
 

  

Abstract—As life expectancy increases, particularly in the de-
veloped world, so does the prevalence of Alzheimer’s Disease 
(AD). AD is a neurodegenerative disorder characterized by neu-
rofibrillary plaques and tangles in the brain that leads to neu-
ronal death and dementia. Early diagnosis of AD is still a major 
unresolved health concern: several biomarkers are being investi-
gated, among which the electroencephalogram (EEG) provides 
the only option for an electrophysiological information. In this 
study, EEG signals obtained from 161 subjects - 79 with AD, and 
82 age-matched controls (CN) - are analyzed using several non-
linear signal complexity measures. These measures include:  Hi-
guchi fractal dimension (HFD), spectral entropy (SE), spectral 
centroid (SC), spectral roll-off (SR), and zero-crossing rate 
(ZCR). HFD is a quantitative measure of time series complexity 
derived from fractal theory. Among spectral measures, SE meas-
ures the level of disorder in the spectrum, SC is a measure of 
spectral shape, and SR is frequency sample below which a speci-
fied percent of the spectral magnitude distribution is contained. 
Lastly, ZCR is simply the rate at which the signal changes signs. 
A t-test was first applied to determine those features that provide 
significant differences between the groups. Those features were 
then used to train a neural network. The classification accuracies 
ranged from 60-66%, suggesting they contain some discriminato-
ry information; however, not enough to be clinically useful alone. 
Combining these features and training a support vector machine 
(SVM) resulted in a diagnostic accuracy of 78%, indicating that 
these feature carry complementary information. 
 

Index Terms—Alzheimer’s disease, EEG, Higuchi Fractal Di-
mension, Spectral Entropy, Spectral Centroid, Spectral Roll-Off, 
Zero-Crossing Rate 

I. INTRODUCTION 
lzheimer’s disease, the most common form of dementia, 
is a neurodegenerative disorder characterized by a pro-

gressive and severe loss of memory with cognitive impair-
ment. It has a profound socio-economic impact with 18 mil-
lion patients worldwide, and 5.4 million in the United States 
(U.S.) alone. The U.S. spends approximately $180 billion an-
nually on research, treatment and care [1]. The exact causes of 
the disease are unknown, though abnormal proteins that form 
neurofibrillary tangles and plaques in the brain that ultimately 
kill neurons are implicated. There is no cure, however, limited 
treatment with recent pharmacologically targeted medications 
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can be used to treat the symptoms and slow down the progres-
sion of the disease. As with most disorders, the effectiveness 
of these drugs decrease at the later stages of the disease, hence 
early diagnosis is essential. Early diagnosis is very difficult, 
however, and a definitive diagnosis is only possible with an 
autopsy. Currently, AD is diagnosed by neuropsychologists as 
a result of a battery of cognitive tests and a series of inter-
views with the subject and their caregivers. At dementia spe-
cific clinics, diagnostic accuracy rates reach 90%. However, at 
community healthcare clinics, where most subjects are eva-
luated, the diagnostic accuracy is around 75% [2]. Anatomical 
(using MRI) and metabolic (using PET imaging) biomarkers 
are currently being investigated, unfortunately these approach-
es remain costly. EEG, however, provides a neurophysiologi-
cal biomarker that is inexpensive and can be made available at 
community clinics.  

Our goal is to investigate and identify EEG based biomark-
ers that provide clinically meaningful diagnostic accuracy. In 
our previous work, we showed that wavelet coefficients ob-
tained from event related potentials can provide 75-80% diag-
nostic accuracy. In this study, we look at signal complexity 
and spectral based features. Our hypothesis is that patients 
with AD have less signal complexity due to neuronal loss. 

II. DATA COLLECTION  
 The data used in this study is a subset of a larger dataset 
originally intended to analyze event related potentials (ERPs) 
generated using an auditory oddball paradigm. The diagnosis 
was made by a team of neuropsychologists based on a com-
prehensive set of memory and cognitive tests, as well as inter-
views with the subjects and their caregivers. 
  The dataset used in this study consisted of 161 subjects, 79 
with AD and 82 cognitively normal (CN). The subjects were 
age matched with mean ages μAGE(AD)=76 and μAGE(CN)=77, 
with mini mental state exam scores of μMMSE(AD)=21 and 
μMMSE(CN)=28. EEG data were collected through the oddball 
paradigm, modified from [3], where subjects heard three types 
of auditory stimuli: 1 kHz standard tones (about 65% of all 
stimuli), 2 kHz target tones (20%), and novel sound clips 
(15%).  Each were presented randomly with an average 1.3 
seconds of inter stimulus interval. Subjects were asked to 
press a button every time they heard a target tone. Each re-
cording session was approximately 30 minutes in duration.  
 EEG signals were collected using a 16-electrode cap with 
the 10-20 standard electrode montage. Signals were sampled 
at 256 Hz. Using a sharp, 50th order digital Butterworth filter, 
the raw signals were bandpass filtered with cutoff frequencies 
of 0.5 Hz and 40 Hz. The data from the two frontal electrodes 
of Fp1 and Fp2 were not used due to high occurrence of ocular 

Analysis of Complexity Based EEG Features for 
the Diagnosis of Alzheimer’s Disease 

Tyler Staudinger, Robi Polikar* 

A

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 2033

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



 

artifacts. Rare ocular and muscular artifacts were removed 
from the remaining data using a 20th order derivative based 
thresholding. The data was originally acquired for wavelet 
based event related potential (ERP) analysis. In previous stu-
dies data from target and novel sounds were analyzed, the 
results of which can be found in [4-6]. Because we are not 
directly interested in ERPs in this analysis (which are obtained 
by time-locked averaging of signals in response to target and 
novel sounds), we used the standard tones since they provided 
substantially longer data records. Each subject possessed EEG 
data records of approximately 50,000 or more samples in re-
sponse to the standard tones after the filtering and threshold-
ing.  

III. FEATURE EXTRACTION 
Following filtering and artifact removal, EEG data from 

each electrode were divided into 5 second epochs of 1280 
samples each. Each epoch was then tested for normality using 
the Jarque-Bera test [7]. This test has the null hypothesis that 
the samples originate from a normal distribution with un-
known mean and variance. The test statistic for this test is 

ܤܬ                                ൌ 

ቀݏଶ  ሺିଷሻమ

ସ
ቁ  (1) 

where n is the sample size, s is the sample skewness, and k is 
the sample kurtosis. If the null hypothesis is not rejected (indi-
cating normality), the epoch was used to compute the features 
described below. Statistical significance was tested for each 
feature set, the p-values of which are provided below.  
 

A. Higuchi Fractal Dimension (HFD) 
 The term fractal dimension, when used with time series data 
shows correlation at different scales. When applied to biomed-
ical signals, fractal dimension can be interpreted as a quantita-
tive measure of signal complexity [8]. The Higuchi method of 
fractal dimension measures the change in signal amplitude, 
while sampling the signal at increasingly longer intervals [8]. 
The original time series of length N is used to construct  ݇ 
subset time series as follows [9]: 

ݔ          ൌ ቄݔሺ݉ሻ, ሺ݉ݔ  ݇ሻ, ሺ݉ݔ  2݇ሻ, … ݔ ቀ݉  ቂேି

ቃ ݇ቁቅ  (2) 

where m = 1,2, …, k is the initial time index, and k is the delay 
between the samples. For each ݔ , the average length is com-
puted as: 

ሺ݇ሻܮ                 ൌ
ሺேିଵሻ∑ ൫௫ሺାሻି௫ሺାሺିଵሻሻ൯

ቂಿషೖ ቃ
సభ

ቂಿషೖ ቃ 
  (3) 

 
The total average length ܮሺ݇ሻ is computed for all time series 
having the same delay k but differing m values. 

ሺ݇ሻܮ                               ൌ ∑ ܮ
ୀଵ ሺ݇ሻ  (4) 

 This is repeated for every k from 1 to the value of ݇௫. 
The slope of the least squares linear fit of the curve ln൫ܮሺ݇ሻ൯ 
vs. ln ሺ1/݇ሻ is the estimate of the HFD [9]. The choice of the 
݇௫ parameter is obtained as the value k for which the HFD 
saturates. For this dataset, ݇௫ was computed as 40; a value 
also confirmed by others [8]. The HFD was calculated for 

every 1280 sample epoch, which was then averaged across all 
epochs to obtain the final HFD value for that subject. Table 1 
shows the electrodes for which the final HFD values differed 
significantly between AD and CN groups.  

TABLE 1. ELECTRODES WITH SIGNIFICANTLY DIFFERENT HFD VALUES 

Electrode P-
Value 

µ  
CN 

 ߪ
CN 

µ  
 AD 

 ߪ
AD 

F3 .002 1.72 .04 1.69 .06 
F4 .005 1.72 .05 1.7 .06 
P3 .012 1.72 .04 1.7 .05 
T7 .0001 1.76 .04 1.73 .05 
T8 .008 1.78 .04 1.75 .06 
P7 .0015 1.75 .03 1.72 .05 
Fz .0406 1.69 .05 1.67 .06 
      

B. Spectral Entropy (SE) 
 Spectral entropy is a measure of unpredictability and dis-
order associated with the spectrum of a signal. Hence, higher 
SE indicates higher complexity. It is a modified version of 
Shannon’s Entropy and can be obtained as follows [10]: 
 

1. Given the signal ݔሺݐሻ, compute ܵሺ݂ሻ, the power spec-
tral density (PSD), as the Fourier transform of the auto-
correlation function of the signal ݔሺݐሻ; 

2. Extract the spectral band corresponding to the frequen-
cy interval of interest, 0.5-40Hz, in this case. 

3. Normalize the PSD to unit total power. 
4. Compute the spectral entropy as  

ܧܵ                               ൌ  ∑ ܵሺ݂ሻ כ ln ଵ
ௌሺሻ

ସ
ୀ.ହ   (5) 

Spectral entropy was computed for each consecutive epoch of 
1280 points (5 second long signal), which were then averaged 
across all epochs to obtain the final SE value. Table 2 shows 
the electrodes for which the final SE values differed signifi-
cantly between AD and CN groups.  
 

TABLE 2. ELECTRODES WITH SIGNIFICANTLY DIFFERENT SE VALUES 

Electrode P-Value µ  
 CN 

 ߪ
CN 

µ  
AD 

 ߪ
AD 

F3 .0066 5.26 .15 5.18 .22 
T7 .0038 5.38 .14 5.29 .2 
T8 .0399 5.36 .14 5.3 .22 

 
The remaining three features - spectral centroid, spectral roll-
off, and zero-crossing rate - were all frame based features with 
the following common preprocessing: 

1) Break each epoch into frames of 12 samples in 
length, corresponding to approximately 20ms. 

2) Calculate the corresponding feature value for each 
frame. 

3) Compute the mean and standard deviation of the val-
ues across all frames for that epoch 

C. Spectral Centroid  
 Spectral centroid (SC) is a measure of the shape of the spec-
trum. Higher values of SC correspond to more energy of the 
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signal being concentrated within higher frequencies, and is 
computed as follows [11]:  
 

1. Let ݔሺ ݊ሻ, ݊ ൌ 0,1, … ,ܰ െ 1  be the samples of the 
ith frame, with ܺሺ݇ሻ, ݇ ൌ 0, 1, … ,ܰ െ 1 being the 
discrete Fourier transform coefficients of this se-
quence 

2. Compute the spectral centroid of the ith frame as: 
 

ሺ݅ሻܥ                          ൌ ∑ |ሺሻ|ಿషభ
ೖసబ
∑ |ሺሻ|ಿషభ
ೖసబ

  (6) 

 
 The mean value of the spectral centroid across all frames is 
then used as the SC feature for each epoch. Table 3 shows the 
electrodes for which the final SC values differed significantly 
between AD and CN groups.  

TABLE 3. ELECTRODES WITH SIGNIFICANTLY DIFFERENT SC VALUES 

Electrode P-Value µ  
 CN 

 ߪ
CN 

µ  
 AD 

 ߪ
AD 

F3 .0114 .22 .008 .21 .01 
F4 .0239 .22 .009 .21 .01 
T7 .0173 .23 .01 .22 .01 

D. Spectral Roll-off  
 Spectral roll-off indicates the frequencies where most of the 
spectral content is focused [11]. The spectral roll-off is de-
fined as the frequency sample, ݇ሺ݅ሻ below which a preset 
amount (P %) of the magnitude DFT coefficients reside. It is 
computed as follows [9]: 
 

1. Let  ݔሺ݊ሻ, ݊ ൌ 0,1, … ,ܰ െ 1  be the samples of ith 
frame,  and ܺሺ݇ሻ, ݇ ൌ 0, 1,… , ܰ െ 1 be the corres-
ponding DFT coefficients; 

2. Compute the spectral roll-off as the sample ݇ሺ݅ሻ that 
satisfies 

                     ∑ | ܺሺ݇ሻ|
ು
ೝሺሻ

ୀ ൌ 
ଵ

∑ | ܺሺ݇ሻ|ேିଵ
ୀ   (7) 

 
where the P parameter is typically chosen as 80. The standard 
deviation of the spectral roll-off across all frames is computed 
to serve as the spectral roll-off for each epoch. This is the av-
erage variability in spectral skewness across frames, which is 
another measure of signal complexity. Table 4 shows the elec-
trodes for which the final spectral roll-off values differed sig-
nificantly between AD and CN groups.  
 

TABLE 4. ELECTRODES WITH SIGNIFICANTLY DIFFERENT SPECTRAL 
ROLL-OFF VALUES 

Electrode P-
Value 

µ  
CN 

 ߪ
CN 

µ  
AD 

 ߪ
AD 

F3 .0002 .2302 .0082 .2235 .0136 
F4 .0162 .2301 .0108 .2250 .0150 
C3 .0010 .2324 .0077 .2271 .0117 
C4 .0005 .2334 .0075 .2279 .0113 
P3 .0053 .2319 .0092 .2269 .0116 
P4 .0033 .2322 .0079 .2277 .0104 
T7 .0001 .2346 .0075 .2286 .0106 
T8 .0077 .2357 .0066 .2316 .0115 
P7 .0143 .2336 .0106 .2288 .0128 

E. Zero-crossing Rate 
 Zero-crossing rate (ZCR) is the rate at which the signal 
changes its sign, which can be interpreted as a time domain 
measure of signal complexity [11]. The zero-crossing rate is 
obtained as follows: 
 

1. Let  ݔሺ݊ሻ ൌ 0,1, … ,ܰ െ 1  be the samples of the ith 
frame. 

2. Compute  the zero crossing rate for the ith frame as 

            ܼሺ݅ሻ ൌ ଵ
ଶே
∑ ሺ݊ሻሿݔሾ݊݃ݏ| െ ሺ݊ݔሾ݊݃ݏ െ 1ሻሿ|ேିଵ
ୀ   (8)     

             
            where 

ሺ݊ሻሿݔሾ݊݃ݏ                              ൌ ൜ 1, ሺ݊ሻݔ  0
െ1, ሺ݊ሻݔ ൏ 0  (9) 

 
 The mean value of ZCR across all frames is first calculated 
for each epoch, and is then averaged across all epochs to ob-
tain the final ZCR value. Table 5 shows the electrodes for 
which the final ZCR values differed significantly between AD 
and CN groups. 

TABLE 5. ELECTRODES WITH SIGNIFICANTLY DIFFERENT ZCR VALUES 

Electrode P-
Value 

µ  
 CN 

 ߪ
CN 

µ  
AD 

 ߪ
AD 

F3 .0191 .1114 .0123 .1064 .0149 
F4 .0254 .1114 .0142 .1062 .0158 
T7 .0069 .1222 .0171 .1148 .0170 

      

IV. DIAGNOSTIC ACCURACY RESULTS 

A. Features Evaluated Individually 
To evaluate the diagnostic value of each of these set of fea-

tures, a multilayer perceptron with 20 hidden layer nodes and 
an error goal of 0.05 was trained with 10 independent trials. 
Each trial consisted of a 6-fold cross validation. Scaled-
conjugate gradient was used as the learning algorithm. The 
preliminary results are summarized in Table 6, which shows 
that the diagnostic accuracy of these features lie around the 
low to mid 60% range. 
 

TABLE 6.  INDIVIDUAL FEATURE SET PERFORMANCE (WITH MLP) 
Feature Set Performance 

Spectral Centroid 62.61% +/-1.67% 
Spectral Roll-Off 62.97%+/-1.14% 
Spectral Entropy 60.28%+/-1.7% 

Zero-Crossing Rate 61.75%+/-2.18% 
Higutchi Fractal Dimension 66.84+/-1.84% 

 

B. Feature Concatenation Based Data Fusion 
These results indicate that these features carry only limited 

diagnostic value when used alone. To determine whether the 
features contain complementary information, they were conca-
tenated into one feature vector of length five (each feature is 
the mean of each feature group across all statistically signifi-
cant electrodes). This feature vector was then used to train a 
single MLP with 50 hidden layer neurons and an error goal of 

2035



 

.05. The increased amount of neurons was to account for the 
larger number of input patterns and expected increase in deci-
sion boundaries that the MLP was required to learn. The con-
catenated feature vector yielded a correct classification accu-
racy of 72.65% +/-1.88% using a six-fold cross validation. 
This is a significant improvement over HFD, the best indivi-
dually performing feature. To ascertain how the features per-
form on a different classifier, the concatenated feature vector 
was also used to train a support vector machine that used a 
radial basis function kernel and a box constraint of 10,000. 
Several sigma values were chosen, ranging from 10 to 40. The 
results of a six-fold cross validation for the various values of 
sigma can be found in Table 7. 
 
TABLE 7. COMBINED FEATURE SET PERFORMANCE (SVM) 

Sigma Value Performance 
10 73.29 +/- 1.52% 
20 76.45% +/-1.33% 
30 77.1% +/- 1.4% 
40 77.61% +/-1.69% 

 

C. Ensemble of Classifiers Based Decision Fusion 
Due to the previous success of ensemble based decision fusion 
approaches with AD diagnosis, [5,6], a simple ensemble of 
five MLPs was also examined. Three such ensembles were 
generated, each with a varying number of hidden layer nodes 
in the component classifiers. The classifiers in each ensemble 
were then combined through the sum rule. 

ሻݔሺߤ ൌ ∑ ݀௧,ሺݔሻ்
௧ୀଵ                          (10) 

 
where ߤሺݔሻ is the total support received by class ݆ and ݀௧,  is 
the continuous valued output of classifier t for class ݆. Again, a 
six-fold cross validation was employed. The results for differ-
ent numbers of hidden layer nodes can be seen in Table 8. 

 
TABLE 8. DIAGNOSTIC ACCURACY OF THE ENSEMBLE SYSTEM (MLP) 
Number of Hidden Layer 

Nodes 
Performance 

20 62.54% +/- 1.54% 
30 67.34% +/-1.34% 
50 71.35% +/-1.6% 

V. CONCLUSIONS 
 We evaluated five different EEG based signal complexity 
measures to determine if they carry any diagnostically useful 
discriminatory information. Since AD affects neuronal integri-
ty, the underlying hypothesis in this study is that EEG signals 
from AD subjects have less signal complexity than those from 
CN subjects. Each of the features showed decreased complexi-
ty values for AD cohort, confirming our hypothesis. The dif-
ferences in complexity values between the cohorts were small, 
but statistically significant for electrodes listed in the above 
tables.  
 The results indicate that the HFD appears to carry relevant 
information, primarily in the parietal and temporal areas.  The 
AD group had lower values of HFD, suggesting that AD sub-
jects generate less complex signals. This decreased complexity 
could be attributed to the presence of neurofibrillary plaques 

and tangles. Spectral entropy values were also lower for the 
AD group in the frontal and temporal lobes. In the frontal and 
temporal lobes, there was more spectral content in the higher 
frequencies for CN subjects. When examining the standard 
deviation of the spectral roll-off, we observed in nearly every 
electrode that the CN group possessed a higher variation in 
spectral skewness across frames. This again can be interpreted 
as a higher level of complexity in the CN group. Finally, the 
ZCR of the CN group was also consistently higher than that of 
the AD group.  
 When used individually to train a single classifier, these 
features provided very limited diagnostic benefit. However, 
combining them into a feature vector significantly improved 
classification accuracy from the mid 60% to high 70% range. 
We tried both feature level concatenation and ensemble based 
decision fusion. The feature based fusion provided the better 
results.  

To the best knowledge of the authors, this is the first study 
evaluating the above described features on ERP based EEG 
data for AD diagnosis. We note that these are very preliminary 
results obtained with classifiers whose parameters were not 
optimized. The results indicate that signal complexity based 
features, when combined with one another, can provide clini-
cally meaningful diagnostic information. Our future work in-
cludes optimizing the classifiers as well as the feature sets 
(such as frame and epoch length, overlap between frames, 
etc.), and combining them with our previously reported wave-
let based features. 
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