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Abstract

As the number of the elderly population affected by Alzheimer’s disease (AD) rises rapidly, the need to find an accurate, inexpensive
and non-intrusive diagnostic procedure that can be made available to community healthcare providers is becoming an increasingly
urgent public health concern. Several recent studies have looked at analyzing electroencephalogram (EEG) signals through the use of
wavelets and neural networks. While showing great promise, the final outcomes of these studies have been largely inconclusive. This
is mostly due to inherent difficulty of the problem, but also – perhaps – due to inefficient use of the available information, as many
of these studies have used a single EEG channel for the analysis. In this contribution, we describe an ensemble of classifiers based data
fusion approach to combine information from two or more sources, believed to contain complementary information, for early diagnosis
of Alzheimer’s disease. Our emphasis is on sequentially generating an ensemble of classifiers that explicitly seek the most discriminating
information from each data source. Specifically, we use the event related potentials recorded from the Pz, Cz, and Fz electrodes of the
EEG, decomposed into different frequency bands using multiresolution wavelet analysis. The proposed data fusion approach includes
generating multiple classifiers trained with strategically selected subsets of the training data from each source, which are then combined
through a modified weighted majority voting procedure. The implementation details and the promising outcomes of this implementation
are presented.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is concerned with investigating the feasibility
of an ensemble of classifiers based data fusion approach on
a specific medical application; however, our goal is not
merely presenting just an interesting application on which
ensemble systems happen to work well. Rather, we try to
make the case that the framework provided by the pro-
posed ensemble based approach fits naturally to applica-
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tions where data from different sources need to be
combined. In other words, the attributes of the proposed
approach closely match the characteristics of the underly-
ing problem. The importance of such a close match is only
amplified by the fact that the specific application we inves-
tigate is itself a significant public health concern, and that it
has widespread impact on long term geriatric care.

1.1. Senile dementia of Alzheimer’s type

Neurological disorders that cause gradual loss of cogni-
tive function are collectively known as dementia. Among
several forms of dementia, the most common form is the
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irreversible and incurable senile dementia of Alzheimer’s
type, or just Alzheimer’s disease (AD), in short. Once con-
sidered a rare disease, and mostly ignored due to elderly
people being its primary victim, the number of people suf-
fering from AD has been growing rapidly as the world’s
population ages. Today, it is estimated that there are 18
million people suffering from AD worldwide, two-thirds
of whom live in developed or developing countries. This
figure is expected to soar to 34 million by 2025. In the
US alone, over 4.5 million (1.5% of the total population)
suffer from AD, which is expected to reach 12–16 million
by 2050. Up to age 60, AD appears in only 1% or less of
the population, but its prevalence increases sharply, dou-
bling every five years: the disease affects 5% of 65-year olds
and 30–50% of 85-year olds [1,2].

Apart from its slow but debilitating effects on its victim,
the disease has a devastating financial toll on the society
(estimated at over $100 billion annually in the US alone),
and causes an immeasurable grief on the victim’s caregiv-
ers. While the specific causes of AD are unknown, the dis-
ease is characterized by abnormal proteins in the brain that
comprise neurofibrillary tangles and plaques. These pro-
teins can only be identified by examining the brain tissue
under a microscope. Hence the only form of definitive diag-
nosis is an autopsy.

Several biomarkers have been linked to AD, such as the
cerebrospinal fluid tau, b-amyloid, urine F2-isoprostane,
and brain atrophy detected by PET/MRI scan. However,
none of these methods has proven to be conclusive for early
diagnosis, and even if they were, they remain primarily uni-
versity and research based tools. Currently, clinical and
neuropsychological evaluations achieve an average positive
predictive value of 90%; however, this level of expertise is
typically available only at university or research clinics,
can be very expensive, and hence remain beyond reach
for most patients. Therefore, these patients are evaluated
by local community healthcare providers, where the exper-
tise and accuracy of AD specific diagnosis remains uncer-
tain. In fact, a recent study reported that, despite the
advantage of longitudinal follow up, a group of Health
Maintenance Organization based physicians had an overall
accuracy of 75% for the clinical diagnosis of AD [3]. Mean-
while, active development of pathologically targeted medi-
cations requires an accurate diagnosis at the earliest stage
possible. Only then can the patient’s life expectancy and
quality of life be improved significantly. To have a mean-
ingful impact on healthcare, the diagnostic tool must be
inexpensive, non-invasive, accurate, and available to com-
munity physicians.

Event related potentials (ERPs) of the electroencephalo-
gram (EEG) may provide such a tool. However, the ability
of EEG signals to resolve AD specific information is typ-
ically masked by changes due to normal aging, coexisting
medical illness, and levels of anxiety or drowsiness during
measurements. The ERPs of the EEG, obtained through
the oddball paradigm protocol, has previously been linked
to cognitive functioning, and is believed to be relatively
insensitive to above-mentioned parameters. In this proto-
col, subjects are instructed to respond to an occasionally
occurring target (oddball) stimulus, within a series of reg-
ular non-target stimuli. The ERPs then show a series of
peaks, among which the P300 – a positive peak with an
approximate latency of 300 ms that occurs only in
response to the oddball stimulus – is of particular interest.
Changes in the amplitude and latency of the P300 (P3, for
short) are known to be altered by neurological disorders,
including AD, that affects the temporal–parietal regions
of the brain [4]. Specifically, increased latency and
decreased amplitude of P300 is associated with AD [5–7].
However, looking at just the P300 component – while pro-
vides statistical correlation with AD – does not help in
identifying individual patients: cognitively normal people
may have delayed or absent P300; and those with AD,
in particular early stages, may still have a strong P300,
as shown in Fig. 1.

Traditional ERP analysis is performed either in time or
frequency domain. However, both are individually subop-
timal, since the ERP is a time and frequency varying signal.
Despite its now mature history, studies applying time–fre-
quency techniques, such as wavelets, to ERPs have only
recently started, and mostly on non-AD related studies
designed specifically for P300 analysis [8–12]. Studies
directly targeting AD diagnosis using discriminant analysis
on ERP features [13], or wavelet analysis followed by neu-
ral network classification have been recently tried by others
[14–16], and ourselves [17,18]. These efforts have only
achieved limited success, however, in part due to difficulty
of the problem, in part due to lack of a large study cohort,
and in part due to using single channel data from the EEG.
Finally, combining various spectral components of the
EEG from different channels [19,20], or combining EEG
with other imaging modalities (such as MRI, MEG, etc.)
[21] have also been tried for brain function analysis, but
not for AD diagnosis.

In most P300 studies specifically designed for detecting
AD induced changes, the ERPs are typically obtained
from the Pz electrode [22] (of the 10–20 EEG electrode
placement system, see Fig. 2), and only for responses to
the oddball tones, where and when the P300 is known
to be most prominent. However, we believe that the
nearby electrodes, such as Cz and Fz, may also carry
complementary information, even when the subjects hear
– but do not respond – to novel tones. The question is
then whether the additional signals do in fact carry com-
plementary information, and if so, how such pieces of
information can be best combined for improved diagnos-
tic performance.

In this study, we describe an ensemble of classifiers
based data fusion approach for this problem, where a sep-
arate ensemble of classifiers are trained with data from
each source, and their outputs are combined through a
modified weighted majority voting procedure. The proce-
dure used for generating the ensemble of classifiers is the
Learn++ algorithm. Learn++ was inspired in part by the
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Fig. 1. (a) and (b) Expected P300 behavior from normal and AD patients; (c) and (d) not all individual cases follow this expected behavior.

Fig. 2. The 10–20 International EEG electrode placement system.
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AdaBoost algorithm, and borrows many of its algorithmic
details; however, it has its differences from AdaBoost,
described below, which are specifically designed for learn-
ing novel information from additional data.
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1.2. Ensemble approaches and data fusion

In many applications that call for automated decision
making, it is not unusual to receive data obtained from dif-
ferent sources that may provide complementary informa-
tion. A suitable combination of such information is
usually referred to as data or information fusion, and can
lead to improved accuracy and confidence of the classifica-
tion decision compared to a decision based on any of the
individual data sources alone. Ensemble systems are natu-
rally suited for such data fusion problems.

An ensemble based system, also known as a multiple
classifier system (MCS), combines several, preferably
diverse, classifiers. The diversity is typically achieved by
using a different training dataset for each classifier, which
then allows each classifier to generate different decision
boundaries. The expectation is that each classifier will
make a different error, and strategically combining these
classifiers can reduce the total error. Since its humble
beginnings with such seminal works including, but not lim-
ited to [23–29], research in multiple classifier systems has
expanded rapidly, and has since become an important
research topic [30]. Ensemble systems have appeared in lit-
erature under many creative names, such as composite clas-
sifier systems [23], stacked generalization [27], combination
of multiple classifiers [31–33], dynamic classifier selection
[33], classifier fusion [34,35], mixture of experts [36], com-
mittees of neural networks [37], or just classifier ensembles
[30], among others. These approaches usually differ from
each other in terms of the procedure by which individual
classifiers are generated, and/or the procedure by which
the classifiers are combined.

Most classifier combination approaches usually fall
into one of two categories: classifier selection and classifier
fusion [33,38]. In classifier selection, each classifier is
trained to become an expert in some local area of the
entire feature space. Given a data instance, the classifier
trained with data closest to the vicinity of this instance
is given the highest credit. In classifier fusion– not to be
confused with data fusion – all classifiers are trained over
the entire feature space. The classifier combination process
then merges individual classifiers to obtain a single expert
of superior performance, such as in bagging [39] or boost-
ing based approaches [40,41]. The conditions under which
– either or a combination of – classifier selection or clas-
sifier fusion may prove to be most useful are discussed in
[42] .

Several combination rules are available, such as voting,
sum, product or other combinations of posterior probabil-
ities [28,29,35,43], fuzzy integral [44], Dempster–Shafer
based combination [32,45], and more recently, decision
templates [42,46]. Their comparison and theoretical analy-
ses can be found in [29,35,47–49]. A sample of the immense
literature on ensemble systems can be found in [30,50], and
references therein.

We must mention that the word ‘‘fusion’’ that appears
often in above-mentioned references usually refers to ‘‘com-
bination’’ of classifiers with the goal of improving classifier
generalization performance, by combining different pieces
of information obtained from the same data source, and
not necessarily for combining information coming from
different data sources. Traditional methods for data fusion

in this sense, originally developed for military applications
such as target detection and tracking [51], are generally
based on probability (Bayes theory, Kalman filtering,
etc.) [52–54], evidence theory (Dempster–Shafer (DS) the-
ory [55,56] and its variations [57,58]) , fuzzy and neural net-
works [44,59], or evolutionary algorithms [60].

Using the ensemble approach for data fusion applica-
tions, i.e., combining complementary knowledge from dif-
ferent data sources, while addressed in some studies
[28,31,43], has in general been less explored – particularly
for data with heterogeneous features. In this study, we
therefore use a classifier-fusion type ensemble approach,
not just for improving performance on a classification
problem, but specifically for combining information from
different sources – namely different channels of EEG and
different frequency bands.

The rest of this paper is organized as follows: In Section
2, we describe the Learn++ algorithm in detail, adopted
appropriately for data fusion applications, and provide
guidance on specific implementation issues. In Section 3,
we present the experimental setup for data collection. In
Section 4, we present and interpret results, followed by
conclusions and discussions in Section 5.

2. Learn++ for data fusion

Learn++ was originally developed for incremental learn-
ing of novel information from new data – including from
new classes – without forgetting the previously acquired
knowledge, and without requiring access to previous data
[61–64]. As in AdaBoost [41], Learn++ also generates an
ensemble of classifiers, where each classifier is trained on
a strategically updated distribution of the training data.
Unlike AdaBoost, whose goal is to improve the perfor-
mance of a classifier on a given dataset, Learn++ specifi-
cally targets learning from additional data: it generates
an ensemble for each dataset that becomes available, and
combines these ensembles to create an ensemble of ensem-
bles, or a meta-ensemble of classifiers. More specifically,
the distribution update rule through which consecutive
classifiers are generated is different in Learn++, and is
geared towards learning the novel and discriminating infor-
mation provided by each dataset that has not yet been
learned by the current ensemble. Unlike AdaBoost, which
updates its distribution based on the decision of the previ-
ously generated single classifier, Learn++ ties its distribu-
tion update directly to the ensemble decision. As we
discuss the details below, the overall approach is then to
generate an ensemble of classifiers for each dataset
obtained from a different source, and appropriately com-
bine the classifiers to extract additional information from
subsequent data sources.
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In the context of data fusion, we have K sources, each
introducing a new dataset DSk, k = 1,2, . . . ,K. For each
dataset DSk submitted to Learn++, the algorithm inputs
are (i) the training data Sk of mk instances xi along with
their correct labels yi 2 X = {x1, . . . ,xC}, i = 1,2, . . . ,mk,
for C number of classes; (ii) a supervised classification algo-
rithm BaseClassifier, generating individual classifiers
(henceforth, hypotheses); and (iii) an integer Tk, the num-
ber of classifiers to be generated for the kth dataset. The
pseudocode of the algorithm and its block diagram are pro-
vided in Figs. 3 and 4, respectively, and described below in
detail.

The BaseClassifier can be any supervised classifier,
whose weakness can be adjusted to ensure adequate
diversity. This weakness can be controlled by adjusting
training parameters (such as the size or error goal of a
neural network) with respect to the complexity of the
problem. However, a meaningful minimum performance
is enforced: the probability of any classifier to produce
Fig. 3. Learn++ pseudocode for data fusion.

Fig. 4. Learn++ block diagram.
the correct labels on a given training dataset, weighted
proportionally to individual instances’ probability of
appearance, must be at least 1/2. If classifier outputs
are class-conditionally independent, then the overall
error monotonically decreases as new classifiers are
added. Originally known as the Condorcet Jury Theorem
(1786) [65,66], this condition is necessary and sufficient
for a two-class problem (C = 2); and it is sufficient, but
not necessary, for C > 2.

An iterative process sequentially generates each classifier
of the ensemble: during the tth iteration, Learn++ trains the
BaseClassifier on a judiciously selected subset TRt of the
current training data to generate hypothesis hk

t . The train-
ing subset TRt is drawn from the training data according to
a distribution Dt, which is obtained by normalizing a set of
weights wt maintained on the entire training data Sk. The
distribution Dt determines which instances of the training
data are more likely to be selected into the training subset
TRt. Unless a priori information indicates otherwise, this
distribution is initially set to be uniform, by initializing
w1(i) = 1/mk "i = 1, . . . ,mk, giving equal probability to
each instance to be selected into TR1. At each subsequent
iteration loop t, the weights previously adjusted at iteration
t � 1 are normalized (in step 1 of the inner loop in Figs. 3
and 4)
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Dt ¼ wt

Xmk

i¼1

wtðiÞ
,

ð1Þ

to ensure a proper distribution. Training subset TRt is
drawn according to Dt (step 2), and the BaseClassifier is
trained on TRt (step 3). A hypothesis hk

t is generated by
the tth classifier, whose error ek

t is computed on the current
dataset Sk as the sum of the distribution weights of the mis-
classified instances (step 4)

ek
t ¼

X
i:hk

t ðxiÞ6¼yi

DtðiÞ ¼
Xmk

i¼1

DtðiÞ½jhk
t ðxiÞ 6¼ yij� ð2Þ

where [jÆj] evaluates to 1, if the predicate holds true, and 0
otherwise. As mentioned above, we insist that this error be
less than 1/2. If this is the case, the hypothesis hk

t is ac-
cepted, and its error is normalized to obtain

bk
t ¼

ek
t

1� ek
t

; 0 < bk
t < 1 ð3Þ

If ek
t > 1=2, the current hypothesis is discarded, and a

new training subset is selected by returning to step 2. All
hypotheses generated thus far are then combined using
weighted majority voting [67], to obtain the composite

hypothesis Hk
t (step 5), for which each hypothesis hk

t is
assigned a weight inversely proportional to its normalized
error: those hypotheses with smaller training error are
awarded a higher voting weight and thus have more say
in the final classification decision. H k

t then represents the
current ensemble decision:

Hk
t ¼ arg max

y2X

X
t:hk

t ðxÞ¼y

logð1=bk
t Þ ð4Þ

It is relatively straightforward to prove that the weight
selection of logð1=bk

t Þ is optimum for weighted majority
voting [30]. The error of the composite hypothesis Hk

t is
then computed in a similar fashion as the sum of the distri-
bution weights of the instances that are misclassified by the
ensemble decision Hk

t (step 6)

Ek
t ¼

X
i:Hk

t ðxiÞ6¼yi

DtðiÞ ¼
Xmk

i¼1

DtðiÞ½jH k
t ðxiÞ 6¼ yij� ð5Þ

Since individual hypotheses that make up the composite
hypothesis all have individual errors less than 1/2, so too
will the composite error, i.e., 0 6 Ek

t < 1=2. The normalized
composite error Bk

t can then be obtained as

Bk
t ¼

Ek
t

1� Ek
t

; 0 < Bk
t < 1 ð6Þ

and is used for updating the distribution weights assigned
to individual instances

wtþ1ðiÞ ¼ wtðiÞ � Bk1�½jHk
t ðxiÞ6¼yi j�

t ¼ wtðiÞ �
Bk

t if H k
t ðxiÞ ¼ yi

1 otherwise

(

ð7Þ
Eq. (7) indicates that the distribution weights of the
instances correctly classified by the composite hypothesis
Hk

t are reduced by a factor of Bk
t . Effectively, this increases

the weights of the misclassified instances making them
more likely to be selected to the training subset of the next
iteration. Readers familiar with AdaBoost have undoubt-
edly noticed the overall similarities, but also the key differ-
ence between the two algorithms: AdaBoost specifically
targets improving the generalization performance of a
weak learner on a single dataset by focusing on difficult
instances that have been misclassified by the previous
hypothesis ht [41]. On the other hand, through the use of
the composite hypothesis Ht, Learn++ specifically targets
learning novel information from new data by focusing on
those instances that are not yet learned by the existing
ensemble. When Learn++ is acquiring novel information,
the previously unseen or misclassified instances are pre-
cisely those not yet learned by the ensemble, forcing the
algorithm to focus on instances carrying novel informa-
tion. It can be argued that AdaBoost too looks (albeit indi-
rectly) at the ensemble decision since, while based on a
single hypothesis, the distribution update is cumulative.
However, the update in Learn++ is directly tied to the
ensemble decision, and hence been found to be more effi-
cient in learning new information in our trials. The final
hypothesis Hfinal is obtained by combining all hypotheses
that have been generated thus far from all K data sources.

Fig. 5 conceptually illustrates the system level organiza-
tion of the overall algorithm as structured for data fusion
applications: an ensemble of classifiers is generated as
described above for each of the feature sets, which are then
combined through weighted majority voting. For data
fusion applications, however, the performance based vot-
ing weights for each classifier, logð1=bk

t Þ, are further
adjusted before final voting, based on expected or observed
training performance on each data source: if prior informa-
tion indicates that an individual data source is more reli-
able, a higher voting weight can be assigned to classifiers
trained with such data. Alternatively, the weight adjust-
ment can be based on the training performance of the
ensemble on its own feature set. If such a strategy is chosen,
the performance based weight of each classifier, logð1=bk

t Þ,
is multiplied by the reliability factor of the feature set to
which it belongs. This adjusted weight is then used to
obtain the final hypothesis Hfinal:

H finalðxÞ ¼ arg max
y2X

XK

k¼1

1

ak

X
t:htðxÞ¼y

log
1

bk
t

 ! !
ð8Þ

where 1/ak is the reliability factor assigned to the ensemble
trained on the kth feature set. In this work, ak was chosen
as the empirical error, that is, misclassification ratio of the
final composite hypothesis on Sk:

ak ¼
Xmk

i¼1

½jH k
T k
ðxiÞ 6¼ yij�

 !,
mk ð9Þ



FSk

FS4

FS3

FS2

FS1

Data Source &
Performance based
Weight AssigningFeature –specific 

expert ensembles of classifiers 

Final
Decision

Feature sets
obtained from
different data

sources

Σ

Learn++
An ensemble of classifiers is trained 
with each dataset using Learn++ .

An  individual classifier trained according to Learn++ training rule

An  ensemble of classifiers trained with a specific feature set 

Σ Weighted majority voting

Σ Adjusted weighted majority voting

Fig. 5. Schematic representation of the Learn++ based data fusion algorithm.

R. Polikar et al. / Information Fusion 9 (2008) 83–95 89
where H k
Tk is the final composite hypothesis generated from

the kth training data Sk of data source DSk.
Two implementation issues should be mentioned to pre-

vent rare but pathological conditions causing deteriorated
performance. First, classifiers with infinite voting-weight
should be avoided. This issue arises when a classifier per-
fectly learns the entire training data (potentially over-fit-
ting), resulting in bk

t ¼ 0, and hence the voting weight of
hk

t to be infinite. The outcome is then a despotic hk
t with

the sole power of decision making. This situation can be
avoided either by making classifiers weaker (so that the
training error exceeds zero), or by adding a small adjust-
ment factor (0.01 usually works rather well) to bk

t .
Second, unless there is prior information to choose

otherwise, the number of classifiers generated for each
dataset should be (at least, approximately) the same. The
number of classifiers is usually selected such that the per-
formance on a separate validation dataset is maximized,
where classifiers are added to the ensemble until addition
of classifiers no longer contributes to performance
improvement. However, it is not unusual for the ensemble
performance to stay constant, or only slightly fluctuate for
a large number of classifiers. In such cases, a large number
of classifiers may be retained despite the lack of meaningful
performance gain. Apart from increased computational
complexity and potential for over-fitting, unnecessarily
large number of classifiers generated with any of the feature
sets also causes a bias in the final classification towards the
data source that has more classifiers. This situation can be
avoided by applying regularization to the validation, or
heuristically picking the number of classifiers to be the
same for each data source.

Simulation results of Learn++ on incremental learning
of several scenarios, as well as comparisons to the other
similar methods can be found in [61,68,69], and its ability
of confidence estimation in [63,70]. Results on data fusion
of EEG data are presented below, following the experimen-
tal setup.

3. Experimental setup and feature extraction

3.1. Research subjects and the gold standard

Considering that the current best method of diagnosis is
clinical evaluation through a neuropsychological test, the
outcome of such a test constitutes the gold standard for
this analysis. To date, 52 subjects have been recruited by
the Memory Disorders Clinic of University of Pennsylva-
nia, specifically for this study. The following inclusion
and exclusion criteria were used for the probable AD and
cognitively normal cohorts.

Inclusion criteria for cognitively normal cohort: (i)
age > 60; (ii) Clinical Dementia Rating score = 0; (iii) Mini
Mental State Exam score > 26; (iv) no indication of func-
tional or cognitive decline during the two years prior to
enrollment based on a detailed interview with the subject’s
knowledgeable informant.

Exclusion criteria for cognitively normal cohort: (i) evi-
dence of any central nervous system neurological disease
(e.g., stroke, multiple sclerosis, Parkinson’s disease, etc.)
by history or exam; (ii) use of sedative, anxiolytic or anti-
depressant medications within 48 h of ERP acquisition.

Inclusion criteria for AD cohort: (i) age > 60; (ii) Clinical
Dementia Rating score P 0.50; (iii) Mini Mental State
Exam score 6 26; (iv) presence of functional and cognitive
decline over the previous 12 months based on detailed
interview with a knowledgeable informant; (v) satisfaction
of NINCDS–ADRDA (National Institute of Neurological
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and Communicative Disorders and Stroke–Alzheimer’s
Disease and Related Disorders Association) criteria for
probable AD [71].

Exclusion criteria for AD cohort: Same as for the cogni-
tively normal controls.

All subjects received a thorough medical history and
neurological exam. Key demographic and medical infor-
mation, including current medications (prescription, over-
the-counter, and complementary alternative medications)
were noted. The evaluation included standardized assess-
ments for overall impairment, cognitive impairment, func-
tional impairment, extrapyramidal signs, behavioral
changes and depression. The clinical diagnosis was made
as a result of these analyses, as described by the NIN-
CDS–ADRDA criteria for probable AD [71].

The inclusion criteria for AD cohort were designed to
ensure that subjects were at the earliest clinical stage of
the disease. One measure to evaluate the severity of the dis-
ease is the Mini Mental State Exam (MMSE), a widely
used standardized exam designed to assess orientation,
attention, immediate and short-term recall, language, and
the ability to follow simple verbal and written commands.
MMSE also provides a total score, on a scale of 0 to 30,
that provides an indication of cognitive function. Cognitive
performance shows an inverse relationship between MMSE
scores and age/education, ranging from a median of 29 for
those 18–24 years of age, to 25 for individuals 80 years of
age and older. The median MMSE score is 29 for individ-
uals with at least 9 years of schooling, 26 for those with 5–8
years of schooling, and 22 for those with 0–4 years of
schooling [72,73].

We emphasize that MMSE alone is not used for
diagnosis, but just as one measure for assessing the severity
of disease. The AD diagnosis itself is made based on the
above-mentioned NINCDS–ADRDA criteria for probable
AD. Of all subjects who were diagnosed with probable AD,
we included only those with an MMSE score of 24 or
above (the number of years of schooling was also consid-
ered) to ensure to include only those at the earliest stages
of the disease. Of the 52 subjects recruited to date, 28 of
them were AD patients (lAge = 79, lMMSE = 25) and 24
were cognitively normal individuals (lAge = 76, lMMSE =
29).
3.2. Event related potentials (ERPs) acquisition protocol

The ERPs were obtained using an auditory oddball
paradigm while the subjects were comfortably seated in a
specially designated room. The protocol described by
Yamaguchi et al. [4] was used with slight modifications.
Binaural audiometric thresholds were first determined for
each subject using a 1 kHz tone. The evoked response stim-
ulus was presented to both ears using stereo earphones at
60 dB above each individual’s auditory threshold. Each
stimulus consisted of tone bursts 100 ms in duration,
including 5 ms onset and offset envelops. A total of 1000
such stimuli of frequent 1 kHz normal tones (65%), infre-
quent 2 kHz oddball (target) tones (20%), and novel
sounds (15%) were delivered to each subject with an
inter-stimulus interval of 1.0–1.3 s. Novel sounds consisted
of 60 unique digitally recorded environmental sounds that
were edited to a 200 ms duration. To maintain the novelty
of the stimuli, each novel sound was presented only once.
The subjects were instructed to press a button each time
they heard the 2 kHz oddball tone. With frequent breaks
(3 min of rest every 5 min), data collection typically took
less than 30 min. The experimental session was preceded
by a 1-min practice session without the novel sounds.

ERPs were recorded from 19 electrodes embedded in an
elastic cap. The electrode impedances were kept below
20 kX. Artifactual epochs were removed by the EEG tech-
nician. The potentials were then amplified, digitized at
256 Hz/channel, lowpass filtered, averaged (40–90 odd-
ball/novel tones per patient), notched filtered at 59–
61 Hz, and baselined with the pre-stimulus interval for a
final 256-sample long signal.
3.3. Feature extraction

Multiresolution wavelet analysis determines time local-
izations of spectral components, providing a time–fre-
quency representation of the signal being analyzed. Such
an analysis is particularly well suited for non-stationary
signals, such as the ERPs, whose spectral content varies
in time. Among many time–frequency representations,
the discrete wavelet transform (DWT) has become increas-
ingly popular due its ability to solve a diverse set of prob-
lems, including data compression, biomedical signal
analysis, feature extraction, noise suppression, density esti-
mation, and function approximation – all with modest
computational expense. DWT is a well established tech-
nique; for brevity yet completeness, only an overview is
therefore provided here. Interested readers are referred to
[74], and references within, for additional details.

The DWT analyzes the signal at different frequency
bands with different resolutions using a decomposition pro-
cess. The DWT utilizes two sets of functions, scaling and
wavelet functions, each associated with lowpass and high-
pass filters, respectively. Decomposition of the signal into
different frequency bands is accomplished by successive
highpass and lowpass filtering of the time domain signal.

The original time domain signal x(t) sampled at 256
samples/s creates the discrete time signal x[n] which is
passed through a halfband highpass filter g[n] and a low-
pass filter h[n]. In terms of angular frequency, the highest
frequency in the original signal is p rad/s, corresponding
to the linear frequency of 128 Hz. According to Nyquist’s
rule, half the samples can be removed after the filtering,
since the bandwidth of the signal is now p/2 rad/s. There-
fore every other sample in the signal can be discarded. This
is one level of decomposition and can be expressed as
follows:
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Fig. 7. Sample ERP decomposition.
where yhigh[k] and ylow[k] are the outputs of the highpass
and lowpass filters after the subsampling, and are referred
to as detail coefficients and approximation coefficients,
respectively. This procedure, known as subband coding,
is repeated by decomposing the approximation coefficients
until further decomposition is not possible (due to loss of
samples through downsampling). The detail coefficients di

at level i then constitute Level i DWT coefficients. At each
level, the successive filtering and subsampling result in half
the time resolution and double the frequency resolution.
Therefore, each level of decomposition analyzes the signal
at different frequency ranges and different resolutions,
hence multiresolution analysis. Fig. 6 illustrates this proce-
dure, where the bandwidth of the signal at every level is
marked on the figure as ‘‘B’’.

Fig. 7 shows the eight signals obtained from 7-level
decomposition of a sample ERP (from a cognitively nor-
mal patient). For 256-sample signal x[n] and using Daube-
chies-4 wavelets (of length 8), these levels correspond to the
following frequency bands: d1: 64–128 Hz (132 coeffi-
cients); d2: 32–64 Hz (69 coefficients); d3: 16–32 Hz (38
coefficients); d4: 8–16 Hz (22 coefficients); d5: 4–8 Hz (14
coefficients); d6: 2–4 Hz (10 coefficients); d7: 1–2 Hz (8 coef-
ficients); and a7: 0–1 Hz (8 coefficients). The coefficient
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Fig. 6. DWT subband coding algorithm.
amplitudes are in general higher at lower frequencies, in
line with where we would expect to see most of the ERP
information. We should also note that as the signal length
gets smaller at each level, the boundary effects of the filter-
ing becomes more prominent. Therefore, only those coeffi-
cients corresponding approximately to 100–600 ms after
the stimulus were used in the analysis. The actual number
of coefficients used in our analyses are shown in Table 1.
4. Results

Previous studies mentioned in the introduction have
looked at data primarily from the Pz electrode, or from
Pz, Fz and Cz electrodes, one at a time, and primarily in
response to target tones only. Therefore, our goal was to
determine whether a combination of signals obtained from
different electrodes, in response to different stimuli, and
analyzed in different frequency bands provide a better diag-
nostic performance.

Considering that there are three different electrode loca-
tions, two stimulus tones, and eight frequency bands, the
natural question is then ‘‘which electrode – stimulus tone
– frequency band combination provides the most informa-
tion?’’ To answer this question, we have individually ana-
lyzed datasets obtained from all 48 three-tuple
combinations, choosing one electrode, one stimulus tone,
and one frequency band. The five datasets that provided
the best individual performances are shown in Table 1.
Four of the five highest performing datasets corresponded
to data in the 1–4 Hz range, where the P300 is known to
reside, indicating that P300 is indeed influential in AD
diagnosis. However, none of the individual data sources



Table 1
Five highest performing electrode/frequency band/stimulus type combinations

Electrode Response to Abbreviation # of coefficients Frequency band (Hz) Performance (%)

Pz Novel sounds NPz1 4 1–2 75.0
Pz Novel sounds NPz2 5 2–4 63.2
Fz Target sounds TFz 6 4–8 63.6
Cz Target sounds TCz 5 2–4 63.8
Pz Target sounds TPz 5 2–4 60.4
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provide a particularly stellar performance, except perhaps
the Pz electrode with novel sounds at 1–2 Hz range (NPz1).

Leave-one-out cross validation, widely considered to be
the best estimate of the true generalization performance of
a classifier on small datasets, was used in our experiments.
All performance figures in Tables 1 and 2 are therefore
obtained as averages of five independent leave-one-out tri-
als using an ensemble of five classifiers: in each trial, a 5-
classifier Learn++ ensemble was trained using 51 of the
52 patient data, and the ensemble was then evaluated on
the remaining 52nd patient. The base classifier was a single
hidden layer MLP with 10 hidden layer nodes, 2 output
nodes (one for each class), and an error goal of 0.01. The
number of input nodes was the number of DWT coeffi-
cients shown in Table 1. This process was repeated 52
times, in each case testing on a different patient. The aver-
age of these 52 five-classifier ensembles constitutes one

leave-one-out trial. All performance figures are then aver-
ages of five such independent leave-one-out trials.

Note that no data fusion is yet applied. For each of the
five datasets mentioned in Table 1, Learn++ is trained only
on that single dataset (k = 1, and hence, the ak parameter
does not yet apply) to determine the individual ensemble
performance that can be achieved by that dataset alone.

The individual ensembles were then fused using
Learn++, as modified for data fusion applications
(Fig. 1). There are a total of 26 possible 2-, 3-, 4- or 5-
way fusion for five datasets shown above. For brevity, we
report the top five data-fusion performances. In Table 2,
performances of individual datasets (from Table 1) are
given first, followed by the data fusion performance
obtained by Learn++ combination of individual ensembles.
Since each ensemble had five classifiers, a 2-way combina-
tion has a total of 10 classifiers (and a 4-way fusion has 20).
Note that data fusion performances are also averages of
five independent leave-one-out trials, but now each trial
itself is an average of 52 ten-classifier ensembles – if two
datasets are fused, or 52 twenty-classifier ensembles – if
four datasets are fused.
Table 2
Data fusion performances of various combinations of datasets

Fused datasets

TFz + TCz TCz + TPz NPz1 +

Individual performances 63.6 63.8 63.8 60.4 75.0
Fusion performance (%) 68.8 70.0 7
Sensitivity (%) 72.2 71.4 6
Specificity (%) 65.2 68.3 8
Sensitivity and specificity numbers are also provided,
which are commonly used in medical diagnostics. In med-
ical terminology, sensitivity is the probability that a symp-
tom is present (test is positive, or the ensemble declares
AD) given that the person has the disease (the true posi-
tive). The sensitivity measures the ability of the test (the
classifier) in identifying those who have the disease. The
specificity, however, measures the ability of the test in iden-
tifying those who do not have the disease. Hence, specific-
ity is the probability that a symptom is not present (test is
negative, or the ensemble declares the patient as normal)
given that the person does not have the disease (true
negative).

Table 2 indicates that the diagnostic performance of the
fusion of any 2- or 4-way combinations is better than the
performance of the any of the individual data sources.
Combinations including NPz1 performed better than the
others, as expected, since the NPz1 dataset provided the
best single performance. What is interesting, however, is
that NPz1 and TFz combination provided significantly bet-
ter data fusion performance than the NPz1 and NPz2 com-
bination. This indicates that – given the information
provided by NPz1 – there is more complementary informa-
tion in TFz data than in the NPz2 data. On the other hand,
the 4-way combination of the four best performing datasets
did not perform better than the NPz1 and TFz combina-
tion, indicating that there is no additional complementary
information provided by the remaining two datasets (TCz
and NPz2) beyond what is already provided in the NPz1

and TFz combination. Furthermore, combining data
obtained in response to novel and target tones appears to
perform better than combining data from target or novel
tones only, indicating that target and novel tones may pro-
vide complementary information – but only if recorded at
different electrodes. The TFz & NFz and TCz & NCz com-
binations, for example, only had mid-60% range perfor-
mance (not shown in Table 2).

The NPz1 and TFz fusion performance of 79.2%, best
data fusion performance achieved so far, may not appear
NPz2 NPz1 + TFz TCz + TFz + NPz1 + NPz2

63.2 75.0 63.6 63.8 63.6 75.0 63.2
5.4 79.2 78.8
3.6 74.3 77.1
9.4 85.0 80.8
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as particularly impressive, as the improvement is only
about 5% over the performance of the best single dataset
of NPz1. However 79.2% significantly exceeds that of other
HMO based community clinics, and is clinically considered
to be very significant, considering the difficulty of identify-
ing AD at its earliest stages. We should add that the best of
the five leave-one-out trials (whose average was 79.2%) was
80.8%. We include this information, since most studies typ-
ically report a single leave-one-out performance.

An interesting observation can also be made from the
sensitivity and specificity figures. On average, sensitivity
is higher than specificity for ensembles trained with data
in response to target tones (TFz&TPz and TFz&TCz),
whereas the opposite is true for the ensemble trained with
data in response to novel tones (NPz1 and NPz2). This indi-
cates that the target tone provides better information in
identifying AD patients. This is not surprising, as it is these
target tones to which AD patients have difficulty respond-
ing. However, the results also indicate that the novel tones
provide better information in identifying normal patients.
Since novel tones have only recently been used, this piece
of information – while logical and expected – is also extre-
mely satisfying. Hence the fusion of novel NPz1 and target
TFz data, apart from giving the best overall performance,
also provide a more balanced sensitivity and specificity
combination.

5. Discussion and conclusions

We have evaluated the Learn++ algorithm – originally
developed for incremental learning and adapted for data
fusion – in addressing a challenging real world data
fusion problem. Three specific characteristics of Learn++

makes it a particularly good match for data fusion appli-
cations, such as the one featured in this paper, where
data from different sources need to be combined: (i) the
ensemble structure provides a natural mechanism to com-
bine heterogeneous features, (ii) the sequential generation
of classifiers based on the ensemble performance allows
efficient learning of complementary information in each
dataset; and (iii) weighted majority voting with integrated
reliability factor allows giving a higher weight to those
ensembles trained on more reliable/informative data
sources.

The application presented in this work seeks the diag-
nostic identification of AD vs. normal patients based on
their ERP recordings. Of particular interest – which makes
the problem particularly challenging – is diagnosis of the
disease at its earliest possible stages. Based on the results
presented above, we draw the following conclusions: (i)
using wavelet analysis to extract features of the ERPs, fol-
lowed by ensemble based data fusion appears to be an
effective tool for early diagnosis of AD; (ii) the fusion of
ensembles trained on individual data at different frequency
bands that are obtained from different electrodes, typically
perform better than a similarly configured ensemble trained
on any of the individual datasets. This demonstrates that
the algorithm can extract complementary information from
different sources, if such information exists; (iii) the fusion
approach provides insight into which electrode/frequency
interval/stimulus type combination provides the most
information, and hence can be used as a feature selection
procedure. Furthermore, the sensitivity – specificity analy-
sis provides particular insight to the most effective use of
target vs. novel tones; (iv) the approach is non-invasive,
cost-effective, and can be made readily available to commu-
nity clinics, since EEG recording technology is well estab-
lished and widely available; (v) having tried several
BaseClassifier architectures and error goals, the algorithms
seems to be quite invariant to minor changes in these
parameters. Therefore the approach is expected to be a sta-
ble and effective one; (vi) finally, the approach seems to
meet or exceed the current performances of community
based clinical evaluations, even at detecting the disease at
its earliest stage. This is clinically significant, as the pro-
posed approach – when fully developed – can provide an
initial screening for majority of the patients at an early
stage. If the patient is in fact normal, cost savings can be
very significant, as they may not need the costly clinical
evaluation. If, on the other hand, the approach indicates
AD, this would provide an early warning for a need for
clinical evaluation. An early diagnosis, resulting in early
intervention and appropriate medication, can then add
many years to the patient’s life, not to mention, signifi-
cantly improving quality of life for the patient as well as
their caregivers.

Our future work includes repeating virtually all experi-
ments as additional patients are recruited (up to 80 will
be recruited). We will also be expanding this analysis to
include a third cohort: patients suffering from Parkinson’s
disease, about 30% of whom eventually develop dementia.
Formal analysis of the algorithm on several different sce-
narios of data fusion and additional EEG channels will
also be part of our future efforts.
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