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Abstract–As the average life expectancy increases, partic-
ularly in developing countries, prevalence of neurodegenera-
tive diseases has also increased. This trend is especially alarm-
ing for Alzheimer’s disease (AD); as there is no cure to stop or 
reverse the effects of AD. However, recent pharmacological 
advances can slow the progression of AD, but only if AD is 
diagnosed at early stages.  We have previously introduced an 
ensemble of classifiers based approach for combining event 
related potentials obtained from different electrode locations 
as an effective approach for early diagnosis of AD. We further 
expand this approach and analyze its robustness and stability 
in two ways: comparing the diagnostic accuracy on hand se-
lected and cleaned data vs. standard automated preprocessing, 
but more importantly, comparing the diagnostic accuracy on 
two different cohorts, whose data are collected under different 
settings: a research university lab and a community clinic. 

I. INTRODUCTION 

lzheimer’s disease is the fifth leading cause of death 
among the elderly, and the sixth leading cause of death 

among all age groups in the US. Given that there is no 
treatment available to stop or reverse the effects of AD, and 
no definitive method for diagnosing the disease with cer-
tainty, combined with the availability of recently developed 
medications for slowing the progression of the disease, it 
has become increasingly important to diagnose AD at its 
earliest stages possible.  

A neurodegenerative disease, AD is characterized by 
neuronal death, leading to declines in memory, motor skills 
and cognitive ability.  While two misfolded proteins, β-
amyloid and hyperphosphorylated–τ, which cause plaques 
and neurofibrillary tangles, respectively, have been impli-
cated as causing AD, the genesis of these proteins is un-
known. Perhaps more perplexing, recent studies have 
shown that removal of β-amyloid from the brain using tar-
geted vaccination does not reverse the damage caused [1].  
With overall life expectancy increasing, more notably in 
developed countries, the number of AD cases has grown 
tremendously since its first discovery over a century ago. 
The vast majority of AD patients are over the age of 65, 
with an average 2% of cases affected under 65 (early onset 
AD), 19% between 75 and 84, and 42% ~50% above the 
age of 85. With over 5 million people suffering from AD 
alone, the enormous financial and emotional cost of the 
disease on the patient, family, and society in general has 
made AD a major health concern [2]. 

Currently, a definitive diagnosis of AD can only be 
made post-mortem by analyzing the brain tissue under the 
microscope for the presence of plagues and tangles, a me-
thod only available during an autopsy. More recently, cere-
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brospinal fluid (CSF) concentrations of hyperphosphory-
lated–τ and β-amyloid proteins have been shown to be di-
agnostically informative biomarkers. However, such an 
analysis requires invasive, expensive, extremely painful – 
and hence undesirable – lumbar puncture, which also re-
quires specialty clinics, research or university hospitals.  

The most common method of pre-mortem diagnosis is 
a longitudinal clinical evaluation, performed over a year or 
longer, which includes several batteries of memory tests as 
well as interviews of the patient and their caretakers.  The 
primary path of diagnosis using this approach is through 
documenting cognitive decline over time and eliminating 
all other possible disorders. Such an evaluation is therefore 
subjective, tedious, requires expert neuropsychologists, and 
due to large amount of time involved in the process, is ex-
tremely expensive. While such an evaluation can achieve 
over 90% accuracy in AD diagnosis, when conducted by 
expert neurologists at large university hospitals or dementia 
clinics, geographical and financial restrictions generally 
limit most patients to smaller hospitals and clinics, where 
the diagnostic accuracies are estimated to be around 75%, 
even with the benefit of longitudinal evaluations [3]. 

Given the prevalence of the disease, the expense and 
expertise needed for the less-than-perfect diagnosis, 
coupled with the availability of new drugs that work best if 
administered early, there is a compelling case for the urgent 
need for a reliable, inexpensive, non-invasive diagnostic 
tool that can be made available to community clinics, 
where most people seek medical help. The event related 
potentials (ERPs) obtained from the electroencephalogram 
(EEG) may provide just such a tool. Long overlooked due 
to its poor spatial resolution and difficulty of interpretation, 
recent advances in signal processing and machine learning 
have shown that early dismissal of ERPs as a potential 
biomarker were unfounded. In fact, several recent studies 
using the well-known oddball paradigm have demonstrated 
that the decreased amplitudes and increased latencies of the 
P300 component of ERPs – a positive peak that occurs 
around 300 ms after a stimulus is observed by the subject – 
is linked to cognitive decline [4-7]. Various signal 
processing approaches on the raw EEG or the P300 has been 
conducted since then, verifying the presence of a statistical  
correlation, that showed limited success in patient specific 
diagnosis  [8-10]. In our early work, we have shown that 
discrete wavelet coefficients of the ERPs, and not that of 
just the P300 components, are quite beneficial in patient spe-
cific AD diagnosis, particularly when the ERPs in response 
to different types of stimuli are combined [11-14]. 

Previously, we introduced an ensemble of classifiers 
based decision fusion approach, showing the feasibility of 
combining ERPs acquired from different electrodes for 
automated early diagnosis [13;15]. In this contribution, we 
extend our analysis to include the robustness of the ap-
proach with respect to manual hand cleaning vs. automated 
preprocessing, but more importantly with respect to differ-
ent cohorts. To the best of our knowledge, this is the first 
study of its kind that compares the performance on different 
cohorts whose data are acquired at different centers. 
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II. EXPERIMENTAL SETUP 

A. Patient Cohorts 

Two different cohorts were recruited, which we will re-
fer to as Cohort A and Cohort B in the rest of this paper. 
Cohort A subjects were primarily recruited between 2003 
and 2006, with particular emphasis on AD subjects being in 
the earliest stages of the disease. Cohort B subjects were 
recruited between 2006 and 2009, where AD group 
represented a wider spectrum of disease stages. While there 
are many indicators to determine the severity of the disease, 
one of the simpler and effective tests is the Mini Mental 
State Exam (MMSE). The MMSE is a standardized test 
performed to access the subject’s attention, immediate and 
short-term memory, language, as well as their ability to 
follow various written and verbal communication. For 
healthy individuals over the age of 80, the median score is a 
25 out of possible 30 total points (for no cognitive decline); 
however, this score is strongly proportional to number of 
years of education. The median MMSE is 29, for those with 
at least 9 years of schooling, and 22 for those with zero to 
four years of education. A score of 19 or lower is a clear 
indicator of cognitive impairments and hence AD pathology 
[16]. Cohort A, had 34 AD patients with μAGE(AD)=74, 
μMMSE(AD)=25, and 37 controls (CN) with μAGE(CN)=76, and 
μMMSE(CN)=29, indicating that the AD patients were in their 
earliest stages of the disease. For Cohort B, we had 27 AD 
patients with μAGE(AD)=77, μMMSE(AD)=23, and 26 control 
subjects with μAGE(CN)=76, and μMMSE(CN) =29.  

Cohort B subjects continue to be recruited, and over 
100 subjects have been recruited so far. However, unlike 
Cohort A, Cohort B data acquisition is done – not in a care-
fully controlled research laboratory setting, but rather in a 
setting that mimics a community clinic. Hence the data are 
substantially noisier than those for Cohort A. Therefore, for 
this specific test, we chose a small subset of these patients, 
whose data were manually and carefully analyzed and 
cleaned by a specially trained EEG technician. We com-
pared the performance of the proposed system on the iden-
tical subjects whose data were manually cleaned by the 
technician vs. automatically cleaned by a preprocessing 
scheme. Furthermore, while the Cohort A EEG data were 
obtained using 19 electrodes, Cohort B data were acquired 
using only 16 electrodes (using a simpler amplifier, mi-
micking one that may be available to community clinics).  

For both Cohort A and B, inclusion criteria for AD 
group was satisfying the NINCDS-ADRDA criteria [17] for 
probable AD, which includes a battery of memory tests 
(including MMSE), interviews with the subject and their 
caregivers, clinical dementia rating score of 0.5 or higher 
for AD cohort and 0 for the normal cohort. All subjects 
were over 60 years old. Exclusion criteria for both groups 
were evidence of any other central nervous system damage 
or use of sedatives, anxiolytic or antidepressants within 48 
hours of ERP acquisition.  

B. The Oddball Paradigm and ERP Acquisition 

The ERPs acquired from the patients were collected 
using an auditory oddball paradigm protocol. Electrodes 
were placed according to 10-20 standard (Fig 1), whose 
impedances were kept below 20Ω.  Each subject was tested 
for 30 minutes with approximately three minutes of rest for 
every five minutes of testing. A 1 kHz tone was presented 
to both ears, 60 dB above each subjects hearing threshold.   
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Fig. 1 –Electrode Placement 

A total of 1,000 random stimuli were presented, 65% 
consisting of standard (non-target) tones of 1 kHz, 20% as 
target tones of 2 kHz, and 15% as novel sounds.  A random 
inter-stimulus interval ranging from 1.0 to 1.3 seconds was 
inserted. Standard and target stimuli were presented in 
100ms busts with a 5ms on/offset envelope. The novel sti-
muli were environmental sounds about 200ms long, each 
unique and never repeated. The subjects were instructed to 
press a button each time they heard the target tone only. 
The data was sampled at 256 samples /second.     

III. METHOD 

A. Preprocessing & Feature Extraction 

Cohort A data were hand processed by a trained tech-
nician, before the data were released to us for analysis – in 
the form of cleaned and averaged ERPs.  For Cohort B da-
ta, we were given both the raw EEGs, as well as the ma-
nually cleaned and processed ERPs. Our simple automated 
preprocessing scheme consisted of the following: the data 
were first notch filtered at 59-61 Hz. Any recording with 
major artifacts were rejected using a 20th order derivative 
based thresholding. ERPs were obtained from these EEG 
recordings, averaged and time-locked with 200ms pre-
stimulus and 800ms post-stimulus intervals, to remove ran-
dom variations in the signals. The pre-stimulus baseline 
was then removed from the entire ERP, with the final ERP 
of one second length of 256 samples per stimulus type, per 
electrode channel, per patient.  

Since ERPs are nonstationary signals with time vary-
ing spectral components, we use the discrete wavelet trans-
form coefficients for feature extraction, where ERPs were 
broken down into the following frequency bands:  

d1:64~128 Hz (N=132) 

d2: 32 ~ 64 Hz (N=69) 

d3: 16 ~ 32 Hz (N=38) 

d4: 8 ~ 16 Hz (N=22) 

d5: 4 ~ 8 Hz (N=14) 

d6: 2 ~ 4 Hz (N=10) 

d7: 1 ~ 2 Hz (N=8) 

a7: 0 ~ 1 Hz (N=8). 

In this study, the decomposition levels 5-7 and the ap-
proximation level 7 were of primary focus. These bands 
were chosen since the ERP signals generally reside within 
the (0–8 Hz) frequency range, giving us four frequency 
bands to analyze for each novel and target tone responses. 

B.  Ensemble System Definition 

An ensemble of classifiers based decision fusion ap-
proach was implemented, which consists of a group of clas-
sifiers trained on different feature spaces to create varying 
decision boundaries. Classifiers with varying errors can 
then be combined to reduce the overall system error [18]. 
We can consider such a system analogous to our natural 
decision making process to see multiple opinions before 
making a final decision; akin to seeking agreement between 
experts (who may have access to different sets of informa-
tion) to obtain greater confidence in the final decisions.   
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Decision fusion based data fusion refers to combina-
tion of decisions made by individual classifiers, as opposed 
to feature based data fusion where individual features are 
usually concatenated. We use a modified (augmented) 
stacked generalization approach to obtain feature level de-
cision fusion, followed by a combination of such decisions 
to create the final across-features decision fusion. 

C.  Stacked Generalization  

The primary goal of stacked generalization is to con-
firm or correct what has been learned by a group of prelim-
inary (Tier-1) classifiers with the use of a meta-classifier.  
Any instance in a certain region of the feature space (e.g., 
near the decision boundary), may be more likely to be mis-
classified by certain classifiers than others.  This trend can 
be learned by mapping the outputs of an ensemble of clas-
sifiers to their true labels (Fig 2.), thereby allowing the sys-
tem to adapt to classifiers with varying performances. 
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Fig. 2 - Stacked Generalization block diagram  

D.  Augmented  Stacked Generalization 

In modifying the basic stacked generalization algo-
rithm, we augment the outputs of the Tier-1 classifiers by 
concatenating the original data before training the meta-
classifier (dashed line in Fig. 2), which we refer to as aug-
mented stacked generalization (ASG). This process enrich-
es the intermediate feature space used by the meta-
classifier, which in turn aids in overall system performance.  
We implement a two stage training process, a leave-one-out  
(LOO) nested into a 5-fold cross validation.  For each fold 
held out as test data, the remaining 4 folds are used in a 
LOO fashion to train the classifiers: N-1 instances are used 
to train the Tier-1 classifiers and the outputs of the Tier 1 
classifiers on the remaining Nth instance is used for training  
the meta-classifier. The system is then tested on the test 
block of the 5-fold cross validation. For each feature set 
(ERPs from different electrode locations, frequency bands 
and stimulus types), the entire process is then repeated 10 
times, creating a different partition of 5 folds. Upon com-
pletion, we obtain a different ASG based system trained on 
different specific feature set (e.g. NPZ12—Novel stimuli, 
PZ electrode, 1-2 Hz frequency band). This constitutes one 
decision fusion based expert for its respective feature set. 
Such experts are then combined using sum, and simple ma-
jority voting to obtain final decision fusion classification, 
combining different feature sets. Figure 3 illustrates the 
overall system diagram. 

Multilayer perceptron based classifiers were used 
throughout the entire system, since these classifiers natural-
ly provide an output that can be interpreted as a support for 
each class. Nine MLPs with 10 hidden layer nodes were 
used in Tier 1, and one MLP with 30 hidden layer nodes 
was used as the meta-classifier. All MLPs were trained with 
conjugate gradient based backpropagation, with a momen-
tum term of 0.95 and an error goal of 0.05. 
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Fig. 3 – Overall system block diagram 

IV. RESULTS 

Since Cohort A and B utilize different electrodes, not 
all feature sets can be compared directly between the two.  
However, viable substitutions were made (see Tables 1 and 
3 for feature set lists for each cohort), and the identical 
training and testing procedure was used for both.   

Recall that Cohort B data underwent two different me-
thods for cleaning and artifact rejection. First, it was hand 
cleaned by a trained EEG technician, manually removing or 
compensating for each artifact (e.g., muscular movement, 
eye blinks, etc.).  In the second method, we employed a 
simple automated artifact rejection using derivative based 
thresholding and baselining. The analysis was then repeated 
on both sets of data to determine the robustness of the deci-
sion fusion based analysis with respect to different artifact 
rejection methods. This is because; the proposed automated 
system is intended for community clinics. Therefore, two 
performance metrics are given for all Cohort B calcula-
tions, each corresponding to either hand cleaning of the 
data or automated artifact rejection. 

A.  Cohort A Diagnostic Accuracies 

The diagnostic accuracies for the highest performing 
16 individual feature sets for Cohort A are shown in Table 
1. The averages and 95% confidence intervals are based on 
10 independent trials of 5-fold cross validation.  

TABLE 1 – COHORT A: INDIVIDUAL FEATURE SET PERFORMANCES 

FS Avg (%) 
Best 
Trial  

 
FS 

Avg 
(%) 

Best 
Trial 

NPZ12 70.1±1.2 88.6  NT812 64.0±1.6 79.1 
NPZ01 69.4±1.8 77.1  TFP212 63.0±1.2 73.7 
NCZ12 69.1±1.4 78.0  NPZ24 62.6±1.8 79.7 
TPZ12 67.5±1.6 81.0  TP324 62.5±1.0 81.3 
TPZ24 66.9±0.9 89.9  TPZ01 62.5±1.9 79.7 
TF812 66.5±1.9 82.5  TP312 62.4±1.2 79.5 
NFZ24 66.2±1.7 75.1  TCZ24 61.8±1.7 79.4 
NCZ24 64.7±1.2 88.2  NOZ12 64.0±1.6 79.1 

The better performing individual feature sets (FS) were 
then combined to complete the decision fusion based en-
semble system. We chose three such combinations: 

FS1: NCZ12+NCZ24+NPZ24+NT812+NPZ24+TFP212+ 
 TPZ01+TF812+TP324 

FS2: NPZ12+NPZ24+NCZ24+NT812+TFP212+NCZ12 

FS3: TFP212+TF812+TPZ01+NCZ12+NPZ24+NT812+NPZ12 

The results of the combinations are shown in Table 2 
for sum and simple majority voting (SMV) based combina-
tion rules, which shows that the sum rule in general per-
forming better, with statistical significance. 
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TABLE 2 – COHORT A: DECISION FUSION DIAGNOSTIC ACCURACIES 

SU
M

  Avg (%) Best   

SM
V

  Avg(%) Best 
FS1 84.5±1.8 94.7  FS1 74.3±1.3 82.1 
FS2 81.3±1.7 83.0  FS2 71.8±2.1 86.6 
FS3 82.4±2.0 87.0  FS3 73.1±2.2 82.0 

B.  Cohort B Diagnostic Accuracies 

Diagnostic accuracies for each feature set are shown in 
Table 3, for automated and hand cleaned preprocessing.  

TABLE 3– COHORT B: INDIVIDUAL FEATURE SET PERFORMANCES 

Feature 
Set 

Avg (%) 
Best 
Trial 

 Avg (%) 
Best 
Trial 

Computer  Hand-Cleaned 
NPZ12 62.9±1.5 90.0  63.8±2.55 90.0 
NT812 65.8±2.4 80.0  59.3±1.72 80.0 
NPZ24 59.3±0.9 70.0  60.9±0.80 76.9 
NCZ24 62.7±1.2 80.0  55.6±1.49 80.0 
NCZ12 65.6±2.5 90.0  65.7±3.22 80.0 
NOZ12 58.8±2.3 90.0  58.9±1.61 80.0 
TCZ24 60.5±2.0 90.0  60.6±2.01 90.0 
TPZ12 57.8±1.1 70.0  61.0±2.05 90.0 
TP312 57.5±2.3 80.0  61.4±1.60 80.0 
NFZ24 60.9±2.4 90.0  59.5±1.94 80.0 
TP324 65.8±2.2 90.0  62.0±1.11 90.0 
TPZ24 65.8±1.3 84.6  58.5±2.36 80.0 
NPZ01 59.5±1.4 84.6  64.2±1.37 80.0 
TF312 58.7±1.6 90.0  68.4±1.15 80.0 

TFP212 65.6±1.2 90.0  63.6±2.34 90.0 
TPZ01 62.9±2.7 100.0  57.5±0.82 70.0 

Since different electrodes were used in Cohort B, the 
FS combinations vary slightly from those of Cohort A, with 
the only substitution being TP312 replacing TF812. Results 
of the final combinations, shown with each combination 
rule are shown in Table 4 for automated preprocessing, and 
in Table 5 for hand-cleaning based preprocessing.  

TABLE 4– COHORT B: DECISION FUSION DIAGNOSTIC ACCURACIES 

BASED ON AUTOMATED PREPROCESSING 

SU
M

  Avg (%) Best   

SM
V

  Avg (%) Best  
FS1 76.04±1.2 81.12  FS1 72.26±1.2 82.83 
FS2 79.11±1.8 86.78  FS2 71.88±1.9 79.15 
FS3 83.13±1.6 96.23  FS3 76.91±0.9 86.14 

TABLE 5– COHORT B: DECISION FUSION DIAGNOSTIC ACCURACIES-

BASED ON HAND-CLEANED PREPROCESSING 

S
U

M
  Avg (%) Best   

S
M

V
  Avg (%) Best  

FS1 73.05±0.9 80.00  FS1 72.28±0.7 79.91 
FS2 78.16±1.9 83.45  FS2 73.52±1.2 77.21 
FS3 83.00±2.1 94.99  FS3 74.11±1.9 76.55 

V. CONCLUSIONS 

We make several observations from the results pre-
sented above. First, ASG based ensemble performance for 
any of the feature sets exceeds that of both community clin-
ic diagnostic accuracy, as well as individual feature set per-
formances (in Tables 1 and 3), demonstrating the feasibility 
of the approach. Second, the performance differences be-
tween Cohort A and Cohort B are not significant, nor are 
the differences between hand-cleaned preprocessing and 
automated preprocessing. This is important, indicating the 
ASG based decision fusion approach - when used with 
wavelet coefficients as features - is quite robust with re-
spect to cohort differences as well preprocessing schemes. 
Third, the performance differences among the top three 
feature sets are all also very similar, with FS3 performing 
slightly better (with significance only in Cohort B), indicat-
ing that several different electrode combinations may be 
used for the analysis. The sum rule, however, performed 
significantly better than SMV across most comparisons. 

Overall, we conclude that i) the approach is feasible as 
a first screening diagnosis tool to be used at community 
clinics, ii) there is in fact complementary information in 
ERPs obtained from different electrodes, which can be 
fused through decision fusion, and iii) the approach is quite 
robust to cohort and preprocessing variations. Future work 
will include expanding the analysis to a larger cohort, and 
training on one cohort and evaluating on the other. 
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