
F. Roli, J. Kittler, and T. Windeatt (Eds.): MCS 2004, LNCS 3077, pp. 52–61, 2004.
 Springer-Verlag Berlin Heidelberg 2004

Learn++.MT: A New Approach to Incremental Learning

Michael Muhlbaier, Apostolos Topalis, and Robi Polikar

Rowan University, Electrical and Computer Engineering Department
201 Mullica Hill Rd., Glassboro, NJ 08028, USA

{muhl1565,topa4536}@students.rowan.edu, polikar@rowan.edu

Abstract. An ensemble of classifiers based algorithm, Learn++, was recently
introduced that is capable of incrementally learning new information from data-
sets that consecutively become available, even if the new data introduce addi-
tional classes that were not formerly seen. The algorithm does not require ac-
cess to previously used datasets, yet it is capable of largely retaining the
previously acquired knowledge. However, Learn++ suffers from the inherent
“out-voting” problem when asked to learn new classes, which causes it to gen-
erate an unnecessarily large number of classifiers. This paper proposes a modi-
fied version of this algorithm, called Learn++.MT that not only reduces the
number of classifiers generated, but also provides performance improvements.
The out-voting problem, the new algorithm and its promising results on two
benchmark datasets as well as on one real world application are presented.

1 Introduction

It is well known that the amount of training data available and how well the data rep-
resent the underlying distribution are of paramount importance for an automated clas-
sifier’s satisfactory performance. For many applications of practical interest, obtain-
ing such adequate and representative data is often expensive, tedious, and time
consuming. Consequently, it is not uncommon for the entire data to be obtained in
installments, over a period of time. Such scenarios require a classifier to be trained
and incrementally updated – as new data become available – where the classifier
needs to learn the novel information provided by the new data without forgetting the
knowledge previously acquired from the data seen earlier. This raises the so-called
stability-plasticity dilemma [1]: a completely stable classifier can retain knowledge,
but cannot learn new information, whereas a completely plastic classifier can instantly
learn new information, but cannot retain previous knowledge. Many popular classifi-
ers, such as the ubiquitous multilayer perceptron (MLP) or the radial basis function
networks, are not structurally suitable for incremental learning, since they are “com-
pletely stable” classifiers. The approach generally followed for learning from new
data involves discarding the existing classifier, combining the old and the new data
and training a new classifier from scratch using the aggregate data. This causes the
previously learned information to be lost, a phenomenon known as catastrophic for-
getting [2]. Furthermore, training with the combined data may not even be feasible, if
the previously used data are lost, corrupted, prohibitively large, or otherwise unavail-
able.

Learn++.MT: A New Approach to Incremental Learning 53

We have recently introduced an algorithm, called Learn++, capable of learning in-
crementally, even under hostile learning conditions: not only does Learn++ assume
the previous data to be no longer available, but it also allows additional classes to be
introduced with new data, while retaining the previously acquired knowledge.

Learn++ is an ensemble approach, inspired primarily by the AdaBoost algorithm.
Similar to AdaBoost, Learn++ also creates an ensemble of (weak) classifiers, each
trained on a subset of the current training dataset, and later combined through
weighted majority voting. Training instances for each classifier are drawn from an
iteratively updated distribution. The main difference is that the distribution update
rule in AdaBoost is based on the performance of the previous hypothesis [3], which
focuses the algorithm on difficult instances, whereas that of Learn++ is based on the
performance of the entire ensemble [4], which focuses this algorithm on instances that
carry novel information. This distinction gives Learn++ the ability to learn new data,
even when previously unseen classes are introduced. As new data arrive, Learn++
generates additional classifiers, until the ensemble learns the novel information. Since
no classifier is discarded, previously acquired knowledge is retained. Other ap-
proaches suggested for incremental learning, a bibliography of ensemble systems and
their applications can be found in and within the references of [4 ~9].

As reported in [4,5], Learn++ works rather well on a variety of real world prob-
lems, though there is much room for improvement. An issue of concern is the rela-
tively large number of classifiers required for learning instances coming from a new
class. This is because, when a new dataset introduces a previously unseen class, new
classifiers are trained to learn the new class; however, the existing classifiers continue
to misclassify instances from the new class. Therefore, the decisions of latter classifi-
ers that recognize the new class are out-voted by the previous classifiers that do not
recognize the new class, until a sufficient number of new classifiers are generated that
recognize the new class. This leads to classifier proliferation.

In this contribution, we first describe the out-voting problem associated with the
original Learn++, propose a modified version of the algorithm to address this issue,
and present some preliminary simulation results on three benchmark datasets.

2 Learn++.MT

In ensemble approaches that use a voting mechanism for combining classifier outputs,
each classifier votes on the class it predicts [10, 11]. The final classification is then
determined as the class that receives the highest total vote from all classifiers.
Learn++ uses weighted majority voting [12], where each classifier receives a voting
weight based on its training performance. This works well in practice for most appli-
cations. However, for incremental learning problems that involve introduction of new
classes, the voting scheme proves to be unfair towards the newly introduced class:
since none of the previously generated classifiers can pick the new class, a relatively
large number of new classifiers that recognize the new class are needed, so that their
total weight can out-vote the first batch of classifiers on instances of the new class.
This in return populates the ensemble with an unnecessarily large number of classifi-
ers. Learn++.MT is specifically designed to address the classifier proliferation issue.
The novelty in Learn++.MT is the way by which the voting weights are determined.
Learn++.MT also uses a set of voting weights based on the classifiers’ performances,

54 Michael Muhlbaier, Apostolos Topalis, and Robi Polikar

however, these weights are then adjusted based on the classification of the specific
instance at the time of testing, through dynamic weight voting (DWV).

For any given test instance, Learn++.MT compares the class predictions of each
classifier and cross-references them against the classes on which they were trained. If
a subsequent ensemble overwhelmingly chooses a class it has seen before, then the
voting weights of those classifiers not trained with that class are proportionally re-
duced. As an example, assume that an ensemble has seen classes 1 and 2, and a sec-
ond ensemble has seen classes 1, 2 and 3. For a given instance, if the second ensemble
(trained on class 3) picks class 3, the classifiers in the first ensemble (which has not
seen class 3) reduce their voting weights in proportion to the confidence of the second
ensemble. In other words, when the algorithm detects that the new classifiers over-
whelmingly choose a new class on which they were trained, the weights of the other
classifiers which have not seen this new class are reduced. The Learn++.MT algo-
rithm is given in Figures 1 and 2, and explained in detail below.

For each dataset (�k) that becomes available to Learn++.MT, the inputs to the al-
gorithm are (i) a sequence of mk training data instances xi and their correct labels yi,
(ii) a classification algorithm BaseClassifier, and (iii) an integer Tk specifying the
maximum number of classifiers to be generated using that database. If the algorithm
is seeing its first database (k=1), a data distribution (Dt) – from which training in-
stances will be drawn – is initialized to be uniform, making the probability of any
instance being selected equal. If k>1 then the distribution is updated from the previ-
ous step based on the performance of the existing ensemble on the new data. The
algorithm then adds Tk classifiers to the ensemble starting at t=eTk+1 where eTk de-
notes the number of classifiers that currently exist in the ensemble.

For each iteration t, the instance weights, wt, from the previous iteration are first
normalized (step 1) to create a weight distribution Dt. A hypothesis, ht, is generated
from a subset of �k that is drawn from Dt (step 2). The error, t, of ht is then calcu-

lated; if t > ½, the algorithm deems the current classifier, ht, to be too weak, discards
it, and returns to step 2, otherwise, calculates the normalized error βt (step 3). The
class labels of the training instances used to generate this hypothesis are then stored as
CTrt (step 4). The dynamic weight voting (DWV) algorithm is called to obtain the
composite hypothesis, Ht, of the ensemble (step 5). Ht represents the ensemble deci-
sion of the first t hypotheses generated thus far. The error of the composite hypothe-
sis, Et is then computed and normalized (step 6). The instance weights wt are finally
updated according to the performance of Ht (step7) such that the weights of instances
correctly classified by Ht are reduced (and those that are misclassified are effectively
increased). This ensures that the ensemble focus on those regions of the feature space
that are not yet learned, paving the way for incremental learning.

The inputs to the dynamic weight voting algorithm are (i) the current training data
(during training) or any test instance, (ii) classifiers ht, (iii) βt, normalized error for
each ht, and (iv) the vector CTrt containing the classes on which ht has been trained.
Classifier weights are first initialized (step 1), where each classifier receives a stan-
dard weight that is inversely proportional to its normalized error βt so that those clas-
sifiers that performed well on their training data are given higher voting weights. A
normalization factor Zc is then created as the sum of the weights of all classifiers
trained on instances from class c (step 2).

Learn++.MT: A New Approach to Incremental Learning 55

Fig. 1. Learn++.MT Algorithm.

For each instance, a preliminary per-class confidence factor 0<Pc<1 is generated
(step 3). Pc is the sum of weights of all the classifiers that choose class c divided by
the sum of the weights of all classifiers trained with class c (which is Zc). In effect,
this can be considered as the ensemble assigned confidence of the instance for belong-
ing to each of the c classes. Then, again for each class, the weights are adjusted for
classifiers that have not been trained with that class, that is, the weights are lowered
proportional to the ensemble’s preliminary confidence on that class (step 4). The
final / composite hypothesis is then calculated as the maximum sum of the weights
that chose a particular class (step 5).

56 Michael Muhlbaier, Apostolos Topalis, and Robi Polikar

Fig. 2. Dynamic Weight Voting Algorithm for Learn++.MT.

3 Learn++.MT Simulation Results

Learn++.MT has been tested on several databases. For brevity, we present results on
two benchmark databases and one real-world application. The benchmark databases
are the Wine database and the Optical Character Recognition database from UCI [13],
and the real world application is a gas identification problem for determining one of
five volatile organic compounds based on chemical sensor data. MLPs – normally
incapable of incremental learning – were used as base classifiers on all three cases.
Base classifiers were all single layer MLPs with 20~50 nodes and a rather generous
error goal of 0.1 ~ 0.01 to ensure weak classifiers with respect to the difficulty of the
underlying problem.

3.1 Wine Recognition Database

The Wine Recognition database features 3 classes with 13 attributes. The database
was split into two training, a validation, and a test dataset. The data distribution is
given in Table 1. In order to test the algorithms’ ability to incrementally learn a new
class, instances from class 3 are only included in the second dataset. Each algorithm
was allowed to create a set number of classifiers (30) on each dataset. The optimal
number of classifiers to retain for each dataset was automatically determined based on
the maximum performance on the validation data. This process was applied 30 times
on Learn++ and Learn++.MT to compare their generalization performance on the test
data, the mean results of which are shown in Tables 2 and 3. Each row shows class-

Learn++.MT: A New Approach to Incremental Learning 57

by-class generalization performance of the ensemble on the test data after being
trained with dataset ����k=1,2. The last two columns are the average overall gener-
alization performance over 30 simulation trials (on the entire test data which includes
instances from all three classes), and the standard deviation of the generalization per-
formances. The number of classifiers in the ensemble after each training session is
given in parentheses.

Table 1. Wine Recognition database distribution.

Table 2. Learn++ performance results on Wine Recognition database.

Table 3. Learn++.MT performance results on Wine recognition database.

Tables 2 and 3 show that Learn++.MT not only incrementally learns the new class,

but also outperforms its predecessor by 15% using a significantly fewer number of
classifiers. The poor performance of Learn++ in the new class (class 3) is explained
below within the context of larger database simulations.

3.2 Optical Character Recognition Database

The optical character recognition (OCR) database features 10 classes (digits 0 ~ 9)
with 64 attributes. The database was split into four to create three training and a test
subset, whose distribution can be seen in Table 4. In this case, we wanted to evaluate
the performance of each algorithm on a fixed number of classifiers (rather than de-
termining the number of classifiers via a validation set) so that they can be compared
on equal number of classifiers. Each algorithm was allowed to create five classifiers
with the addition of each dataset (total of 15 classifiers in three training sessions).
The data distribution was deliberately made rather challenging, specifically designed
to test the algorithms’ ability to learn multiple new classes at once with each addi-
tional dataset while retaining the knowledge of previously learned classes. In this
incremental learning problem, instances from only six of the ten classes are present in
each subsequent dataset resulting in a rather difficult problem. Results previously

58 Michael Muhlbaier, Apostolos Topalis, and Robi Polikar

obtained using Learn++ on this data using less challenging data distributions was in
the order of lower to mid 90% range [4,5]. Results from this test are shown in Tables
5 and 6, which is formatted similar to the previous tables.

Table 4. OCR data distribution.

Table 5. Learn++ performance results on OCR database.

Table 6. Learn++.MT performance results on OCR database.

Interesting observations can be made from these tables. First, we note that Learn++
was able to learn the new classes, 3 and 8, only poorly after they were first introduced
in �2 but able to learn them rather well, when further trained with these classes in
�3. Similarly, it performs rather poorly on classes 4 and 9 after they are first intro-
duced in �3, though it is reasonable to expect that it would do well on these classes
with additional training. More importantly however, Learn++.MT was able to learn
new classes quite well in its first attempt. Finally, recall that the generalization per-
formance of the algorithm is computed on the entire test data which included in-
stances from all classes. This is why the generalization performance is only around
60% after the first training session, since the algorithms have seen only six of the 10
classes in the test data. Both Learn++ and Learn++.MT exhibit an overall increase of
generalization performance as new datasets are introduced – and hence the ability of
incremental learning. Learn++.MT, however, is able to learn not only faster, but better
than Learn++, as demonstrated by the significant jump in generalization performance
(81% to 89%).

3.3 Volatile Organic Compound Recognition Database

The Volatile Organic Compound (VOC) database is a real world dataset that consist
of 5 classes (toluene, xylene, hectane, octane and ketone) with 6 attributes coming

Learn++.MT: A New Approach to Incremental Learning 59

from six (quartz crystal microbalance type) chemical gas sensors. The dataset was
divided into three training and a test dataset. The distribution of the data is given in
Table 7, where a new class was introduced with each dataset.

Table 7. Volatile Organic Compounds database.

Again both algorithms were incrementally trained with three subsequent training
datasets. In this experiment, both algorithms were allowed to generate as many classi-
fiers as necessary to obtain their maximum performance. Learn++ generated a total
of 36 classifiers to achieve its best performance. Learn++.MT, however, not only
generated only 16 classifiers, but it also provided significant improvement in gener-
alization performance.

Table 8. Learn++ performance results on VOC database.

Table 9. Learn++.MT performance results on VOC database.

The results averaged over 20 trials are given in Tables 8 and 9. We note that both
algorithms provide a performance characteristic that is similar to those obtained with
the previous databases. Specifically, Tables 8 and 9 show a significant increase from
Learn++ to Learn++.MT on the average generalization performance. Furthermore,
Learn++.MT was able to accomplish its performance using 20 fewer classifier, and
learning each new class faster than its predecessor.

4 Conclusions and Discussions

In this paper we presented Learn++.MT, a modified version of our previously intro-
duced incremental learning algorithm, Learn++. The novelty of the new algorithm is
its use of preliminary confidence factors in assigning voting weights, based on a

60 Michael Muhlbaier, Apostolos Topalis, and Robi Polikar

cross-reference of the classes that have been seen by each classifier during training.
Specifically, if a majority of the classifiers that have seen a class votes on that class,
the voting weights of those classifiers who have not seen that class are reduced in
proportion to the preliminary confidence. This allows the algorithm to dynamically
adjust the voting weights for each test instance. The approach overcomes the out-
voting problem inherent in the original version of Learn++ and prevents proliferation
of unnecessary classifiers. The new algorithm also provided substantial improvements
on the generalization performance on all datasets we have tried so far. We note that
these improvements are more significant in those cases where one or several new
classes are introduced with subsequent datasets.

It is also worth noting that, Learn++.MT is more robust than its predecessor. One
of the reasons why Learn++ is having difficulty in learning a new class when first
presented is due to difficulty in choosing the strength of the base classifiers. If we
choose too weak classifiers, the algorithm is unable to learn. If we choose too strong
classifiers, the training data are learned very well, resulting in very low values
which then causes very high voting weights, and hence even a more difficult out-
voting problem. This explains why Learn++ requires larger number of classifiers or
repeated training to learn the new classes. Learn++.MT, by significantly reducing the
effect of the out-voting problem, improves the robustness of the algorithm, as the new
algorithm is substantially more resistant to more drastic variations in the classifier
architecture and parameters (error goal, number of hidden layer nodes, etc.).

We should also note however, while we have used MLPs as base classifiers, both
algorithms are in fact independent of the type of the base classifier used, and can learn
incrementally with any supervised classifier that lacks this ability. In fact, the classi-
fier independence of Learn++ was demonstrated and reported in [5].

Further optimization of the distribution update rule, the selection of voting weights,
as well as validation of the techniques on a broader spectrum of applications are cur-
rently underway.

Acknowledgements

This material is based upon work supported by the National Science Foundation un-
der Grant No. ECS-0239090, “CAREER: An Ensemble of Classifiers Approach for
Incremental Learning.”

References

1. S. Grossberg, “Nonlinear neural networks: principles, mechanisms and architectures,” Neu-
ral Networks, vol. 1, no. 1, pp. 17-61, 1988.

2. R. French, “Catastrophic forgetting in connectionist networks,” Trends in Cognitive Sci-
ences, vol. 3, no.4, pp. 128-135, 1999.

3. Y. Freund and R. Schapire, “A decision theoretic generalization of on-line learning and an
application to boosting,” Computer and System Sci., vol. 57, no. 1, pp. 119-139, 1997.

4. R. Polikar, L. Udpa, S. Udpa, and V. Honavar, “Learn++: An incremental learning algo-
rithm for supervised neural networks,” IEEE Trans. on Sys., Man and Cyber. (C), vol. 31,
no. 4, pp. 497-508, 2001.

Learn++.MT: A New Approach to Incremental Learning 61

5. R. Polikar, J. Byorick, et al., “Learn++: a classifier independent incremental learning algo-
rithm for supervised Neural Networks,” Proc. of Int. Joint Conference on Neural Networks
(IJCNN 2002), vol.2, pp. 1742-1747, Honolulu, HI, 2002.

6. M. Lewitt and R. Polikar, “An ensemble approach for data fusion with Learn++,” 4th Int.
Work. on Mult. Classifier Sys. LNCS (T. Windeatt and F. Roli, eds), vol. 2709, pp. 176-
185, Springer: New York, NY, 2002.

7. J. Ghosh, “Multiclassifier systems: back to the future,” 3rd Int. Work. on Mult. Classifier
Sys., LNCS (J. Kitler & F. Roli, eds), vol. 2364, p. 1-15, Springer: New York, NY, 2002.

8. L.I. Kuncheva, “Switching between selection and fusion in combining classifiers: an ex-
periment,” IEEE Trans. on Sys., Man and Cyber., vol. 32(B), no. 2, pp. 146-156, 2002.

9. T. Windeatt and F. Roli (eds), In Proc. 4th Int. Workshop on Multiple Classifier Systems
(MCS2003), LNCS, vol. 2709, Springer: New York, NY, 2002.

10. J. Kittler, M. Hatef, R.P. Duin, J. Matas, “On combining classifiers,” IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, vol. 20, no.3, pp. 226-239, 1998.

11. L.I. Kuncheva, “A theoretical study on six classifier fusion strategies, “ IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 24, no. 2, pp. 281-286, 2002.

12. N. Littlestone and M. Warmuth, “Weighted majority algorithm,” Information and Compu-
tation, vol. 108, pp. 212-261, 1994.

13. C.L. Blake and C.J. Merz, UCI Repository of Machine Learning Databases at Irvine, CA:
Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

	1 Introduction
	2 Learn++.MT
	3 Learn++.MT Simulation Results
	3.1 Wine Recognition Database
	3.2 Optical Character Recognition Database
	3.3 Volatile Organic Compound Recognition Database

	4 Conclusions and Discussions
	Acknowledgements
	References

