical tests and pro-
cedures. Sensitivity, specificity, PPV and negative predictive
value (NPV) are four such quantities commonly used in medical
diagnostics. Table 1 summarizes the concepts defined below.
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Table 1
Category labels for defining diagnostic quantities

Number of patients True condition

Probable AD Cognitively normal

Classification decision
Probable AD A B
Cognitively normal C D

OGP: In pattern recognition, this is the average leave-one-
out validation performance of the classifiers, or average gener-
alization performance on test data. OGP represents the average
probability of correct decision. Within the medical community,
OGP is also known as the accuracy of the test: the ratio of pa-
tients the classification system is expected to correctly identify.

Sensitivity: Formally defined as the probability of a positive
diagnosis given that the patient does in fact have the condition,
sensitivity is the ability of a medical test to correctly identify
the target group. In the context of this application, sensitivity
is the proportion of true AD patients correctly identified as AD
patients by the classification system.

Specificity: Formally defined as the probability of a nega-
tive diagnosis given that the patient does not have the disease,
specificity is the ability of a test to correctly identify the control
group. In this study, specificity is the proportion of cognitively
normal patients, correctly identified as normal.

PPV: PPV is defined as the probability that the patient has the
disease, given that the test result is positive. It is calculated as
the proportion of the sample population that is correctly identi-
fied by the test as the target group, among all those identified as
target, correctly or otherwise. In the context of this study, PPV
is the proportion of those patients identified as AD patients by
the classifier, who actually have AD.

NPV: Not used as commonly, NPV is the probability that
the patient does not have the disease, given that the test result
is negative. It is calculated as the proportion of the sample
population that is correctly identified by the test to belong to
control group, among all those identified as target, correctly or
otherwise. In the context of this study, NPV is the proportion
of those patients identified as normal by the classifier, who are
in fact cognitively normal.

In Table 1, A is the number of patients classified as AD, who
are in fact diagnosed as probable AD, by the clinical evalua-
tion, B is the number of patients, also classified as AD (albeit
incorrectly), who are in fact cognitively normal, C is the num-
ber of patients classified as normal (again, incorrectly), who
were originally diagnosed as probable AD, and D is the number
of patients who are (correctly) classified as cognitively normal,
and are in fact clinically determined to be cognitively normal.
A + B + C + D is the total number of patients. Then,

Overall performance = A + D

A + B + C + D
, (18)

Sensitivity = A

A + C
, (19)

Specificity = D

B + D
, (20)

PPV = A

A + B
, (21)

NPV = D

C + D
. (22)

4. Results

As mentioned above, six sets of ERPs were obtained from
each patient (three electrodes, two types of stimulus), ana-
lyzed at five levels of frequency bands (0–1, 1–2, 2–4, 4–8 and
8–16 Hz, constituting individual feature sets) for each set of
ERPs, using each of four types of wavelets. Diagnostic classi-
fication performances, along with sensitivity, specificity, PPVs
and NPVs were obtained for each of the above-mentioned com-
binations. Furthermore, considering that ERPs are known to
occupy primarily the 0–4 Hz range, we have also included this
frequency range as the sixth feature set, obtained by concate-
nating the first three sets of coefficients.

Presenting the results for every combination would be im-
practical, and unnecessarily lengthen this paper. Summary re-
sults are therefore provided here. Specifically, the results cor-
responding to Daubechies four wavelets are provided in most
detail, including the performance of each frequency band for
each of the six sets of ERPs. Db4 was chosen due to its com-
mon use in broad range applications, including analysis of bi-
ological signals. Then, the performance figures for each set of
ERP using each of the four wavelets are provided, but only for
the highest performing frequency band. For all cases, we pro-
vide the overall classification performance obtained by a single
classifier, as well as an ensemble of five classifiers. Both single
and ensemble performances are averages of three independent
52-fold leave-one-out trials, whereas the best ensemble is the
best performing leave-one-out trial out of the three. As we dis-
cuss below, the ensembles performed, on average, better than
individual classifiers. The sensitivity, specificity and PPVs are
therefore provided for ensemble performances.

Tables 2–4 summarize the performance figures obtained
when responses to target tones were processed with Db4
wavelet, for each of the three electrodes. The best performing
spectral band for all electrodes was the 2–4 Hz range (corre-
sponding to level D6 in Figs. 4 and 5), indicated in boldface
in Tables 2–4. Of the three electrodes, the best performance
across all categories was obtained with the Cz electrode with
an average ensemble performance of 72.4%, best ensemble
performance of 75%, with sensitivity, specificity, PPV and
NPV values of 68.6%, 69.2%, 72.5% and 65.3%, respectively.

Tables 5–7 summarize the classification performances ob-
tained when responses to novel tones were processed with Db4
wavelet, for each of the three electrodes. The performance ob-
tained with novel tones were significantly better, particularly
for the PZ electrode than the performances obtained with the
target tones. This is perhaps one of the most surprising out-
comes of this study, as novel tones were not originally intended
to be used for AD versus normal discrimination, but rather to
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Table 2
Spectral-specific performances obtained from CZ electrode—target response (Db4)

Target CZ Single Ensemble Best Ensemble Ensemble Ensemble Ensemble
classifier OGP OGP ensemble sensitivity specificity PPV NPV

0–1 Hz 55.7 57.7 61.5 48.6 63.3 61.6 51.2
1–2 Hz 50.0 48.7 51.9 47.9 47.5 51.5 43.8
2–4 Hz 62.8 72.4 75.0 68.6 69.2 72.5 65.3
4–8 Hz 56.4 54.5 57.7 51.4 47.5 53.9 45.0
8–16 Hz 53.2 55.1 61.5 57.1 49.2 56.7 49.7
0–4 Hz 55.8 57.1 57.7 51.4 58.3 59.5 50.5

Table 3
Spectral-specific performances obtained from PZ electrode—target response (Db4)

Target PZ Single Ensemble Best Ensemble Ensemble Ensemble Ensemble
classifier OGP OGP ensemble sensitivity specificity PPV NPV

0–1 Hz 54.5 53.8 55.8 46.4 57.5 55.9 48.1
1–2 Hz 55.7 62.2 65.4 59.3 60.8 63.7 56.4
2–4 Hz 60.9 66.0 67.3 62.1 65.0 67.6 59.5
4–8 Hz 49.4 53.9 55.7 51.4 50.8 55.2 47.0
8–16 Hz 53.2 58.3 59.6 53.6 60.8 61.5 52.9
0–4 Hz 58.3 60.9 65.4 56.4 62.5 63.7 55.2

Table 4
Spectral-specific performances obtained from FZ electrode—target response (Db4)

Target FZ Single Ensemble Best Ensemble Ensemble Ensemble Ensemble
classifier OGP OGP ensemble sensitivity specificity PPV NPV

0–1 Hz 58.3 59.0 63.5 49.3 64.2 61.7 52.0
1–2 Hz 59.0 55.8 61.5 50.0 51.7 54.3 47.4
2–4 Hz 59.0 64.7 65.4 62.9 61.7 66.0 58.7
4–8 Hz 60.3 62.8 67.3 54.3 63.3 63.6 54.2
8–16 Hz 57.7 58.3 59.6 50.7 61.7 60.7 51.8
0–4 Hz 55.1 54.5 57.7 52.1 48.3 53.7 46.8

Table 5
Spectral-specific performances obtained from CZ electrode—novel response (Db4)

Novel CZ Single Ensemble Best Ensemble Ensemble Ensemble Ensemble
classifier OGP OGP ensemble sensitivity specificity PPV NPV

0–1 Hz 53.8 54.5 55.8 49.3 56.7 67.0 49.0
1–2 Hz 51.9 51.3 57.7 49.3 48.3 53.0 44.4
2–4 Hz 56.4 54.5 55.8 45.7 62.5 58.7 49.7
4–8 Hz 62.8 64.1 65.4 57.9 68.3 68.4 58.1
8–16 Hz 55.8 57.7 57.7 50.0 62.5 61.5 51.6
0–4 Hz 60.9 57.7 59.6 48.6 64.2 61.3 51.7

Table 6
Spectral-specific performances obtained from PZ electrode—novel response (Db4)

Novel PZ Single Ensemble Best Ensemble Ensemble Ensemble Ensemble
classifier OGP OGP ensemble sensitivity specificity PPV NPV

0–1 Hz 61.5 66.0 67.3 57.8 73.3 71.7 59.9
1–2 Hz 75.0 78.2 80.8 67.1 78.3 78.8 67.0
2–4 Hz 63.5 66.0 69.2 54.3 72.5 69.9 57.7
4–8 Hz 62.8 65.4 69.2 60.0 61.7 65.2 56.6
8–16 Hz 63.5 67.3 71.2 52.1 78.3 73.9 58.4
0–4 Hz 70.5 73.7 75.0 65.0 80.8 79.9 66.5
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Table 7
Spectral-specific performances obtained from FZ electrode—novel response (Db4)

Novel FZ Single Ensemble Best Ensemble Ensemble Ensemble Ensemble
classifier OGP OGP ensemble sensitivity specificity PPV NPV

0–1 Hz 51.9 50.6 51.9 42.8 55.0 52.3 45.4
1–2 Hz 52.6 51.9 55.8 47.8 50.8 53.2 45.5
2–4 Hz 54.5 58.3 59.6 47.1 66.7 52.4 51.9
4–8 Hz 50.6 56.4 57.7 47.1 57.5 56.4 48.3
8–16 Hz 53.8 57.7 59.6 53.6 59.2 60.4 52.5
0–4 Hz 51.9 49.4 50.0 37.1 54.2 48.1 42.6

Table 8
Best spectral performances obtained using Db4 wavelet

Db4 Single Ensemble Best Ensemble Ensemble Ensemble Ensemble
classifier OGP OGP ensemble sensitivity specificity PPV NPV

TC 2–4 Hz 62.8 72.4 75.0 68.6 69.2 72.5 65.3
TP 2–4 Hz 60.9 66.0 67.3 62.1 65.0 67.6 59.5
TF 2–4 Hz 59.0 64.7 65.4 62.9 61.7 66.0 58.7
NC 4–8 Hz 62.8 64.1 65.4 57.9 68.3 68.4 58.1
NP 1–2 Hz 75.0 78.2 80.8 67.1 78.3 78.8 67.0
NF 2–4 Hz 54.5 58.3 59.6 47.1 66.7 52.4 51.9

Table 9
Best spectral performances obtained using Db8 wavelet

Db8 Single Ensemble Best Ensemble Ensemble Ensemble Ensemble
classifier OGP OGP ensemble sensitivity specificity PPV NPV

TC 2–4 Hz 50.6 53.8 59.6 48.6 51.7 54.1 46.2
TP 2–4 Hz 52.6 55.8 57.7 51.4 56.7 58.1 50.0
TF 2–4 Hz 46.8 53.8 53.8 48.6 55.8 56.3 48.2
NC 4–8 Hz 59.0 64.1 67.3 57.1 68.3 57.9 57.7
NP 1–2 Hz 69.2 73.7 75.0 66.4 77.5 77.5 66.5
NF 2–4 Hz 53.2 50.6 51.9 42.9 53.3 51.7 44.4

Table 10
Best spectral performances obtained using Sym5 wavelet

Sym5 Single Ensemble Best Ensemble Ensemble Ensemble Ensemble
classifier OGP OGP ensemble sensitivity specificity PPV NPV

TC 2–4 Hz 53.8 55.1 57.7 51.4 55.8 57.8 49.5
TP 2–4 Hz 51.3 46.8 50.0 47.1 41.7 48.6 40.1
TF 2–4 Hz 55.8 62.2 67.3 60.7 57.5 62.6 55.6
NC 4–8 Hz 64.1 62.8 69.2 58.6 60.0 63.6 55.0
NP 1–2 Hz 67.9 79.5 84.6 73.5 79.2 80.4 72.1
NF 2–4 Hz 54.5 51.9 53.8 47.9 52.5 53.9 46.4

improve the robustness of the P300 component generated in re-
sponse to the target tones. Furthermore, the spectral band that
provides the best performance is 1–2 Hz, as opposed to 2–4 Hz
that performed well with target tones. With the PZ electrode,
ERPs in response to novel tones decomposed with Db4 wavelet
obtained overall generalization performances of 75%, 78.2%
and 80.8% using averaged single classifier, average ensemble
classifier and best ensemble classifier, respectively. The sensi-
tivity was 67.1%, specificity 78.3% and PPV was 78.8%.

Also interesting to note that 0–4 Hz that includes both the
1–2 and 2–4 Hz coefficients did not perform as well, confirming
that the information provided by 0–1 Hz coefficients is not only
non-discriminatory on their own right, but their existence has
a deteriorating effect.

The same set of experiments was repeated with three addi-
tional wavelets, Db8, Sym5 and quadratic B-splines. The results
for all four wavelets are summarized in Tables 8–11 , where
performances for only the best performing spectral bands are
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Table 11
Best spectral performances obtained using Qbs wavelet

Qbs Single Ensemble Best Ensemble Ensemble Ensemble Ensemble
classifier OGP OGP ensemble sensitivity specificity PPV NPV

TC 2–4 Hz 50.0 52.6 53.8 47.9 50.8 52.8 45.7
TP 2–4 Hz 52.6 57.1 61.5 57.8 49.2 56.8 50.5
TF 2–4 Hz 56.4 55.8 55.8 55.7 49.2 56.0 49.0
NC 4–8 Hz 59.6 57.7 63.5 52.1 57.5 59.0 50.6
NP 1–2 Hz 67.3 65.4 65.4 57.1 71.7 70.4 59.1
NF 2–4 Hz 47.4 50.0 50.0 43.6 54.2 52.7 45.0

included. Each row in Table 8 is therefore the best row from the
above six tables, and included here for completeness. Several
interesting observations can be made from these results: first,
the best performing frequency band was the same regardless of
the wavelet used: 2–4 Hz for responses to target tones from all
three electrodes, and for novel tones from FZ electrode; 1–2 Hz
for responses to novel tones from PZ electrode and 4–8 Hz
for responses to novel tones from CZ electrode. This confirms
the reasonable proposition that the choice of wavelet does not
change the amount of information provided by each frequency
band. Second, while the best performing frequency bands do not
change, the actual performance figures do vary depending on
the wavelet chosen. Tables 8–11 indicate that symlet wavelets
perform better than all other wavelets, whereas quadratic B-
splines provide the lowest performance. Furthermore, whereas
the average single classifier performance at 67.9% is lower with
symlets than that obtained with Db4 (75%), the average ensem-
ble performance at 79.5% and best ensemble performance at
84.6% outperform the Db4 wavelet. Finally, the medical diag-
nostic figures are also higher with the symlets, providing 73.5%
sensitivity, 79.2% specificity and 80.4% PPV.

5. Conclusions and discussions

The application presented in this work is concerned with
automated early diagnosis of AD, using a non-invasive and
cost-effective biomarker that can be measured in a community
healthcare clinic setting. This problem is widely recognized as
a particularly difficult one, not only for machine learning al-
gorithms, but even for most neurophysiologists and neuropsy-
chologists. The difficulty of the problem is exacerbated with
our requirement to diagnose the disease at its earliest possible
stage, during which the symptoms are often not much different
than those that are associated with normal aging.

The proposed approach seeks a synergistic combination of
some well-established techniques, such as ERP analysis us-
ing multiresolution wavelets, with more recent developments in
machine learning, such as ensemble systems. Specifically, we
analyze the discriminatory ability of ERPs obtained in response
to novel tones, as well as commonly used target tones, acquired
from three different electrodes. One of the most surprising out-
comes of this study is the ability of novel tones to discriminate
the ERPs of cognitively normal people from those with earliest
form of AD. It was found that novel tones at 1–2 Hz, acquired
from the PZ electrode, provide the best performance, regard-

less of the wavelet used, though the best performances were ob-
tained when these signals were decomposed and analyzed using
the symlet wavelets with five vanishing moments. Daubechies
wavelets with four vanishing moments closely followed Sym5.
It should be noted that symlets have similar properties to that
of Daubechies wavelets, and in fact they look similar; however,
symlets are near symmetric, whereas Daubechies wavelets are
not.

Ensemble performances were in general higher than sin-
gle classifier performances, and sometimes by wide margins,
demonstrating the usefulness of the ensemble approach. How-
ever, not all ensemble performances were better than those of
individual classifiers, indicating that the ensemble classifiers
must be constructed with care: if all classifiers that constitute
the ensemble provide similar information, then there is noth-
ing to be gained from using an ensemble approach. However,
if the classifiers are negatively correlated, that is, they make
errors on different instances, their combination can provide a
performance boost.

Recall that a recent study estimates the community clinic-
based physicians’ diagnostic performances with 83% sensitiv-
ity, 53% specificity and 75% overall classification performance.
While the results of this study are quite satisfactory in their own
right (from a computational intelligence perspective), they are
particularly meaningful within the context of this application.
This is because the ensemble generalization performance in
80% range exceeds the 75% diagnostic performance of trained
physicians at community-based healthcare providers—despite
the physicians’ benefit of a longitudinal study. Furthermore,
with sensitivity, specificity and PPVs also reaching 80% ranges,
these results are particularly promising, and provide clinically
useful outcomes.

A particularly interesting observation can also be made with
sensitivity and specificity figures: at 73%, the sensitivity of
the novel PZ at 1–2 Hz is the only metric that is lower than
that obtained by the community physicians (83%); however,
the specificity of the approach at 79.2% is significantly better
than the 55% obtained by the physicians. Therefore, while the
approach is promising, and outperforms the community physi-
cians in general diagnostic performance, it is particularly use-
ful in discriminating cognitively normal individuals from early
AD patients, as measured by specificity.

Overall, the results presented above are significant because
an EEG-based automated classification system is non-invasive,
objective, substantially more cost-effective than clinical
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evaluations, and can be easily implemented at community
clinics, where most patients get their first intervention.

Our current and future work include analyzing additional
wavelets, as well as combining the discriminatory information
provided by individual frequency bands in a data fusion setting
using the ensemble of classifiers approach. We note that simply
concatenating the coefficients from different frequency bands
do not necessarily provide better performance, as demonstrated
by the poor performance of the 0–4 Hz coefficients. However,
combining individual ensemble of classifiers, each trained with
signals at a particular frequency range, may prove to be more
effective.

6. Summary

The rapidly growing proportion of elderly population, com-
bined with lack of standard and effective diagnostic proce-
dures that are available to community healthcare providers,
makes early diagnosis of Alzheimer’s disease (AD) a major
public healthcare concern. Several signal processing-based
approaches—some combined with automated classifiers—have
been proposed for the analysis of EEG signals, which have
resulted in varying degrees of success. To date, the final out-
comes of these studies remain largely inconclusive primarily
due to lack of adequate study cohort, as well as the inherent
difficulty of the problem. This paper describes a new effort
using multiresolution wavelet analysis on event-related poten-
tials (ERPs) of the EEG to investigate whether EEG can be a
reliable biomarker for AD.

Several factors set this study apart from similar prior efforts:
(i) a larger cohort recruited through a strict inclusion/exclusion
protocol, and diagnosed through a thorough and rigorous clini-
cal evaluation process; (ii) data from three different electrodes
and two different stimulus tones (target and novel) are analyzed;
(iii) different mother wavelets have been employed in analysis
of the signals; (iv) performances of six frequency bands (0–1,
1–2, 2–4, 4–8, 8–16 and 0–4 Hz) have been individually an-
alyzed; (v) an ensemble of classifier-based decision is imple-
mented and compared to a single classifier-based decision and,
most importantly; (vi) the earliest possible diagnosis of the dis-
ease is targeted. Some expected and some interesting outcomes
were observed, with respect to each parameter analyzed.

Individual frequency bands: In general, 1–2 and 2–4 Hz
bands provide the most discriminatory information. This was
expected as the spectral content of the primary ERP component
of interest, the P300, is known to reside in these intervals.

The choice of wavelet: The best performing bands remained
the same when the data was analyzed using different wavelets.
However, the specific performances of frequency bands varied
with the choice of the wavelet, Sym5 providing the best results.

Choice of classifier: In general, ensemble-based systems out-
performed single classifier-based systems, sometimes with wide
margins, indicating that such systems should be examined more
carefully.

Choice of electrode: As expected, the PZ electrode pro-
vided the best performance, confirming results of previous
efforts.

Choice of stimulus: Most surprisingly, the ERPs obtained in
response to novel tones provided a better diagnostic perfor-
mance than the traditionally used responses to target tones.

Diagnostic performance: Perhaps the most significant out-
come of this study are the promising results obtained through
the proposed approach. At around 80%, the overall perfor-
mance of the proposed approach exceeded that of the trained
community clinic physicians, and closely approached the gold
standard performance of the university hospital-based clinical
evaluation. While the algorithm did well on all diagnostic per-
formance figures, such as sensitivity, specificity and PPV, its
performance on specificity was particularly promising.

Considering the most challenging nature of diagnosing AD at
its earliest stages, the results of this study justify the feasibility
of this technique as a low-cost, objective, non-invasive approach
that can be easily made available to the community clinics.
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