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ABSTRACT 

With the rapid increase in the population of elderly 

individuals affected by Alzheimer’s disease, the need for an 

accurate, inexpensive and non-intrusive diagnostic 

biomarker that can be made available to community 

healthcare providers presents itself as a major public health 

concern. The feasibility of EEG as such a biomarker has 

gained a renewed attention as several recent studies, 

including our previous efforts, reported promising results. In 

this paper we present our preliminary results on using 

wavelet coefficients of event related potentials along with an 

ensemble of classifiers combined with majority vote and 

decision templates. 

1. INTRODUCTION 

Alzheimer’s disease (AD) is the most common type of de-

mentia, a degenerative neurological disorder associated with 

aging. AD is a progressive brain disorder that gradually de-

stroys a person’s memory and their ability to learn, reason, 

make judgments, communicate and carry out daily activi-

ties. The likelihood of developing AD almost doubles every 

five years after the age of 65. By the age of 85, the odds of 

developing AD reach the alarming rate of one out of every 

two people. The Alzheimer’s Association puts the estimated 

number of people affected by AD at 4.5 million, in the U.S. 

alone [1], with a projected number of 12 – 16 million by 

2050. Alzheimer’s disease has no known single cause, no 

cure, nor even a definitive means of diagnosis – except au-

topsy. Currently, AD is typically diagnosed through a clini-

cal evaluation that involves a series of memory tests, inter-

views with the patient and his/her caregivers and continuous 

monitoring over a period of time. While such a clinical 

evaluation has a relatively high positive predictive value of 

93%, it is only available through expert neuropsychologists 

at major university hospitals and/or research clinics. This 

level of expertise and procedures are usually very costly, 

and hence most patients are typically evaluated by their lo-

cal community healthcare providers, where the expertise and 

accuracy of AD specific diagnosis remains uncertain. In 

1999, a group of Health Maintenance Organization-based 

physicians reported an average sensitivity of 83%, specific-

ity of 55%, and an overall accuracy of 75% [2]. Since the 

first line of intervention are such community clinics – at 

least for most people – an accurate, inexpensive, non-

invasive, cost-effective, and an automated diagnostic proce-

dure that can be made available to such clinics would be 

very beneficial. Furthermore, considering that most people 

can live up to 8 – 20 years with early intervention, a reliable 

early diagnosis can not only add years to patient’s life, but 

can significantly increase the quality of life for the patient as 

well as their caregivers. 

AD is a cortical dementia in which certain underlying 

processes manifest themselves on the event related 

potentials (ERPs) of the electroencephalogram (EEG). The 

EEG has not been traditionally used in AD diagnosis, 

however, since signals show several changes due to normal 

aging, coexisting medical illness, and levels of anxiety or 

drowsiness during the measurements as well. On the other 

hand, an EEG based protocol, called the oddball paradigm 

that involves the analysis of ERPs, has been shown to 

generate changes that are linked to mental impairment. In 

the oddball paradigm protocol, subjects are instructed to 

press a button when they hear an occasionally occurring 

oddball tone of 2 kHz within a series of regular 1 kHz tones 

and novel sounds. The ERPs show a positive peak called the 

P3 (or P300) with an approximate latency of 300 ms after 

the oddball stimulus. Changes in the amplitude and latency 

of the P300 are known to be altered by neurological 

disorders affecting the temporal-parietal regions of the brain 

[3]. Polich et al. have reported that latency and the 

amplitude of the P300 are in fact altered in patients with AD 

when compared to elderly control subjects [4, 5].  

Traditional ERP analysis is performed in time domain 

using the amplitude and latency of the P300s. This analysis 

reveals only a fraction of the information available in the 

ERP, however, since ERPs are non-stationary signals, 

whose spectral content vary in time. Other studies have 

shown that the ERPs, and the P300 component in particular, 

consist of the superposition of multiple functional 

components, where these components extend for different, 

yet overlapping, time intervals in different frequency bands 

[6, 7]. This makes the discrete wavelet transform (DWT) an 

appropriate tool for the analysis of ERPs, as also shown in 

our earlier studies [8,9]. 
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2. METHODOLOGY

2.1. Research Subjects 

This study will include a total of 80 subjects, in which half 

the cohort will be cognitively normal and the other diag-

nosed with probable AD based on clinical evaluations. Data 

from 48 patients – recruited to date – 25 diagnosed with 

probable AD and 23 cognitively normal, have been ana-

lyzed. Subjects are verified to be free of any evidence of 

other neurological disorders (e.g. stroke, multiple sclerosis, 

Parkinson’s disease, etc.) by history or by exam. The two 

groups were defined by the following criteria: Cognitively
normal: (i) age > 60; (ii) Clinical Dementia Rating (CDR) = 

0; (iii) Mini-Mental Scores (MMS)  24; (iv) no indication 

of functional cognitive decline during the previous two 

years based on a detailed interview with the subject’s 

knowledgeable informant or two previous annual clinical 

assessments. AD subjects: (i) age > 60; (ii) CDR  0.50; (iii) 

MMS< 24; (iv) presence of functional cognitive decline 

over the previous 12 months; (v) satisfaction of NINCDS-

ADRDA (National Institute of Neurological and Communi-

cative Disorders and Stroke - Alzheimer's Disease and Re-

lated Disorders Association) criteria for probable AD [10]. 

All subjects received a thorough medical history analysis, 

neurological exam, memory tests and standardized evalua-

tions for several functional impairments, extrapyramidal 

signs for behavioral changes and depression. The clinical 

diagnosis was made as a result of these analyses. 

2.2. Data Acquisition 

The ERPs were obtained using the oddball paradigm. The 

protocol originally described in [3] was followed with slight 

modifications. The evoked response stimulus was presented 

to both of the subject’s ears using stereo speakers with an 

amplitude level comfortable for their hearing. The stimulus 

consisted of tone bursts 100 ms in duration. Tones of 1 kHz 

and 2 kHz were presented in a random sequence. These 

tones made up 65% and 20% of the tones respectively. The 

remaining 15% of the trials consisted of novel sounds also 

presented randomly. A total of 1000 stimuli, including the 

standard tones of  kHz (n = 650), target tones of 2 kHz (n = 

200) and novel sounds (n = 150), were delivered to each 

subject with an inter-stimulus interval of 1.0-1.3 seconds. 

The subjects were instructed to press a button each time they 

heard the target tone of 2 kHz. When a subject responds to 

the target tone and presses the button, the ERPs are recorded 

for 1 second from 19 tin electrodes embedded in a plastic 

cap.

The data collection process lasted about 30 minutes per 

subject with each session proceeded by a 1 minute practice 

session without novel sounds. Artifactual recordings were 

identified and rejected by the EEG technician. The 

remaining recordings were amplified, digitized at 256 

Hz/channel and stored. The saved ERPs were preprocessed 

using low-pass filtering and trial averaging. Averaging 

individual target responses (30-90 per patient) is necessary 

to obtain a robust P300 component. All averages have been 

notch filtered at 59-61 Hz and then amplitude normalized.

2.3. Multiresolution Wavelet Analysis 

Multiresolution wavelet analysis provides time localizations 

of spectral components in a signal thus providing its time-

frequency representation. The Discrete wavelet transform 

(DWT) has become an increasingly popular method for 

time-frequency analysis due to its ability to solve a diverse 

set of problems. It does so by decomposing a signal into 

different frequency bands by successive low-pass and high-

pass filtering. The outputs of the high-pass filters at each 

level constitute the DWT coefficients at that level, while the 

low-pass filter outputs are further decomposed. At each 

successive level, the signal is analyzed at a reduced time and 

increased frequency resolution, hence the name multi-

resolution analysis. In this study we used the Daubechies 

wavelet with four vanishing moments as the mother wavelet 

and carried out the decomposition for 7 levels of detail, 

creating 7 frequency bands. Wavelet transforms have been 

well established by now, and details can be found in many 

excellent references listed at [11]. 

2.4. Features and Ensemble Classification 

The signals analyzed in this study consist of the 

preprocessed data from the Pz electrode of the EEGs. This 

electrode collects data from the central parietal section of 

the cortex, where the P300 is known to be most prominent 

[12]. Furthermore, the spectral content of the P300 is known 

to be around 3 Hz. Therefore, the middle four of level 6 (2-4 

Hz) DWT coefficients (corresponding to the 200 – 500 ms 

range were extracted for the analysis.  

Ensemble of classifiers based approaches have recently 

enjoyed great attention due to their reported superiority over 

single classifier based systems’ generalization performance. 

Ensemble generation techniques, such as bagging, boosting / 

AdaBoost, mixture of experts, along with several ensemble 

combination strategies, such as voting techniques, posterior 

probability based combinations and template matching have 

been proposed, analyzed and shown to be effective on a 

wide spectrum of applications [13]. The idea behind all 

ensemble based systems is that if individual classifiers are 

diverse, then they can make different errors, and combining 

these classifiers can reduce the error through averaging. 

Diverse classifiers can be obtained by using different data, 

and/or deliberately making the classifiers relatively weak.  

Three such weak multiplayer perceptron type (MLP) 

classifiers were trained on averaged ERP responses to the 

target tones. All MLPs had 4 input, four hidden and two 

output nodes with a fairly tolerant mean square error goal of 

0.1, to ensure that the MLPs are relatively weak with respect 

to the classification problem. These three classifiers were 

V ­ 902



then combined using two different ensemble combination 

techniques: majority voting and decision templates. Both 

methods are further explained in the following sections. The 

generalization performances for the individual classifiers, 

majority voting, and decision templates were obtained 

through a leave-one-out cross validation scheme. 

2.5. Majority Vote 

Majority vote is one of the simplest and most intuitive 

ensemble combination techniques. Essentially, the ensemble 

chooses the class that is chosen by the majority of the 

classifiers. Let us define the decision of the tth classifier Dt

as dt,j {0,1}, t=1,…,T and j=1,…,c, where T is the number 

of classifiers and c  is the number of classes. If tth classifier 

chooses class j, then dt,,j = 1, and zero, otherwise. The vote 

will then result in an ensemble decision for class k if: 
T
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If there is reason to believe that certain classifiers in the 

ensemble are “better” than the others, a weighted majority 

voting can also be employed.  

2.6. Decision Templates 

Decision templates were proposed by Kuncheva in [14], for 

combining continuous valued outputs of an ensemble of 

classifiers. The classifier outputs are typically normalized to 

add up to 1 using the softmax normalization: denoting the jth

output of the classifier with yj, the normalized values are 
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and the new y’ values are used as dt,j(x), which are then 

interpreted as the support given by the tth classifier to the jth

class. Let x Rn be a feature vector and W = { 1, 2,…, C}

be the set of class labels.  Each classifier Dt in the ensemble 

D = {D1,…, DT} outputs c degrees of support for each x.

The outputs of T classifiers for a particular x are first 

organized into a decision profile DP(x) as shown in Fig 1. 

The column for d1, j to dT, ,j represents the support from 

classifiers D1 to DT for class j, and the row dt,1 to dt,C is the  

support from classifier Dt.

The decision templates (DT) are then obtained for each 

class j as the average decision profile among all class j in-

stances of the training data:  

1

j j

DT DPj jN j
X

X
(3)

where Nj is the number of class j instances. Given an 

unlabeled instance x, the similarity of its decision profile 

and each DTj constitutes the support given to class j by the 

ensemble. The similarity measure used in this work is the 

Fig. 1. Decision Profile matrix. 

squared Euclidean distance, for which the total ensemble 

support for class j is computed as 

21
1 , ,

1 1

T C
DT t k dj j t kT C

t k
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where DTj(t,k) is the support given by the tth classifier to 

class k by the decision template DTj, that is, the support 

given by the tth classifier to class k, averaged over class j in-

stances. This support should ideally be high when k=j, and

low otherwise. The second term dt,k(x) is the support given 

by the tth classifier to class k for the given instance x. The 

class with the highest total support is then chosen as the en-

semble decision. 

In this application decision templates are created to 

combine individual supports given by three MLPs to each of 

the two classes, cognitively normal and AD. Hence, each 

decision profile and each decision template are 3-by-2 

matrices. Detailed discussion on these and other ensemble 

combination rules can be found in [13]. 

3. RESULTS 

Generalization performances and their confidence intervals 

are given in Table 1 for each individual classifier, D1 ~ D3,

as well as the ensemble performance obtained through ma-

jority vote (MV) and the decision templates (DT). Also pro-

vided in Table 1 are the sensitivity, specificity and positive 

predictive values of each. All figures are average of ten tri-

als of leave-one-out based generalization performances. 

Each leave-one-out performance itself is obtained by train-

ing the classifiers with 47 of the 48 instances, testing the 

classifiers on the remaining 48th instance, repeating the pro-

cedure 48 times changing the test instance in each case and 

taking the average of 48 such one-instance performances. 

Leave one out based generalization performance is usually 

considered as the best (least unbiased) estimate of the true 

generalization performance of the classification system.  

Table 1 indicates that each classifier had an average 

generalization performance of 67 – 71%, which was boosted 

to around 76% by the majority vote or decision template. 

Similar performance improvements can also be seen on the 

sensitivity, specificity and positive predictive values. 
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Table 1. Results from 3 classifiers (D1, D2, D3), Majority 

Vote (MV), and Decision Template (DT) 

Average 

Performance 

Standard

Deviation

95% 

Confidence 

Interval

Sensitivity Specificity

Positive 

Predictive 

Value

D1
0.7187 0.0225 0.0130 0.6760 0.7652 0.7601

D2
0.7125 0.0165 0.0095 0.7080 0.7174 0.7322

D3
0.6750 0.0329 0.0191 0.6360 0.7130 0.7126

MV 0.7583 0.0224 0.0130 0.7440 0.7739 0.7821

DT 0.7625 0.0176 0.0102 0.7520 0.7739 0.7841

We should note that while the difference between single 

classifier performances and ensemble performances are 

statistically significant, the difference between the majority 

vote and the decision templates is not. The decision 

templates approach is a more elegant one that considers the 

support given to all classes before making a decision. 

However, whether its additional computational overhead is 

justified is debatable, at least on the current dataset. 

4. CONCLUSIONS & DISCUSSION 

Feasibility of a diagnostic tool for early diagnosis of Alz-

heimer’s disease is explored. An ensemble of three classifi-

ers are combined through majority voting and decision tem-

plates, where each classifier is trained on four wavelet coef-

ficients that characterize the P300 component at the 2-4 Hz 

interval. In general, results indicate that there is indeed a sta-

tistically significant performance to be gained from the en-

semble combination process.  

Current results on the first 48 patients (the study will 

eventually include 80) indicate a surprisingly promising out-

look, considering that only four coefficients are used to 

characterize a disease for which there is still no definitive 

mean of diagnosis. Furthermore, all AD patients in the cur-

rent cohort had MMS scores around 24, indicating that the 

disease is being detected at its earliest stages. Finally, the re-

sults presented in Table 1 match or exceed the current diag-

nosis performance at community clinics.  

Our earlier results have already indicated that there is 

nothing significant to be gained by using a larger ensemble 

or stronger individual classifiers. Hence our current and fu-

ture work will focus on using other ensemble generation 

techniques, combining features from different levels of the 

DWT, as well as combining data from different electrodes. 

 As we continuously explore alternative feature sets and 

classification approaches, it is hoped that we will get closer 

to the clinical evaluation performance figures as we obtain 

additional real-world data when the remaining 32 patients 

are recruited. The algorithm can then be easily integrated 

into an EEG module, and made available to community clin-

ics to be used as a first level diagnostic screening tool for 

detecting the disease at the earliest stages possible. 
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