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ABSTRACT 

The diagnosis of Alzheimer’s disease at an early stage is a 

major concern due to growing number of the elderly popula-

tion affected, as well as the lack of a standard and effective di-

agnosis procedure available to community healthcare provid-

ers. Recent studies have used wavelets and other signal proc-

essing methods to analyze EEG signals in an attempt to find a 

non-invasive biomarker for Alzheimer’s disease and had vary-

ing degrees of success. These studies have traditionally used 

automated classifiers such as neural networks; however the use 

of an ensemble of classifiers has not been previously explored 

and may prove to be beneficial. In this study, multiresolution 

wavelet analysis is performed on event related potentials of the 

EEG which are then used with the ensemble of classifiers 

based Learn++ algorithm. We describe the approach, and pre-

sent our promising preliminary results.  

1. INTRODUCTION 

An estimated 4.5 million Americans were suffering from 

Alzheimer’s disease (AD) as of 2000 and this number is ex-

pected to reach between 11.3 and 16 million by 2050, making 

it a major public health concern [1]. A further concern is the 

fact that an autopsy is the only tool that provides a definitive 

diagnosis. Clinical evaluation, the standard AD diagnostic pro-

cedure conducted at major university hospitals and research 

clinics, on average achieves positive predictive value of 93%, 

however, most patients are evaluated at community health clin-

ics, where the expertise and accuracy of disease specific de-

mentia remains uncertain. In fact, recently a group of Health 

Maintenance Organization-based physicians reported an aver-

age sensitivity of 83%, specificity of 55% and an overall accu-

racy of 75%, despite the benefit of a longitudinal study [2].  

An effective and objective tool for early diagnosis of the 

disease is of course important, but to have a meaningful impact 

on healthcare the procedure must also be inexpensive, non-

invasive and available to community physicians, who provide 

the first line of intervention. Several biomarkers have been 

linked to AD, such as the cerebrospinal fluid tau (CSF- ) and 

-amyloid, however, they have not proven to be conclusive. 

There is, therefore, significant need for a clinically useful, ac-

curate, non-invasive, cost-effective and automated procedure 

for early diagnosis of AD. The electroencephalogram (EEG) 

may potentially satisfy these needs as a tool for AD diagnosis.  

An EEG based technique, called the oddball paradigm, 

that involves the analysis of scalp recordings of auditory event 

related potentials (ERP) has been shown to be beneficial in de-

tecting the changes due to mental impairment. The paradigm 

involves the completion of a simple task (e.g. pressing a but-

ton) by the subject when s/he hears an infrequently occurring 2 

kHz (oddball) tone, presented randomly within a series of regu-

larly occurring 1 kHz (regular) tones. In response to the odd-

ball stimulus, the ERPs indicate a positive peak (P3 or P300) 

with an approximate latency of 300 ms after the stimulus. 

Changes in the amplitude and latency of P300 are known to be 

altered by neurological disorders affecting the temporal-

parietal regions of the brain [3]. This includes AD where the 

P300 latency is prolonged and the amplitude is decreased com-

pared to controls [4, 5]. Time-frequency analysis techniques, 

such as wavelets, have been used in different studies to de-

compose an ERP in the time-frequency plane in order to char-

acterize its functionally relevant components [6]. However, the 

use of wavelets as a feature extraction tool, followed by an 

automated ensemble based classifier has not been explored.   

The method described in this paper combines multiresolu-

tion wavelet analysis (MWA), automated classification tech-

niques using an ensemble of classifiers approach, along with 

established electroencephalography (EEG) analysis, to detect 

the earliest stage of AD. Our goal is to analyze the ERP using 

MWA followed by the ensemble of classifiers based Learn++ 

algorithm. Our expectation in doing so is to combine wavelet 

transform’s ability to extract features – other then just the am-

plitude and latency of P300 – with the superior classification 

and robustness of ensemble of classifiers in automated early 

diagnosis of the AD. Two types of wavelets along with the 

Learn++ algorithm have been evaluated to date on a database 

of the first 28 of the 80 patients planed for this study. We are 

interested in determining the sensitivity, specificity, and posi-

tive predictive value of this approach in distinguishing between 

elderly individuals with AD and cognitively normal subjects. 

2. METHODOLOGY 

2.1 Test Subjects and Clinical Evaluation  

This study will include a total of 80 subjects, 50 of whom 

will be used to train the automated classification system, and 

the remaining 30 will be used to evaluate and validate the sys-

tem’s performance on previously unseen signals. Half of these 

subjects constitute the cognitively normal cohort, whereas the 

other half constitutes the AD cohort. Twenty-eight subjects, 

satisfying the inclusion criteria, 10 diagnosed with probable 
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AD and 18 cognitively normal controls, have been recruited 

thus far in the initial phase of this study. All subjects, control 

or with probable AD, are recruited from elderly patients, over 

60 years of age. The subjects were verified to be free of any 

evidence of central nervous system neurological disease (e.g. 

stroke, multiple sclerosis, Parkinson’s disease, etc.) by history 

or by exam. The use of sedative, anxiolytic or anti-depressant 

medications was not permitted within 48 hours of data collec-

tion. The two groups were defined by the following criteria: 

Cognitively normal subjects: (i) Clinical Dementia Rating 

(CDR)=0; (ii) Mini-Mental Scores (MMS) 24; (iii) no indica-

tion of functional or cognitive decline during the two years 

prior to enrollment based on a detailed interview with the sub-

ject’s knowledgeable informant or two previous annual clinical 

assessments. AD subjects: (i) CDR 0.50; (ii) MMS<24; (iii) 

presence of functional cognitive decline over the previous 12 

months based on detailed interview with a knowledgeable in-

formant; (iv) satisfaction of NINCDS-ADRDA (National Insti-

tute of Neurological and Communicative Disorders and Stroke-

Alzheimer's Disease and Related Disorders Association) crite-

ria for probable AD [7].  All subjects received a through medi-

cal history and neurological exam at the University of Penn-

sylvania’s Memory Disorders Clinic, in Philadelphia. Key 

demographic and medical items, including current medications 

(prescription, over-the-counter, and complementary alternative 

medications) are entered into their case binder and data-base. 

The evaluation includes standardized assessments for overall 

impairment, functional impairment, extrapyramidal signs, be-

havioral changes and depression. The clinical evaluation re-

sults constituted the gold-standard against which the proposed 

automated system has been compared. 

2.2 Acquisition of Event Related Potentials  

The ERPs were obtained using an auditory oddball para-

digm while the subjects were comfortably seated in a specially 

designated room. The protocol originally described in [3], with 

slight modifications, was used in this study. Binaural audio-

metric thresholds were determined for each subject using a 

1000 Hz tone. The evoked response stimulus was presented to 

both ears using stereo speakers with an amplitude level com-

fortable for their hearing level. The stimulus consisted of tone 

bursts 100 ms in duration, including 5 ms inset and offset en-

velopes. Tones of 1000 and 2000 Hz were presented in a ran-

dom sequence with the tones occurring in 65% and 20% of the 

trials respectively. The remaining 15% of the trials consisted of 

novel sounds presented randomly. These included 60 unique 

environmental sounds that were recorded digitally and edited 

to 200 ms duration. A total of 1000 stimuli, including frequent 

1000 Hz (n=650), infrequent 2000 Hz tones (n=200) and novel 

sounds (n=150) were delivered to each subject with an inter-

stimulus interval of 1.0-1.3 seconds. The subjects were in-

structed to press a button each time they heard the 2000 Hz 

tone. With frequent breaks (e.g. three minutes of rest every five 

minutes), the data collection process lasted about 30 minutes 

per subject with each session proceeded by a 1 minute practice 

session without the novel sounds. The ERPs were recorded 

from 19 tin electrodes embedded in a plastic cap, using linked 

mastoids as reference. The electrode impedances were kept be-

low 20k  to yield a good signal with the high-impedance 

MANSCAN amplifier system used in the study. Artifactual re-

cordings were identified and rejected by the EEG technician. 

The remaining scalp potentials were amplified, digitized at 256 

Hz/channel (19 channels) and stored. The ERPs that were vali-

dated by the EEG technician were preprocessed using appro-

priate low-pass filtering techniques and averaging.  

The averaging protocol involved averaging 90~255 re-

cordings per patient. All averages have been notched filtered at 

59-61 Hz and baselined with the prestimulus interval.  

2.3. Multiresolution Wavelet Analysis  

Multiresolution wavelet analysis provides time localiza-

tions of spectral components in the signal thus giving a time-

frequency representation. Among many time-frequency repre-

sentations, the discrete wavelet transform (DWT), has become 

increasingly popular due to its ability to solve a diverse set of 

problems. For brevity, we only describe the main points here 

and refer the interested readers to many excellent references 

listed at [8]. The DWT analyzes the signal at different fre-

quency bands with different resolutions through the decompo-

sition of the signal (hence, multiresolution analysis). The DWT 

utilizes two sets of functions: scaling functions and wavelet 

functions, each associated with lowpass and highpass filters, 

respectively. Decomposition of the signal into different fre-

quency bands is accomplished by successive highpass and 

lowpass filtering of the signal. The original time domain signal 

x(t) sampled at 256 samples/ sec. created the discrete time sig-

nal, x[n], which is passed through a halfband highpass filter, 

g[n], and a lowpass filter, h[n]. In terms of angular frequency, 

the highest frequency in the original signal is , corresponding 

to the linear frequency of 128 Hz. According to Nyquist’s rule, 

half the samples can be removed after the filtering, since the 

highest frequency in the signal is now /2 radians. Therefore 

every other sample in the signal can be discarded.  One level of 

decomposition is therefore given as:  

nhigh nkgnxky ]2[][][    (1) 

nlow nkhnxky ]2[][][    (2) 

where ][kyhigh and ][kylow are the outputs of the filters after 

downsampling by two.  This procedure, called subband coding, 

is repeated for further decomposition. At each level, the filter-

ing procedure results in half the time resolution and double the 

frequency resolution.  Figure 1 illustrates this procedure, where 

x[n] is the original signal to be decomposed, 2 indicates the 

downsampling operation, and H and G indicate the lowpass 

and highpass filters, respectively. The bandwidth of the signal 

at every level is marked on the figure as “B”.   

Figure 1. DWT subband coding algorithm 
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2.4. Automated Classification using Learn++

In automated classification applications, customarily, the 

distinctive features of the signals are first identified, which are 

then used to train the classification algorithm. The trained sys-

tem is then evaluated on validation data, not seen during the 

training. In this study, the DWT coefficients corresponding to 

0 ~ 16 Hz bandwidth were used to train the Learn++ algorithm. 

Learn++, previously developed by the corresponding au-

thor [9], has two key characteristics. First, it is an ensemble of 

classifiers based approach, where each classifier is deliberately 

made relatively weak. The premise is to create diversity among 

the classifiers, where each classifier learns a slightly different 

portion of the feature space, and hence make different errors on 

the classification of any given instance. A suitable combination 

of these classifiers can then reduce the total error, conceptually 

similar to a lowpass filtering effect. This ensemble approach 

has two main advantages: not only it often provides superior 

classification performance over single classifier systems, but 

since the individual classifiers are relatively weak, it also 

avoids the time-costly fine-tuning of the decision boundary 

which may also cause overfitting.  

A second key characteristic of Learn++ is its incremental 

learning ability from new data, as such data become available. 

This property will be useful later as we recruit additional pa-

tients as it will allow us to continue training without starting 

from scratch.  

Learn++, which has its roots in the popular ensemble of 

classifiers algorithm AdaBoost[10], essentially generates a 

number of relatively weak classifiers, whose outputs are com-

bined through a weighted majority voting scheme to obtain the 

final classification [9]. The classifiers (hypotheses) are gener-

ated using strategically chosen subsets of the available data-

base. A dynamically updated distribution over the training data 

instances is computed such that the distribution is biased to-

wards those instances that have not been adequately learned by 

the previous hypotheses. The pseudocode of the Learn++ algo-

rithm is provided in Figure 2, where the inputs to the algorithm 

are:  (i) a sequence of m training data instances xi with their 

correct labels yi, (ii) a supervised classification algorithm to be 

used as a BaseClassifier, and (iii) an integer T that specifies 

the number of classifiers (hypotheses) to be generated. Any su-

pervised neural network whose parameters are chosen appro-

priately can serve as a weak classifier (such as a small multi-

layer perceptron, MLP, with a relatively high error goal).  

For tth classifier to be generated at tth iteration, Learn++ 

starts by normalizing a weight distribution, Dt according to 

which training subset TRt and test subset TEt are drawn. This 

distribution is initially set to be uniform, giving equal probabil-

ity to each instance to be selected into the first training subset.  

At each iteration t, the weights wt from previous iteration 

are normalized to give a legitimate distribution Dt (step 1). 

Training and test subsets are then selected according to Dt (step 

2), and the weak classifier is trained with the training subset 

(step 3). A hypothesis ht is obtained as the tth classifier (step 4), 

whose error is computed on TRt + TEt by adding the distribu-

tion weights of the misclassified instances   

iit yxhi
tt iD

)(:

)( .                                                             (3) 

The BaseClassifier is expected to produce at least 50% cor-

rect classification on its own training data to ensure that a 

meaningful performance can be obtained from each classifier.  

Algorithm Learn++

Input:

Sequence of m examples S=[(x1,y1),(x2, y2),…,(xm,ym)]. 

Weak learning algorithm BaseClassifier.

Integer T, specifying the number of iterations. 

Do for each k=1,2,…,K:

Initialize )()( 11 iDiw  = miim ,,2,1,,1

Do for t = 1,2,...,Tk:

1. Set Dt

m

i
tt iw

1

)(w so that Dt is a distribution.

2. Draw training TRt and testing TEt subsets from Dt.

3. Call BaseClassifier to be trained with TRt.

4. Obtain hypothesis ht : X  Y, and calculate its error 

iit yxhi
t iD

)(:
t )( on S=TRt + TEt.     

If t > ½, discard ht and go to step 2. Otherwise, com-

pute normalized error as t= t / (1- t).   

5. Call weighted majority voting and obtain the  

composite hypothesis  
                

yxht
t

Yy
t

t

H
)(:

1logmaxarg

6. Compute the error of the composite hypothesis 
m

i
iit

yxHi
t yxHiDiD t

iit

t
1)(:

|)(|)()(

7. Set Bt = Et/(1-Et), and update the weights: 

|)(|1
)(

,1

)(,
)()(1

iit
t

tt

yxH
t

iitt

Biw

otherwise

yxHifB
iwiw

Call Weighted majority voting and  

Output the final hypothesis: 

yxht tYy
final

t

xH
)(:

1
logmaxarg)(

Figure 2. Learn++ algorithm pseudocode 

This condition is enforced by requiring that the error com-

puted in (3) be less than ½.  If this is the case, the error is nor-

malized to [0 1] interval   

10),1/( tttt .                               (4)

If the error is more than ½, the current hypothesis is dis-

carded, and a new training subset is selected. All hypotheses 

generated thus far are then combined using the weighted ma-

jority voting to obtain the composite hypothesis Ht (step 5). 

yxht
t

Yy
t

t

H
)(:

)/1log(maxarg                          (5) 

The weighted majority voting chooses the class receiving 

the highest weighted vote from all hypotheses. The hypotheses 

with good training performance records are awarded higher 

voting weights. The error of the composite hypothesis is then 

computed as the sum of distribution weights of the instances 

misclassified by Ht

iit yxHi

m

i
iitttt yxHiDiDE

)(: 1

)()()(
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where  evaluates to 1, if the predicate holds true (step 6). 

The normalized composite error Bt is computed as 

10),1/( tttt BEEB                            (7) 

which is then used in updating instance weights (step 7):  

otherwise

yxHifB
iwiw

iitt
tt

,1

)(,
)()(1                   (8) 

            iit yxH
tt Biw

)(1
)(

The weight update rule in Eq. (8) reduces the weights of 

the instances that are correctly classified, making them less 

likely to be selected into the next training subset.  The prob-

ability of misclassified instances being selected into the next 

training subset is therefore effectively increased at the next it-

eration’s normalization step (step 1). The algorithm is essen-

tially forced to focus on instances that are difficult to classify.  

At any point, a final hypothesis Hfinal can be obtained by com-

bining all hypotheses generated thus far using the weighted 

majority voting  

yxht tYy
final

t

xH
)(:

1
logmaxarg)( .                   (9) 

3. RESULTS 

Two types of wavelets were used for feature extraction: 

Daubechies 4 (db4) wavelet and Quadratic b-spline wavelet, 

both of which have been used in previous related efforts [6]. 

The number of coefficients varied based on the type of wave-

let, 121 for b-spline and 64 for db4, though they were chosen 

to include all frequencies below 16 Hz, where most of the ERP 

information is known to reside.  While 19 channels of EEGs 

were recorded, we have thus far analyzed the Pz electrode 

only, the channel that is most commonly used in oddball para-

digm analysis.  Five-fold cross validation was performed using 

the Learn++ algorithm yielding a performance of  85.3+/-5.2% 

for the b-splines (using 15 MLP type classifiers, all with 30 

hidden layer nodes and an error goal of 0.15) and 90+/-9.2% 

for the db4 wavelet (5 classifiers, all with 30 hidden layer 

nodes and an error goal of 0.1).  The sensitivities were 60% 

and 70%, specificities were 100% and 100%, and the positive 

predictive values were 100% and 80%, for b-splines and db4 

wavelets, respectively. These results compare favorably to our 

previous efforts of using a single strong classifier, where the 

overall performance was in the low 80% range, sensitivities 

were in the 60% range, specificities were in the 90% range and 

the positive predictive values were in the mid 80% to mid 90% 

range [11]. 

4. DISCUSSION 

These results are preliminary and based on a limited num-

ber of patients, however the use of wavelet analysis to extract 

features of the ERPs, followed by an automated classification 

system appears to be a feasible approach for early diagnosis of 

AD.  The use of Learn++ for classification of the wavelet coef-

ficients provides a suitable automated algorithm, and a favor-

able alternative to using single classifier systems. Furthermore, 

Learn++ possesses the ability to learn incrementally, a key as-

set that will be very beneficial as new data become available. It 

is also worth noting that Learn++ is also capable of learning 

new classes that may be introduced with the new data, which 

may also be beneficial in our future work of estimating the se-

verity of the disease, or identifying patients with mild cogni-

tive impairment as a third category between AD and normal.  

The type of wavelet may not be too critical, as both types 

were able to extract much of the same information; however, 

the approach can be optimized for a specific wavelet.  

We note that the approach using the MWA, with either 

single or ensemble classifiers, also compares favorably to re-

ported community clinic correct diagnosis rates, and in some 

cases, even to those of the university hospital clinical evalua-

tion rates. Additional training data is expected to help improve 

the generalization performance; therefore, the approach should 

provide a stable and effective algorithm once the remaining pa-

tients are recruited. 
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