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Abstract-As a natural consequence of steady increase of av-
erage population age in developed countries, Alzheimer's dis-
ease is becoming an increasingly important public health con-
cern. The financial and emotional toll of the disease is exacer-
bated with lack of standard diagnostic procedures available at
the community clinics and hospitals, where most patients are
evaluated. In our recent preliminary results, we have reported
that the event related potentials (ERPs) of the electroencepha-
logram can be used to train an ensemble-based classifier for
automated diagnosis of Alzheimer's disease. In this study, we
present an updated alternative approach by combining com-
plementary information provided by ERPs obtained from sev-
eral parietal region electrodes. The results indicate that ERPs
obtained from parietal region of the cortex carry substantial
complementary diagnostic information. Specifically, the diag-
nostic ability of such an approach is substantially better, com-
pared to the performance obtained by using data from any of
the individual electrodes alone. Furthermore, the diagnostic
performance of the proposed approach compares very favora-
bly to that obtained at community clinics and hospitals.

I. INTRODUCTION

A lzheimer's Disease (AD), a neurodegenerative disorder
associated with progressive cognitive decline, is the

most prevalent form of dementia. The disease causes rapid
deterioration of its victims' ability to remember, think, make
decisions, and eventually use their motor skills. For decades
since its first discovery in 1906, AD was mostly ignored, as
it affected primarily the elderly, and most people did not live
long enough to experience the symptoms of the disease.
However, as the average population age increases - primar-
ily in the developed countries - so does the number of peo-
ple affected by the disease. Furthermore, the odds look in-
creasingly grim for our most senior citizens: the disease af-
fects less than 1% of those under 60 years of age; but the
odds double every five years after 65, reaching an alarming
rate of 30-500o of all seniors over the age of 85. The Na-
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tional Institutes of Health and the Alzheimer's Association
estimate the current prevalence of the disease at 5 million in
the U.S. alone, while the European Union adds another 3
million cases [1]. With an estimated annual cost of over
$100 billion for the treatment and care, the disease is no
longer ignored.

Furthermore, as if the lack of cure was not devastating
enough, there is also no standard procedure for a definitive
diagnosis of the disease: the only definitive method of diag-
nosis is autopsy, where the brain tissue is microscopically
examined for the plaques and neurofibrillary tangles that are
characteristic hallmarks of AD. Therefore, diagnosis is typi-
cally made through longitudinal clinical evaluations that
include a series of memory tests and interviews, both with
the patient and their caretakers. The diagnostic accuracy of
clinical evaluations is estimated to be 9000, when conducted
by expert neuropsychologists. Such level of expertise, how-
ever, is only available at highly specialized institutions, such
as research hospitals. At community hospitals, where most
patients are evaluated, the diagnostic accuracy for AD is
estimated to be 75%, with a sensitivity of 83%, and specific-
ity of 53%, despite the benefit of longitudinal follow up [2].

Yet, while there is no cure, there is medication that can
significantly reduce the progression of the disease. Specifi-
cally, if diagnosed early, patients may live 8-20 years be-
yond initial diagnosis, with improved quality of life. There-
fore, the importance of an accurate, non-invasive, and cost-
effective diagnostic biomarker that can be made available to
community hospitals cannot be overstated.

The analysis of event related potentials (ERPs) of the
electroencephalogram (EEG) may provide just such a bio-
marker. Several studies have shown that certain characteris-
tics of AD, such as cognitive decline, are associated with
certain changes in the ERPs [3,4,5]. Most studies, however,
could only provide statistical correlations that were simply
not strong enough to allow patient specific diagnosis.

Typically, the protocol used to acquire the ERPs for cog-
nitive analysis is the so-called oddball paradigm. In this
protocol, subjects are instructed to respond to a series of
stimuli, by pressing a button, when they hear an occasionally
occurring oddball (target) tone of 2 kHz within a series of
regular (standard) 1 kHz tones and novel sounds. The ERPs
then show a series of peaks, among which the P300 - a posi-
tive peak with an approximate latency of 300 ms, seen in
response to oddball stimuli only - is of particular interest.
Changes in the amplitude and latency of the P300 are known
to be altered by neurological disorders affecting the tempo-
ral-parietal regions of the brain [3,4,5].
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More recently, EEG analysis combined with signal proc-
essing and the use of automated classifiers has enjoyed re-
newed interest, yielding limited success in some studies,
including some of our own [6,7,8]. However, earlier studies
have primarily been pilot studies using single channel data
and with very few patients (10-25), making statistical gener-
alization very difficult.
Hence our goal in this study is to investigate the feasibil-

ity of an automated neural network based diagnosis, that can
at least meet (or exceed) the diagnostic accuracy of commu-
nity hospital physicians, within the constraints mentioned
above. We have used a substantially larger patient cohort,
specifically recruited for this study, to improve the statistical
validity of our diagnostic performance estimates.

In essence, we propose an ensemble of classifiers based
algorithm designed to combine complementary information
in ERPs obtained from several different electrodes, all lo-
cated in the parietal region of the brain. This area was cho-
sen due to its reported significance in memory and cognitive
skills. Specifically, an ensemble of classifiers is generated,
where each classifier is trained on ERP data obtained from
separate EEG electrodes, obtained in response to different
type of stimuli and analyzed at different frequency bands.
The classifiers are then combined through various combina-
tion rules to obtain a data fusion based overall classification.

II. EXPERIMENTAL SETUP

of AD patients (particularly during the early stages), and
some cognitively normal individuals may have a suppressed
P300. Fig. 1 (c) and (d) illustrate two such cases, also in-
cluded in this study. Therein lies the difficulty of AD diag-
nosis based on merely visual analysis of the ERPs.
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A. The Oddball Paradigm and the ERP Acquisition
In auditory oddball paradigm, the subject is equipped with

a set of headphones, and hears a series of audio tones that
occur once every 1 - 1.3 seconds. The majority (65%) of
these tones are standard tones at 1 kHz, whereas another
20% are target tones at 2 kHz. In our implementation, we
also used novel sounds (15%) obtained from sound clips, as
described in [3]. The subject is instructed to respond to tar-
get tones only, by pressing a button. It is the rarely occurring
target tones that evoke the ERPs, of which the P300 has
been the most celebrated component.

The data collection lasted about 30 minutes per subject.
Artifactual recordings were rejected by the EEG technician.
The remaining recordings were amplified, digitized at 256
samples / second, and partitioned with respect to the nature
of the stimulus tone. The ERPs were then segmented to 1
second (256-sample) long segments, including 200 ms of
pre- stimulus and 800 ms of post stimulus recording. Seg-
mented recordings were notch filtered at 59-61 Hz, normal-
ized and averaged. The averaging involved 90-250 re-
cordings per patient to obtain robust ERP recordings.

The ERPs obtained from cognitively normal individuals
typically exhibit a strong P300 response, with about 300 ms
latency after the stimulus. This response is hampered in
those individuals whose cognitive skills are deteriorated due
to AD. ERPs of such people usually exhibit a weaker P300,
with a much extended latency (if any at all). Figure 1 (a) and
(b) illustrate two such cases of patients included in this
study. This correlation, as mentioned earlier, is a weak one,
however: it is not unusual to observe a strong P300 in ERPs

Fig. 1: (a) and (b) show the expected behavior from the P300 from both a
normal and an AD patient, whereas (c) and (d) show opposite responses
from a different pair of normal and AD patients.

The ERP data was acquired from 19 electrodes, placed on
the scalp according to the 10/20 International System of
electrode placement, as shown in Figure 2. During the early
stages of this study, ERPs recorded from the Pz electrode,
and obtained in response to target tones only were analyzed,
as this specific combination was reported to provide the
most robust P300 components [4]. Recently, however, we
have found that the responses to novel sounds, recorded
from other electrodes also provide valuable information [9].
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Fig. 2: Scalp Electrode Placement according to the 10/20 International
Standard. Parietal electrodes P3, P4, P7, P8 and Pz are used in this study.

B. Patient Cohort
This study started with 28 patients, 14 in each cohort, and

gradually grew to 37 to 48 to 51 patients. The results re-



ported in this paper represent our analysis on our final (and
complete) cohort size of 71 patients. While relatively small
from a computational intelligence perspective, this cohort
size constitutes one of the largest studies of its kind.
A strict inclusion and exclusion criteria was followed to

ensure data integrity: the inclusion criteria for a cognitively
normal patient includes: (a) Age > 60; (b) CDR (clinical
dementia rating) score = 0; (c) MMSE (mini mental state
exam) score >26; (d) no cognitive decline within two years

of testing for the study. The inclusion criteria for a probable
AD patient includes: (a) Age > 60; (b) CDR score > 0.5; (c)
MMSE score <= 26; (d) cognitive decline over the previous
12 months; (e) meets criteria for probable AD from the Na-
tional Institute of Neurological and Communicative Disor-
ders and Stroke - Alzheimer's Disease and Related Disor-
ders Association [10]. All clinical evaluations were per-

formed by the neuropsychologists at the Memory Disorders
Clinics of the University of Pennsylvania.

The final cohorts included 34 AD patients with a mean

age of 75 and MMSE score of 24.7, and 37 normal patients
with a mean age of 76 and MMSE score of 29.2. Scored on

a scale of 0 - 30, the MMSE is used to determine the cogni-
tive level of the individual. A score over 26 is generally con-

sidered normal (with level of education taken into considera-
tion), and a score below 19 typically indicates cognitive de-
cline. A score below 12 is considered severe dementia. Note
that at an average MMSE score of 24.7, the patients in the
AD cohort of this study are at the earliest stages of the dis-
ease.

III. METHODS

A. Feature Extraction

Traditionally, ERP analysis is performed in time or fre-
quency domain. This analysis reveals only a portion of the
information available in the ERP, however, since ERPs are

non-stationary signals, whose spectral content vary in time.
Other studies have shown that the ERPs, and the P300 com-

ponent in particular, consist of the superposition of multiple
functional components, where these components extend for
different, yet overlapping, time intervals in different fre-
quency bands [11]. This makes the discrete wavelet trans-
form (DWT) an appropriate tool for the analysis of ERPs, as

also shown in our earlier studies [8].
DWT provides time localizations of spectral components

in a signal, thus providing a time-frequency representation.
It does so by decomposing a signal into different frequency
bands by successive low-pass and high-pass filtering. Each
frequency band, organized in consecutive octaves, is ana-

lyzed at double the time resolution and half the frequency
resolution of the preceding octave, and hence the term mul-
tiresolution analysis. The output of each high-pass filter con-
stitutes the DWT coefficients at that level, while the low-
pass filter outputs are further decomposed. Daubechies 4
(db4) wavelets were used in this study, chosen due to their
good localization properties. DWT is now a well established
technique, and detailed information on this topic can be
found in many excellent references listed at [12].

The decomposition was carried out for 7 levels for the
256-point long signals. Those frequency bands correspond-
ing to 1-2 Hz (Level 1, L1), 2-4 Hz (L2) and 4-8Hz (L3), are
of particular interest in ERP analysis, as the majority of the
ERP signal's power lie in these bands. These levels are also
known to contain the most cognitive information, as verified
by our previous work [9].
Further dimensionality reduction was obtained by remov-

ing those DWT coefficients corresponding to pre-stimulus
and late post-stimulus regions, and focusing only on 0 to
600 ms regions. The resulting feature vectors were of length
4, 4, and 6 for Levels 1, 2 and 3, respectively.

B. Classification, Data Fusion and Ensemble Systems
In this work, we employ an ensemble of classifiers ap-

proach to data fusion. Ensemble based systems have recently
enjoyed an increased attention due to their reported advan-
tages over single classifiers on a variety of applications [13].
Such systems combine several, preferably diverse, classifi-
ers. The diversity is typically achieved by using a different
training dataset for each classifier, which then allows each
classifier to generate different decision boundaries. Each
classifier then makes a different error, and strategically com-
bining these classifiers can reduce the total error. The indi-
vidual classifiers generated within an ensemble system are
combined using one of several combination rules, some of
which are reviewed below. Bagging, boosting (AdaBoost),
stacking, and mixture of experts are examples of ensemble
based classification [13], in all of which the goal is to im-
prove classification performance. Using the ensemble ap-
proach for data fusion applications, i.e., combining comple-
mentary knowledge from different data sources, has in gen-
eral been less explored. In this study, we explore using a
classifier-fusion type ensemble approach, not just for im-
proving performance on a classification problem, but spe-
cifically for combining information from different sources -

namely ERPs obtained from different electrodes, in response
to different stimuli, analyzed at different frequency bands.
Feed forward neural networks were used to train individ-

ual classifiers. Five electrodes and three frequency bands
give us 15 combinations of feature vectors for each stimulus
type (for a total of 30). The performance of each such com-
bination was first obtained. We have then combined subsets
of these 30 classifiers in groups of 3, 5 and 7 using each of
the four combination rules discussed below. In all cases,
each classifier in the ensemble provides a support for each
category, AD or normal. The combination rule then com-
bines these individual supports to calculate an ensemble
support for each class. The class with the highest ensemble
support is chosen as the final classification.

Sum, Product and Weighted Majority Voting

Let the continuous valued dij C [0,1] represent the degree
of support given by classifier Ti to class j; i=l,...,N and
j=1,...,c, where N is the number of classifiers and c is the
number of classes. For each classifier, these supports are
normalized to add up to 1 over different classes by the soft-



max transformation, and are often interpreted (albeit some-

times incorrectly) as posterior probabilities. For instance x,

di j (x) = exp(dj1(x)) exp(djX(x))
j=l

(1)

For weighted majority voting (WMV), we only need the
labels that are predicted by each classifier, and hence we
have binary valued dij C {0, 1}. We also use a voting weight
that determines how much weight the ensemble should give
to the decision of each classifier:

W(T) log(1/,6T) (2)

where ,BT iS the normalized training error of classifier Ti. The
total support ,uj(x) given to classj is then

N

UJ(X) =LEW (4) d, y x), d, X x)cE 0,I} (3)j=1
I N

pi (x) =- d, j (x), d, j (X) E [0,1] (4)Nj=1
I N

pj (x) 1-7 d1j (x), dj1(x) E [0,1] (5)AN i=1
for WMV, sum and product rules, respectively. Denoting the
set of class labels as Q = {X1, Ct)2, .., OC}, and the ensemble
decision for instance x as gx), the ensemble decision is then
chosen as Wm for which the support puj(x), is maximum:

£r(x) =,, m = argmaxQ(pj (x)), j =1,c (6)

Dempster-Shafer Combination Rule

Based on Dempster-Shafer (DS) theory of evidence, DS
combination rule uses decision profiles to specifically ac-
count for the support given to each class when a classifier is
trained from instances of different classes. The decision pro-
file DP(x) is a TxC matrix of outputs diJ from all N classifi-
ers for the given x, such that the jth column with dl1 through

,,j are the supports from classifiers T1 TN to class w1, and
the ith row with di l through di,C is the support from classifier
Ti(x) to classes w1 - xc. Based on DP(x), a decision template
DTI is computed which represents the most typical decision
profile for each class oj. It is calculated as the average of
decision profiles of all training instances of class 1j

DT1 = (I/N1 ) ExeX DP(x) (7)

where Xj indicates the set of class oj instances, and Nj is the
cardinality of this set.
A key quantity in DS combination is proximity, which

represents the (normalized) similarity of the ith row of DT1
to the output of the ith classifier for instance x,

(1+ DIjDD () )
c 41+D7 _ Di(x) 12) (8)

where II is Euclidean norm. Finally, we compute belief bj

bj(Dj(= (X4,(x)j7 (I(1- k,i (x)biD, x))= 1- $j,i (x)[11 - 17k.j( Dk,iW 9

which indicates the ensemble's degree of belief that classi-
fier Ti correctly identifies instances from class oj
The final support given to class oj by the ensemble can then
be obtained as

T

pi = KHn bj(D1(x)),
i=l

(10)

where K is a normalizing constant such that ZUj (x) 1

IV. RESULTS

Previously, we have analyzed responses from the Cz, Fz,
and Pz electrodes, as these were reported to contain the most
relevant diagnostic information. When analyzed individu-
ally, the best diagnostic performance of 76% was obtained
from the Pz electrode, in response to novel sounds at Level
2, on 52 patients [9]. In this study, we investigate whether
there is complementary information in ERPs obtained from
the surrounding parietal region electrodes of P3, P4, P7, and
P8. ERPs from all five electrodes, in response to both types
of stimuli (target and novel), and at each of the three fre-
quency bands were first analyzed individually for the now

expanded 71 patient cohort. This analysis provided us with
the baseline individual performances of each of the 30 elec-
trode - frequency - stimulus combinations. The diagnostic
classification performances and the corresponding confi-
dence intervals listed in Table 1 are obtained as averages of
10 independent leave-one-out trials, where in each trial the
MLP type classifiers were randomly initialized. The best
individual performances are highlighted in bold.
We observe from Table 1 that typical individual diagnos-

tic performances are in the mid 50 to low 70% range. The
best performing classifiers (at 72% and 70%) are those ob-

TABLE 1

SINGLE ELECTRODE CLASSIFIER PERFORMANCE.

Mean IC
Electrode (%) (%)

Target Level 1: 1-2 Hz

P3 63.2 2.4

P4 60.1 2.3
P7 54.8 2.9

P8 54.4 2.9
PZ 52.5 2.4

Target Level 2: 2-4 Hz

P3 60.6 3.0

P4 60.6 2.8

P7 51.8 3.9
P8 55.6 3.3
PZ 58.5 2.8

Target Level 3: 4-8 Hz

P3 50.6 3.1

P4 41.0 4.5

P7 59.7 2.6
P8 35.9 3.3
PZ 44.7 3.2

Mean CI
Electrode (%) (%)

Novel Level 1: 1-2 Hz
P3 60.7 2.4
P4 61.7 2.8
P7 51.6 2.2
P8 60.7 2.4
PZ 67.5 2.8

Novel Level 2: 2-4 Hz
P3 67.8 2.3
P4 62.7 1.7
P7 61.0 3.1
P8 66.3 2.2
PZ 72.3 1.8

Novel Level 3: 4-8 Hz
P3 64.9 1.9
P4 53.9 2.8
P7 56.1 1.8
P8 51.6 1.9
PZ 70.1 2.8



tained with data from the Pz electrode at level 2 and 3, in
response to novel sounds. The best performing single elec-
trode/frequency band out of the target responses was P3 at
level 1 with 63.24% classification performance. To ensure a

performance boost from the ensemble, the ensemble would
have to perform significantly better than these benchmarks.

To determine whether complementary information is pro-

vided by ERPs obtained from different electrode - frequency
- stimulus combinations, they were combined in groups of
3, 5 and 7 classifiers. An exhaustive search through all pos-
sible ensemble combinations of 3, 5 and 7 classifiers for
both target tone and novel sound responses were performed.
This process results in 455 combinations of 3 classifiers, (15
choose 3), 3003 combinations of 5, and 6435 combinations
of 7 classifiers for each stimulus type.

First, we combined classifiers trained with different
stimulus types separately. The diagnostic performance of
such 3, 5 and 7 classifier ensembles are shown in Table 2 for
the top five performing combinations (where frequency lev-
els are indicated as subscripts, e.g. Pz3 indicates electrode Pz
at level 3 (4-8 Hz)). The combination rule that provided the
listed performances is also shown in Table 2.

Interesting observations can be made from Table 2. First,
the ensemble of classifiers trained with different electrode-
frequency combinations provide statistically significant per-
formance improvement (reaching 790/O) over single classifi-
ers listed in Table 1. This indicates that, given any stimulus
type, ERPs obtained from different electrodes and limited to
different frequency bands do carry complementary informa-
tion. Second, as we incorporate an increasing number of

TABLE 2
BEST PERFORMING ENSEMBLES FOR TARGET AND NOVEL RESPONSES FOR

ENSEMBLES OF 3, 5 AND 7 CLASSIFIERS.

Target - Combinations of 3

Electrodes/ Mean Cl Comb
Levels (%) (%) Rule

P31,P32, P73 70.0 2.8 Sum

P31, P41, P42 69.6 3.0 Sum

P31, P42, P73 69.3 2.3 Sum

Pz3,P31,P42 69.2 3.2 Sum

P31,P32, P42 69.2 2.4 Sum
Target - Combinations of 5

Pz3, P31, P32,
P42,P73 70.1 3.2 WMV

P31,P32,P41,
P42, P73 70.1 2.2 Sum

Pz2,Pz3,P32,
P33,P73 69.9 2.9 Sum

Pz2, P31, P32,
P41, P73 69.7 2.6 Sum

Pz2,Pz3,P31,
P41,P42 69.2 2.4 Sum
Target - Combinations of 7

Pz2, P31, P32,
P42,P72,P73, P81 70.0 2.1 Prod

PZ1,Pz2,P31,
P32,P33,P73, P8, 69.4 3.6 Prod

Pz3, P31, P32,
P41,P42,P73, P82 69.4 2.6 Sum

Pz2,Pz3,P31,
P32,P42,P73, P81 69.2 2.5 Prod
Pz3,P31,P32,
P41,P42,P73, P81 69.0 2.6 Sum

Novel - Combinations of 3

Electrodes/ Mean Cl Comb
Levels (%) (%) Rule

Pz2,Pz3,P82 75.4 2.4 Sum

Pz1,Pz3,P82 74.8 2.2 Sum

Pz2,Pz3,P32 74.5 2.4 Sum

Pz2,Pz3,P43 74.2 2.2 Sum

Pz2,Pz3,P33 174.2 |2.2 | Sum
Novel - Combinations of 5

Pz1, Pz3 P32,
P33, P81 77.3 2.0 Sum

Pz2, Pz3P31,P
P72, P82 77.3 1.5 Sum

Pz1,Pz2,Pz3,
P33, P82 77.0 1.1 Sum

Pz1,Pz2,Pz3,
P32 P33 76.9 1.7 Sum

Pz2, Pz3, P33,
P73,P82 76.5 12.5 Sum
Novel - Combinations of 7

Pz1, Pz2, Pz3, P32,
P33,P81,P82 79.0 2.2 Sum
Pz1,Pz2,Pz3,

P33,P72,P81,P82 78.7 2.0 Sum
Pz1,Pz2,Pz3,

P33, P71, P72, P81 78.7 1.6 Sum
Pz1,Pz2,Pz3,

P31, P33, P72, P81 78.6 1.5 Sum
Pz1,Pz2,Pz3,

P32,P33,P72,P811 78.5 |2.2 Sum

ERPs from different combinations, the diagnostic perform-
ance increases up to combinations of 7 classifiers (with no
further improvement when more than 7 classifiers were
fused). Third, the electrodes whose ERPs performed well
individually (such as Pz) were included in all top performing
ensembles: an expected, yet a satisfying outcome. Finally,
the sum rule, in general, appears to work better than others.
However, those ensembles in top 10, but not in top 5, were
obtained through different combination rules, and the differ-
ence in performances were not statistically significant. This
indicates that the specific choice of the combination rule
may not make as much of a difference.

Our final analysis within this effort was to determine
whether ERPs obtained in response to target and novel stim-
uli provided complementary information with respect to
each other. To do so, we have picked the 6 most frequently
occurring electrode - frequency band combinations from the
25 best performing ensemble combinations for each of the
target and novel stimuli, for a total of 12 electrode - fre-
quency band- stimulus combinations. Using one classifier
for each such combination, 3, 5 and 7-classifier ensembles
were then exhaustively formed and evaluated using all four
combination rules. The results are shown in Table 3, where
ERPs in responses to target tones are indicated with a "t"
appended to their electrode name.

Even more intriguing observations can be made from Ta-
ble 3. Most importantly, comparing the diagnostic perform-
ances in Table 3 to those in Table 2, it is clear that there is
additional and complementary information in ERPs obtained
in response to different types of stimuli. In each of the 3, 5,

TABLE 3
COMBINATIONS OF TARGET AND NOVEL RESPONSES IN ENSEMBLES OF 3,

5, AND 7 CLASSIFIERS
Target/Novel - Combinations of 3

Elec- Mean Cl Sens Spec PPV Comb
trodes/Levels (%) (%) (%) (%) (%) Rule
Pz3, P32, P3t1 78.2 2.2 77.1 78.4 70.8 Sum
Pz3, P32, P33 78.0 3.1 82.1 75.6 68.1 Sum
Pz2, Pz3,P33 77.5 3.1 76.8 77.3 66.9 Sum
Pz1, Pz3, P32 77.3 2.0 77.9 71.9 66.6 Sum
Pz3, P33, P3t1 76.5 3.3 76.5 79.2 70.3 Sum

TargeVNovel - Combinations of 5

PZ2, Pz3,P32, P33,P3t1 80.9 2.3 78.2 80.3 73.9 Sum
Pz1, Pz3,P32, P33,P3t2 80.9 | 1.9 79.7 | 79.2 66.1 Sum
Pz1, Pz2,Pz3, P32,P7t3 80.8 1.2 80.3 81.4 71.8 DS

Pz3,P32,P33,
P3t1,P7t3 80.4 2.2 80.0 80.8 68.0 Sum

Pz2, PZ3,P33,
P3t1,P7t3 80.1 2.6 76.7 79.5 68.7 Sum

TargeVNovel - Combinations of 7
Pz1, Pz3,P32,P33, 81 7 3.8 79.7 84.1 71.3 Sum
P3tj, P3t2, P7t3

Pz3,P3-2, P33,P3t1, 81.5 3.4 76.8 82.7 74.6 DS
PZt3, P3t2, P7t3

PZ3,P3-2,P33,P3t1, 81.4 6.1 78.8 80.3 72.4 DS
P3t2, P4t2, P7t3

PZ3,P32,P8-2,P33' 81.2 2.6 80.6 81.9 74.1 DS
P3tj, P4t2, P7t3

PZ3,P32,P33,PZ2t, 81.1 3.6 81.5 80.8 71.0 DS
P3tj,_P3t2,P7t3



or 7 classifier ensembles, the performance consistently in-
creases compared to corresponding ensembles using single
stimulus type: 75% to 78% with 3 classifiers, 77% to 80.9%
with 5 and 79% to 81.7% with 7 classifiers.

Second, as before, individually best performing electrode-
frequency-stimulus combinations are included in the best
performing ensembles, and including additional classifiers
always improves diagnostic performance up to 7 classifiers.
Third, the sum rule is still the best combiner; however the
differences between the performance of the sum and other
rules were not statistically significant.

It is also customary in similar medical studies to provide
additional diagnostic indicators, other than just the perform-
ance of the proposed technique. Three most commonly used
indicators are sensitivity, specificity and positive predictive
value (PPV). Sensitivity is the ability of a medical test to
correctly identify the target group. In this application, it is
the proportion of true AD patients correctly identified as AD
patients by the classification system. Specificity is the ability
of a test to correctly identify the control group: the propor-
tion of cognitively normal patients correctly identified as
normal. Finally, PPV is the probability that the patient has
the disease, given that the test result is positive. In this
study, PPV is the proportion of those patients identified as
AD patients by the classifier, who actually have AD. These
diagnostic indicators are also provided in Table 3, and are
particularly promising when compared to those reported for
community hospitals.

V.CONCLUSION

In this study, we investigated the diagnostic accuracy and
performance of an ensemble-of-classifiers-based data fusion
approach for early diagnosis of Alzheimer's disease. The
classifiers were trained on wavelet coefficients of ERPs ob-
tained at different electrode locations, in response to differ-
ent stimulus types and band-limited to different frequency
bands. Specifically, ERPs obtained from all parietal region
electrodes, in response to both target (oddball) and novel
stimuli were first individually analyzed and evaluated, and
then exhaustively combined with each other to obtain an
ensemble of classifiers. The ensemble classifiers were then
combined using four different combination rules.
On a cohort of 71 patients, the results indicate that there is

indeed complementary information in ERPs obtained from
different electrodes and in response to different stimuli, and
the ensemble combination of classifiers trained on each pro-
vides a statistically significant performance improvement.
Of the five electrodes, Pz, P3 and P7 appear to provide the
most informative diagnostic specific discriminatory informa-
tion, as they appear most often in all top performing combi-
nations. However, since the performance differences among
the five top performing combinations were not statistically
significant, it seems that all parietal region electrodes carry
some relevant information.
Most importantly, we note that a recent study estimates

the community clinic-based physicians' diagnostic perform-
ances at 83% sensitivity, 53% specificity and 75% overall

are quite satisfactory in their own right, from a computa-
tional intelligence perspective, they are particularly mean-

ingful within the context of this application. This is because
the ensemble generalization performance in 80% range ex-

ceeds the 75% diagnostic performance of trained physicians
at community-based healthcare providers despite the phy-
sicians' benefit of a longitudinal study, and despite the early
diagnosis emphasis of our study. Furthermore, with sensitiv-
ity and specificity also reaching 80% ranges, these results
are particularly promising. Overall, the proposed ensemble
based data fusion approach for early diagnosis of AD ex-

ceeds the diagnostic performance of the community hospi-
tals, with clinically and statistically significant margins.
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