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Abstract—Early diagnosis of Alzheimer’s disease is a ma-

jor concern due to large portions of the elderly population it af-
fects and the lack of a standard and effective diagnosis proce-
dure that is available to community healthcare providers.  Sev-
eral studies have been performed using wavelets or other signal 
processing methods to analyze EEG signals in an attempt to 
find a biomarker for Alzheimer’s disease, which showed vary-
ing degrees of success. To date, in part due to lack of a large 
study cohort, the results of these studies remain largely incon-
clusive. In this paper, we describe a new effort using multireso-
lution wavelet analysis on event related potentials of the EEG 
to investigate whether such a link can be established. Several 
factors sets this study apart from similar prior efforts: We use 
a larger cohort, compare different mother wavelets, rather 
then using one generic wavelet, and most importantly, we spe-
cifically target early diagnosis of the disease. Our multi-year ef-
fort will include a total of 80 patients, whose ERPs will be ana-
lyzed with several different wavelets and automated classifiers. 
We present some preliminary, yet very promising, results on 
analysis of EEGs of the first 28 patients analyzed thus far using 
two types of wavelets.  
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I. INTRODUCTION 

Alzheimer’s disease (AD) affects an estimated 4 million 
Americans, making it a major public health concern. The 
positive predictive value of clinical diagnosis is around 93% 
at University research clinics, however, most patients are 
evaluated by community healthcare providers, where the ex-
pertise and the accuracy of disease specific dementia diag-
noses remains uncertain. In fact, a recent study reported that 
despite the advantage of longitudinal follow up, a group of 
Health Maintenance Organization-based physicians had a 
sensitivity of 83%, specificity of 55% and an overall accu-
racy of 75% for the clinical diagnosis of AD [1]. These are 
the numbers we wish to match or exceed. Considering that 
community clinics constitute the first line of intervention, 
particularly at the early stages of their disease, an effective 
and objective tool for early diagnosis of the disease is of 
significant importance. To have a meaningful impact on 
healthcare, the diagnosis procedures must be inexpensive, 
non-invasive and available to community physicians.  

Several biomarkers have been linked to AD, such as the 
cerebrospinal fluid tau (CSF-τ), β-amyloid, urine F2-
isoprostane, brain atrophy and volume loss detected by 

magnetic resonance imaging, or detection of reduced N-
acetyl aspartate by magnetic resonance spectroscopy. How-
ever, none of these methods has proven to be conclusive, 
and even if they were, they remain primarily university 
based research tools. Consequently, there is significant need 
for a clinically useful, accurate, non-invasive, cost-effective 
and automated procedure for early diagnosis of the AD. One 
such tool that is potentially feasible for AD diagnosis is the 
electroencephalogram (EEG). 

EEG analysis has not traditionally been part of general 
physicians routine evaluation for AD diagnosis, in part due 
to difficulties in separating EEG changes that could be at-
tributed to AD from those due to normal aging, coexisting 
medical illnesses, the level of anxiety or drowsiness during 
the recording and possible medication effects. An alternative 
EEG based technique targets the changes due to mental im-
pairment by analyzing scalp recordings of auditory event re-
lated (evoked) potentials (ERP). This protocol uses the odd-
ball paradigm in which subjects are instructed to push a but-
ton when they hear an occasionally occurring 2 kHz tone 
(the oddball tone), presented randomly within a series of 
frequently occurring 1 kHz tones. The ERPs then show a 
positive peak (P3 or P300) with an approximate latency of 
300 ms. after the stimulus. The distinguishing feature of the 
P300 is that it only occurs in response to the oddball stimu-
lus. Changes in the amplitude and latency of ERPs are al-
tered by neurological disorders affecting the temporal-
parietal regions of the brain [2]. This includes AD where the 
average stimulus to P300 latency is prolonged and the am-
plitude decreased compared to controls. Furthermore, Polich 
et al. have reported that latency and the amplitude of the 
P300 were altered in patients with early AD when compared 
to elderly control subjects [3,4].  

Traditional ERP analysis is performed in the time do-
main using the amplitude and latency of the averaged P300s. 
However, conventional time domain analysis reveals only a 
fraction of the information, since the ERP is a time and fre-
quency varying signal, reflecting the sum of many neural 
events that occur in response to the stimulus. Although it has 
been around for about 15 years, studies applying time-
frequency analysis techniques, such as wavelets, to ERPs 
have just started appearing in the literature. These studies 
seek to decompose an ERP in the time-frequency plane in 
order to characterize its functionally relevant components. 
Initial studies have shown that the ERPs in general, and the 
P300 component in particular, consists of superposition of 



 

multiple functional components, where these components 
extend for different, yet overlapping, time intervals in dif-
ferent frequency bands [5]. For example, in a study of 10 
healthy young adults Demiralp et al. were able to generate a 
discriminant function using only seven DWT coefficients of 
the oddball ERP that could correctly identify 78% of the 
stimulus targets and 81% of the non-target tones [6].  

The method explained in this paper combines established 
electroencephalography (EEG) analysis, multiresolution 
wavelet analysis (MWA) and automated classification tech-
niques, to detect the earliest neurodegenerative changes of 
AD. MWA is a promising method for concurrent temporal 
and spectral analysis of non-stationary ERPs, while artificial 
neural network (ANN) based classifiers offer a powerful 
automated classification tool for generating complex deci-
sion boundaries. Our objective is to analyze the entire ERP 
using MWA followed by an ANN classification, not just the 
P300, with the hypothesis that there are additional features 
or biomarkers in an ERP other then the P300 that may indi-
cate the early presence of the AD.  We compare two differ-
ent types of wavelets on the first 28 of the 80 patients sched-
uled for this study. We are interested in determining the 
sensitivity, specificity, and positive predictive value of the 
above-mentioned system, trained with wavelet coefficients 
of ERPs, to categorize elderly individuals as either patients 
with AD or cognitively normal subjects. 

II. METHODOLOGY 

A. Test Subjects and Clinical Evaluation 
This study will include a total of 80 subjects, 50 of 

whom will be used to train the automated classification sys-
tem, and the remaining 30 will be used to evaluate and vali-
date the system’s performance on previously unseen signals. 
Half of these subjects constitute the cognitively normal co-
hort, whereas the other half constitutes the AD cohort. 
Thirty-two elderly test subjects, 14 diagnosed with probable 
AD and 18 cognitively normal controls, have been recruited 
thus far in the initial phase of this study. All subjects, con-
trol or with probable AD, are recruited from elderly patients, 
over 60 years of age. The subjects were verified to be free of 
any evidence of central nervous system neurological disease 
(e.g. stroke, multiple sclerosis, Parkinson’s disease, etc.) by 
history or by exam.  The use of sedative, anxiolytic or anti-
depressant medications was not permitted within 48 hours of 
data collection.  The two groups were defined by the follow-
ing criteria:  Cognitively normal subjects:  (i) Clinical De-
mentia Rating (CDR)=0; (ii) Mini-Mental Scores 
(MMS)≥24; (iii) no indication of functional or cognitive de-
cline during the two years prior to enrollment based on a de-
tailed interview with the subject’s knowledgeable informant 
or two previous annual clinical assessments.  AD subjects: 
(i) CDR≥0.50; (ii)  MMS<<24; (iii)  presence of functional 
cognitive decline over the previous 12 months based on de-
tailed interview with a knowledgeable informant; (iv) satis-
faction of NINCDS-ADRDA (National Institute of Neuro-

logical and Communicative Disorders and Stroke -  Alz-
heimer's Disease and Related Disorders Association) criteria 
for probable AD [7].  

All subjects receive a through medical history and neuro-
logical exam at the University of Pennsylvania’s Memory 
Disorders Clinic, in Philadelphia. Key demographic and 
medical items, including current medications (prescription, 
over-the-counter, and complementary alternative medica-
tions) are entered into their case binder and Access data-
base. The evaluation includes standardized assessments for 
overall impairment, functional impairment, extrapyramidal 
signs, behavioral changes and depression as listed below: 
CDR score; Dementia Severity Rating Scale; Penn Behav-
ioral Ratings Scale; Geriatric Depression Scale; Verbal Flu-
ency test; Boston Naming Test; Mini-Mental State exam;  
Word List Memory; Constructional Praxis; Word list recall; 
Word List Recognition; Logical Memory I & II; Clock draw 
& copy; Digit Symbol Substitution; Hand tasks; Praxis Re-
call; and Praxis Recognition. 

B.  Acquisition of Event Related Potentials 
The ERPs were obtained using an auditory oddball para-

digm while the subjects were comfortably seated in a spe-
cially designated room. The protocol originally described by 
[2], with slight modifications was used in this study.  Binau-
ral audiometric thresholds were determined for each subject 
using a 1000Hz tone.  The evoked response stimulus was 
presented to both ears using stereo speakers at an amplitude 
comfortable for their hearing level.   

The stimulus consisted of tone bursts 100ms in duration, 
including 5ms inset and offset envelopes. Tones of 1000 and 
2000Hz were presented in a random sequence with the tones 
occurring in 65% and 20% of the trials respectively.  The 
remaining 15% of the trials consisted of novel sounds pre-
sented randomly.  These included 60 unique environmental 
sounds that were recorded digitally and edited to a 200ms 
duration. A total of 1000 stimuli, including frequent 1000Hz 
(n=650), infrequent 2000Hz tones (n=200) and novel sounds 
(n=150) were delivered to each subject with an interstimulus 
interval of 1.0-1.3 seconds.  The subjects were instructed to 
press a button each time they heard the 2000Hz tone.  With 
frequent breaks (e.g. approximately three minutes of rest 
every five minutes), the data collection process lasted about 
30 minutes per subject with each session proceeded by a 1 
minute practice session without the novel sounds.   

The ERPs were recorded from 19 tin electrodes embed-
ded in a plastic cap, using linked mastoids as reference.  The 
electrode impedances were kept below 20kΩ to yield a good 
signal with the high-impedance MANSCAN amplifier sys-
tem used in the study. Artifactual recordings were identified 
and rejected by the EEG technician.  The remaining scalp 
potentials were amplified, digitized at 250Hz/channel (19 
channels) and stored. The ERPs that were validated by the 
EEG technician were preprocessed using appropriate low-
pass filtering techniques and averaging.   The averaging pro-



 

tocol involved averaging 30~85 recordings per patient yield-
ing 1~3 recordings per patient. The inherent variability of 
ERPs ensures that no two recordings are ever identical and 
therefore separate averages were all included in the analysis 
to provide additional data.  All averages have been notched 
filtered at 59-61Hz and baselined with the prestimulus inter-
val. Four of the original 32 subjects were unable to complete 
the study due to various reasons, and hence their recordings 
were excluded from further analysis.  All multiple averages 
from the 28 remaining subjects, a total of 75 recordings, 26 
from AD and 49 from normal controls, were therefore ana-
lyzed.  

C. Multiresolution Wavelet Analysis 
Time localizations of spectral components can be ob-

tained by multiresolution wavelet analysis, as this method 
provides the time-frequency representation of the signal. 
Among many time-frequency representations, the discrete 
wavelet transform (DWT), has become increasingly popular 
due to its ability to solve a diverse set of problems, includ-
ing data compression, biomedical signal analysis, feature ex-
traction, noise suppression, density estimation, and function 
approximation, with modest computational expense. For 
brevity, we only describe the main points here and refer the 
interested readers to many excellent references listed at [8]. 

The DWT analyzes the signal at different frequency 
bands with different resolutions through the decomposition 
of the signal (multiresolution analysis).  The DWT utilizes 
two sets of functions: scaling functions and wavelet func-
tions, each associated with lowpass and highpass filters, re-
spectively. Decomposition of the signal into different fre-
quency bands is accomplished by successive highpass and 
lowpass filtering of the time domain signal. 

The original time domain signal x(t) sampled at 250 
samples/ sec. creates the discrete time signal, x[n] which is 
passed through a halfband highpass filter, g[n], and a low-
pass filter, h[n]. In terms of angular frequency, the highest 
frequency in the original signal is π, corresponding to the 
linear frequency of 125 Hz. According to Nyquist’s rule, 
half the samples can be removed after the filtering, since the 
highest frequency in the signal is now π/2 radians. Therefore 
every other sample in the signal can be discarded. This is 
one level of decomposition and can be expressed as follows: 

∑ −⋅=
n

high nkgnxky ]2[][][            (1) 

∑ −⋅=
n

low nkhnxky ]2[][][       (2) 

where yhigh[k] and ylow[k] are the outputs of the highpass and 
lowpass filters, respectively, after the subsampling. This 
procedure, called subband coding, is repeated for further de-
composition.  At each level, the filtering procedure results in 
half the time resolution and double the frequency resolution.  
Therefore, each level of decomposition analyzes the signal 
at different frequency ranges and different resolutions. Fig. 

1 illustrates this procedure, where x[n] is the original signal 
to be decomposed, and h[n] and g[n] are impulse responses 
of lowpass and highpass filters, respectively. The bandwidth 
of the signal at every level is marked on the figure as “B”.  
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Fig.1.  DWT Subband coding algorithm from 

D. Automated Classification using Neural Networks 
A standard procedure in automated classification appli-

cations is to first obtain the distinctive features of the signals 
to be identified, followed by training a neural network with 
a training data consisting of those features. The trained net-
work is then evaluated on data not seen by the network dur-
ing the training. In this study, The DWT coefficients, time-
frequency space features of the ERP, are used to train a sin-
gle hidden layer multiplayer perceptron (MLP) type neural 
network using backpropagation training algorithm [9]. The 
MLP is a well established technique, and its implementation 
as well as its training algorithms can be found in many ref-
erences such as [9]. 

III. RESULTS 

Two types of wavelets were used: Daubechies 4 (db4) 
wavelet and Quadratic b-spline wavelet, both of which have 
been used in prior efforts [5, 10].  The number of coeffi-
cients varied based on the wavelet, 121 for b-spline and 64 
for db4, though they were chosen to include all frequencies 
below 20 Hz, where most of the ERP information is known 
to reside.  The decomposition of one of the normal controls 
is shown in Fig. 2, where d1 ~d7 indicate the detail coeffi-



 

 

IV. DISCUSSIONS & CONCLUSIONS cients and a7 is the remaining signal after all the details are 
removed from the signal (hence a low frequency signal).  
Note that the amplitudes of the coefficients decrease at 
lower levels, and hence those levels can be discarded. Fre-
quencies below 20 Hz include levels 5 and above according 
to 250 samples/sec sampling rate, and hence these coeffi-
cients were retained for neural network training. We also 
point to the positive peak in d5 around 400~500 ms, which 
probably correspond to a late P300. 

While these results are very preliminary and based on a 
very limited number of patients, they do support the feasibil-
ity of this approach as a tool for classifying ERPs. Based on 
these results we make the following observations and con-
clusions: (i) Using wavelet analysis to extract features of the 
ERPs, followed by an automated neural network classifier 
appears to be a feasible approach for early diagnosis of AD; 
(ii) the type of wavelet may not be too critical, as both ex-
tract much of the same information, however, the approach 
can be optimized for a specific wavelet; (iii) we have also 
tried several network architectures and error goals for the 
MLP, and the approach is remarkably invariant to minor 
changes in these parameters; (iv) it comes as no surprise that 
having additional training data certainly helps improve the 
generalization performance. Therefore the approach should 
provide a stable and effective algorithm once the remaining 
patients are recruited and their signals are integrated into the 
knowledge base of the classifier.     

Daubechies 4 (db4) wavelet

 
While 19 channels of EEGs were recorded, we have thus 

far analyzed the Pz electrode, the channel that is most com-
monly used in oddball paradigm analysis. Several simula-
tions were conducted using different training and test data-
sets. In this initial effort, 38 (25 normal, 13 AD) of the 75 
recordings were randomly selected for training, and remain-
ing 37 (24 normal, 13 AD) were used to evaluate the gener-
alization performance of the classifier. Over ten random tri-
als, the db4 wavelet was able to reach an average overall 
performance of 84.1 ± 0.6% (32/37) and b-splines were able 
to reach 82.4% ± 1.0% (31/37). The network parameters 
were 25 hidden layer nodes with an error goal of 0.05 for 
db4, and 0.01 for the b-splines. The sensitivities were 77% 
and 54%, the specificities were 92% and 100%, and the 
positive predictive values were 83.3% and 100%, for db4 
and b-splines wavelets, respectively. We have also tried us-
ing two-third of the data for training and one-third for test-
ing. The generalization performance in this case was 88 ± 
2.4% for db4 wavelet and 88 ± 1.2% for the b-splines. 

Besides recruiting the remaining cohort, future work will 
include investigating other mother wavelets, analyzing addi-
tional channels other then Pz, and a more rigorous evalua-
tion of the algorithm using several levels of cross-validation. 
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Fig. 2. DWT decomposition of a control ERP using db-4 wavelet


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	code: 0-7803-8439-3/04/$20.00©2004 IEEE
	01: 251
	header: Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA • September 1-5, 2004 
	02: 252
	03: 253
	04: 254


