
 
 

 

 

  

Abstract—The prevalence of Alzheimer’s disease (AD) is ris-

ing alarmingly as the average age of our population increases. 

There is no treatment to halt or slow the pathology responsible 

for AD, however, new drugs are promising to reduce the rate of 

progression. On the other hand, the efficacy of these new medi-

cations critically depends on our ability to diagnose AD at the 

earliest stage. Currently AD is diagnosed through longitudinal 

clinical evaluations, which are available only at specialized de-

mentia clinics, hence beyond financial and geographic reach of 

most patients. Automated diagnosis tools that can be made 

available to community hospitals would therefore be very bene-

ficial. To that end, we have previously shown that the event re-

lated potentials obtained from different scalp locations can be 

effectively used for early diagnosis of AD using an ensemble of 

classifiers based decision fusion approach. In this study, we ex-

pand our data fusion approach to include MRI based measures 

of regional brain atrophy. Our initial results indicate that ERPs 

and MRI carry complementary information, and the combina-

tion of these heterogeneous data sources using a decision fusion 

approach can significantly improve diagnostic accuracy.  

I. INTRODUCTION 

lzheimer’s disease is a neurodegenerative disorder cha-
racterized by progressive cognitive deterioration caused 

by neuronal death. AD causes gradual loss of memory, cogni-
tive ability, and motor skills. For many years, AD was not 
recognized as a major public health problem primarily be-
cause a majority of the population never lived long enough to 
become susceptible. However, as overall life expectancy in-
creases, particularly in developed countries, so does the pre-
valence of AD. The Alzheimer’s Association estimates that 
there are over five million AD patients in the U.S. alone. The 
prevalence of the disease increases rapidly with age, especial-
ly with patients that are over the age of 65. The disease af-
fects an average of 2% of those under the age of 74, 19% of 
those between 75 and 84, and an alarming 42 % of people 
over the age of 85. The devastating effect of the disease on its 
victims, coupled with the enormous grief caused to care giv-
ers and its steep financial toll on the society ($148 billion 
annually), makes AD a major public health concern [1].  

The enormity of this concern is multiplied by the fact that 
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there is neither a disease modifying treatment, nor even a 
reliable laboratory test for diagnosis that can be used pre-
mortem. The disease is characterized by accumulation of two 
misfolded proteins, β-amyloid and hyperphosphorylated–τau, 
which can only be detected by analyzing the brain tissue un-
der the microscope – an approach that is only possible during 
an autopsy. Diagnosis is usually done through clinical evalua-
tions that include a battery of memory tests and interviews 
with patients and their caretakers. The diagnostic accuracy of 
these clinical assessments is about 90% when conducted by 
expert neurologists at specialized dementia clinics. Commu-
nity hospitals, where most patients seek care, lack such ex-
pertise, and the diagnostic accuracy for AD is estimated to be 
75%, with a sensitivity of 83%, and a specificity of 55%, 
even with the advantage of frequent follow-up [2]. On the 
other hand, pathologically targeted medications under current 
development can reduce the rate of the disease progression; 
however, their effectiveness is clearly dependent on an accu-
rate diagnosis at the earliest stage of the disease. Hence, cost-
effective biomarkers that can provide accurate diagnosis at a 
community clinic and hospital setting are needed.  

New biomarkers that are under consideration typically fall 
into one of four categories: biochemical, anatomical, meta-
bolic and physiological markers. The biochemical markers 
such as β-amyloid and tau are proteins found in the CSF that 
are linked to AD pathology. Accumulation of these proteins 
in AD effected brain interferes with signaling at the synapses, 
and eventually causes neuronal death. The levels of tau and 
β-amyloid can be detected in elevated levels in the CSF of 
patients with Alzheimer’s through a lumbar puncture. While 
this is one of the most reliable predictors of pathology, it is 
also the most invasive and requires physicians skilled in per-
forming the procedure. The anatomical marker for AD is the 
atrophy of certain regions of interest in the brain, which can 
be detected by MRI images. Similarly, a PET scan provides a 
metabolic marker, measuring the glucose metabolism in sev-
eral regions of interest. Both the (gray matter) atrophy and 
loss of metabolism are directly linked to neuronal death.  

Detection and measurement of event related potentials 
(ERPs) of the electroencephalogram (EEG), on the other 
hand, are physiological markers of the integrity of neuronal 
systems, which are shown to carry diagnostic information in 
previous studies, including our own [3]. A protocol, called 
oddball paradigm is used for the acquisition of ERPs, where 
the patient is asked to respond (by pressing a button) every 
time an infrequent target (oddball) stimulus (a tone at 2 kHz) 
is delivered in a series of frequent non-target stimuli (a tone 
at 1 kHz) and infrequent novel sounds (sounds clips from 
movies). Several changes in the structure of ERP (such as 
amplitude and latencies of certain components) are known to 
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be altered by neurological disorders; providing a potential 
piece of diagnostic information [4,5]. ERP analysis has been 
used with a variety of signal processing techniques and auto-
mated classifiers for AD diagnosis with limited success [6-8], 
in part due to difficulty of early diagnosis, but also in part due 
to small cohort sizes, relying solely on specific components 
of the ERP, or on ERP obtained from certain electrodes only. 

Our hypothesis is that ERP signals and MRI measures of 
regional brain atrophy carry complementary information, 
since ERP based features reflect the physiological and elec-
trical changes affected by neuronal death and disrupted syn-
aptic transmission, whereas MRI based features reflect the 
anatomical changes as loss of volume in certain regions of 
interest, a direct effect of neuronal death. If this hypothesis is 
true, then a strategic combination of such heterogeneous in-
formation should lead to an improvement in diagnostic accu-
racy compared to using either of these two sources alone.  

An ensemble of classifiers based decision-fusion algorithm 
is proposed to combine ERP and MRI data.  A separate clas-
sifier is trained using ERP data obtained from different elec-
trode locations, along with another ensemble of classifiers 
trained on MRI data. These classifiers are then combined 
through weighted majority voting, where the voting weights 
are determined based on their performance on validation data. 

II. EXPERIMENTAL SETUP 

A. MRI Acquisition 

Magnetic resonance imaging (MRI) utilizes strong magnet-
ic fields and specific radio frequency pulse sequences to pro-
duce cross-sectional images of the brain. MRI is based on 
manipulating the intrinsic spin of hydrogen nuclei by placing 
the hydrogen nuclei in a large magnetic field and exposing 
them to radio frequency (RF) pulses. MRI has proven to be 
an indispensible source for determining the anatomical confi-
guration and tissue composition of various brain regions cor-
responding to different tissue types. Contrast between tissues 
is based primarily on the ratio of free to bound water in a 
given region. Since different types of brain tissue have differ-
ent such ratios, a quantification of brain region volumes can 
be obtained. 

In this application T1 weighted MRI is utilized. This refers 
to the duration of the net magnetization vector to return to its 
initial state after being rotated by an RF pulse. Tissues that 
have a large ratio of bound to unbound water have short T1 
durations. Brain tissue has a high amount of bound water 
compared to the surrounding CSF and therefore appears ac-
centuated in a T1 based image.  The image is segmented 
based on tissue type, followed by volume computations of 
anatomically defined regions of interest. These volumetric 
measurements can then be seen as anatomical markers of 
brain atrophy. 

B. The Oddball Paradigm and the ERP Acquisition 

Auditory oddball paradigm was used for ERP acquisition. 
The subjects were given a set of headphones and were pre-
sented with a series of tones and sounds occurring every 1-
1.3 seconds. Most of the tones (65%) were low frequency (1 
kHz) standard tones, and 20% were high frequency (2 kHz)  
target (oddball) tones. The remaining stimuli were novel 

sounds (15%). The subjects were instructed to press a button 
in response to a target tone only. The ERPs were acquired 
from 16 electrode locations, mounted to the scalp in accor-
dance with the 10/20 International System of electrode 
placement (Figure 1). In this study, we focused on ERPs ob-
tained in response to novel and target tones from the parietal 
regions, (P3, P4, P7, P8, and PZ) since these regions are 
known to generate strongest ERP signals. ERP signals were 
digitized at 256 samples/second, and notch filtered at 59-61 
Hz. Artifactual recordings were rejected by an EEG techni-
cian. The ERP signals were then segmented to 1-second in-
tervals, beginning 200ms pre stimulus and ending 800 ms 
post stimulus, followed by averaging of these synchronized 
signals. The resulting signals were 256-long average ERPs, 
one for each electrode and stimulus type, per patient. 
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Fig. 1: Electrode placement. 

C. Patient Cohort 

ERP and MRI data were obtained from 83 subjects, 34 
normal and 49 with AD. For cognitively normal subjects, the 
inclusion criteria was: age > 60; Clinical Dementia Rating 
(CDR) score = 0; Mini Mental State Exam (MMSE) score > 
26; no cognitive decline within two years of testing, whereas 
for AD patients:  age > 60; CDR score > 0.5; MMSE score ≤ 
26; cognitive decline over the last 12 months; and meeting 
NINCDR-ADRDA criteria for probable AD [9-11].  

III. METHODS 

A. Feature Extraction 

The T1 weighted MRI data are topographic images of the 
brain taken in consecutive slices parallel to the transverse 
plane. In order to extract the anatomical biomarkers in the 
form of quantized volumetric data, the raw image is first 
segmented and a density map of the image is calculated. This 
analysis allows the determination of which tissues are expe-
riencing neuronal atrophy. Once the density map is com-
posed, an automated region of interest analysis then deter-
mines the brain regions visible in the image. This is repeated 
for each image slice and the slices are collectively processed 
using voxel analysis to quantize the volume of various brain 
images. The features used for the classification algorithm is 
quantization of volume from 12 brain regions such as hippo-
campus, temporal gray/white matter, parietal lobe, anterior 
lobe, etc. repeated for left and right sides for 24 total features.  
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The ERP signals are non-stationary time series data, which 
are composed of multiple functional components at different 
frequency bands. This type of data lends itself naturally to 
discrete wavelet transform analysis (DWT), which decom-
poses the signal into its constituent frequency bands [12]. 

DWT provides time localizations of the signal’s spectral 
components, resulting in a time-frequency representation. 
This is achieved by decomposing the signal x[n] into its fre-
quency subbands using a series of lowpass (h[n]) and high-
pass (g[n]) filters, followed by subsampling by 2, creating 
two signals of half the length and half the bandwidth at each 
level of decomposition. The outputs of the highpass filters at 
level i are the DWT (detail) coefficients (di), whereas the 
outputs of the lowpass filters are approximation coefficients 
(ai), which are further decomposed by the next level of filters. 
In our implementation, the filters (length 8) were defined by 
the Daubechies wavelet with 4 vanishing moments. The 
complete decomposition is shown in Figure 2, which includes 
the frequency subband and number of coefficients at each 
level. Since the ERPs are known to be primarily in the 0 – 4 
Hz, we chose d5, d6, d7 coefficients as our features. 
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Fig. 2. DWT subband coding algorithm 

B. Ensemble Based Data Fusion Classification 

An ensembles of classifiers based data and decision fusion 
approach is used for automated classification.  Ensemble sys-
tems combine several classifiers, each typically trained with a 
different subset of the training data to ensure the diversity of 
each classifier. Classifier diversity ensures that that each clas-
sifier creates a different decision boundary and hence makes 
different errors on each instance. A strategic combination of 
these classifier outputs can then reduce the total error. In this 
work, we use the ensemble of classifiers approach not only 
for reducing the error within each source, but also for com-
bining heterogeneous data obtained from different sources.  

First, an ensemble of classifiers was trained to form the 
“ERP expert.” This expert consists of one classifier for each 
ERP source, that is, ERP signals obtained in response to two 
types of stimuli (target and novel sounds), from 5 electrode 
locations, and analyzed at three different frequency bands (1-
2Hz, 2-4 Hz and 4-8 Hz), giving us 30 sources of ERP signals 
per patient. One support vector machine (SVM) with a Gaus-
sian kernel was trained using the modified two-tier leave-one-
out (LOO) cross validation (explained below) for each ERP 
based data source, giving us 30 ERP based SVMs. These 
classifiers were then combined using weighted majority vot-

ing (WMV), where the weights were determined based on the 
validation data performances (see below).  

An “MRI expert” was then created. Because there was only 
one source of MRI information (24 volumetric measurements 
obtained from different regions of brain), the MRI classifiers  
were trained using random subspace method [13], which is 
similar to bagging [14] except applied to the features instead 
of training samples: a random subset of 18 (of 24) features 
were drawn to train each classifier, and 30 such classifiers 
were trained. The classifiers (SVMs with Gaussian kernels) 
were combined using a WMV, weights determined based on 
the validations performances. 

The two-tier leave-one-out (LOO) cross validation, shown 
in Figure 3, was used for training, validation and testing, to 
ensure that the performance estimates reflect the true perfor-
mances as closely as possible. 
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Fig. 3. Two-tier LOO for training / testing 

Out of the 83 subjects, one subject was first removed for 
testing (T), and one was removed for validation (V). 30 ERP 
classifiers were then trained, one for each ERP source using 
the data from the remaining 81 patients. These classifiers 
were evaluated on the validation patient V, whose perfor-
mance was noted. This procedure was repeated a total of 82 
times, each using a different V. The average performance of 
each ERP classifier on its validation data was then used as the 
voting weight of that classifier for the subsequent weighted 
majority voting (WMV). Once all training was completed, the 
30 classifiers were tested on the one test patient T that was 
left out. The entire procedure is repeated 83 times, each using 
a different T. The average of these 83 LOO trials was the 
overall classification performance of the “ERP expert.” 

A similar process was repeated for the MRI data, where 30 
classifiers were generated for each LOO trial (each using 18 
of the 24 features). The average performance of 82 LOO tri-
als on the validation subject V was used to determine the vot-
ing weight, whereas the average performance of the 83 LOO 
trials on the test subject T was the overall performance of 
“MRI expert.” Note that the LOO based validation scheme 
allows us to assess the relative diagnostic accuracy of differ-
ent sources of information, and assign appropriate weights. In 
the absence of prior knowledge whether ERP or MRI pro-
vides more discriminatory diagnostic information, the num-
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ber of classifiers (30) was kept the same, so that ERP and 
MRI experts have similar voting magnitudes. 

IV. RESULTS 

The diagnostic performance figures obtained by using ERP 
based features alone, MRI based features alone, and with 
ERP + MRI data fusion are shown in Table 1. In addition to 
accuracy (average generalization performance on test data), 
we also provide sensitivity, specificity and positive predictive 
values (PPV). Sensitivity is the ratio of true positives (cor-
rectly classified as AD by the algorithm) to those clinically 
diagnosed as AD, specificity is the ratio of true negatives 
(correctly classified as normal by the algorithm), to those 
clinically identified as normal, and PPV (or precision) is the 
ratio of true positives to all subjects identified as AD (true 
positive + false positive).  

TABLE 1. DIAGNOSTIC PERFORMANCES  
 ERP MRI ERP+MRI 

Accuracy       74.70% 89.16% 93.98% 
PPV           80.48% 95.45% 95.83% 
Sensitivity  75.51% 85.71% 93.88% 
Specificity  73.53% 94.12% 94.12% 

 

The overall diagnostic accuracy of the individual ERP 
data sources (not shown above) were in the upper 50% to mid 
60% range, which improved to 74.7% when the decisions 
made by 30 such sources were combined through WMV. The 
average performance obtained by the MRI based features was 
89.16%, which improved to 93.98% when combined with the 
ERP based decisions. Similar improvements can also be seen 
in all diagnostic metrics. These results, while preliminary, are 
clinically significant, since community clinic based diagnos-
tic approaches consistently had lower specificity values (55% 
according to [2]). 

V. DISCUSSION & CONCLUSIONS 

Our previous studies have shown that physiological (ERP) 
data from different sources provide complementary and valu-
able discriminatory information for diagnosis of AD, when 
combined with an ensemble of classifier based data and deci-
sion fusion algorithm. In this study, we report our preliminary 
results in extending this approach to include anatomical fea-
tures measuring loss of brain volume as measured by T1 
weighted MRI images. The ERP data were obtained from five 
electrodes over the parietal region of the (P7, P3, PZ, P4, P8 
electrodes), in response to target and novel stimuli, and their 
DWT coefficients in 0-8 Hz were used. MRI data were volu-
metric measurements from 24 regions of interest.  

These two heterogeneous data types were chosen primarily 
because they can be obtained noninvasively, and using 
equipment that could be made available at community hospit-
als – unlike biochemical markers or the neuropsychological 
evaluations that are typically available only at dementia spe-
cialty clinics at major university or research hospitals. 

Our preliminary results indicate that both ERP and MRI 
based features carry diagnostically useful information, with a 
diagnostic accuracy in the high 70% to 80% range. We have 
also shown that when the ensemble based decisions are com-
bined using a weighted majority voting, the diagnostic accu-
racy increases to 90% range. We have also shown that other 

diagnostic metrics, such as sensitivity, specificity and PPV 
also show significant increases under the proposed data fu-
sion approach.  

We should mention, however, that our results represent the 
ability of the proposed approach in correctly matching the 
diagnoses of expert clinicians – and not predicting the true 
condition. Hence the true performance of the approach can be 
slightly worse or better, however, that would be impossible to 
assess without autopsy based confirmation of the diagnosis. 
With this distinction in mind, we can draw several conclu-
sions from these preliminary results. First, ERPs and MRI 
carry complementary information – this is expected, since the 
features obtained from these two modalities are obtained by 
different underlying physical processes, that is, physiological 
vs. anatomical. Second, an ensemble of classifiers approach 
that provides a decision level fusion is an effective method to 
combine such complimentary information. Third, the diag-
nostic performance of the approach compares very favorably 
to that obtained by community clinics (of 75%).  Hence, the 
approach promises to be a strong potential as a biomarker for 
early diagnosis.  
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