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Abstract. An ensemble of classifiers based algorithm, Learn++, was recently 
introduced that is capable of incrementally learning new information from data-
sets that consecutively become available, even if the new data introduce addi-
tional classes that were not formerly seen. The algorithm does not require ac-
cess to previously used datasets, yet it is capable of largely retaining the 
previously acquired knowledge. However, Learn++ suffers from the inherent 
“out-voting” problem when asked to learn new classes, which causes it to gen-
erate an unnecessarily large number of classifiers. This paper proposes a modi-
fied version of this algorithm, called Learn++.MT that not only reduces the 
number of classifiers generated, but also provides performance improvements. 
The out-voting problem, the new algorithm and its promising results on two 
benchmark datasets as well as on one real world application are presented. 

1   Introduction 

It is well known that the amount of training data available and how well the data rep-
resent the underlying distribution are of paramount importance for an automated clas-
sifier’s satisfactory performance. For many applications of practical interest, obtain-
ing such adequate and representative data is often expensive, tedious, and time 
consuming. Consequently, it is not uncommon for the entire data to be obtained in 
installments, over a period of time. Such scenarios require a classifier to be trained 
and incrementally updated – as new data become available – where the classifier 
needs to learn the novel information provided by the new data without forgetting the 
knowledge previously acquired from the data seen earlier.  This raises the so-called 
stability-plasticity dilemma [1]: a completely stable classifier can retain knowledge, 
but cannot learn new information, whereas a completely plastic classifier can instantly 
learn new information, but cannot retain previous knowledge. Many popular classifi-
ers, such as the ubiquitous multilayer perceptron (MLP) or the radial basis function 
networks, are not structurally suitable for incremental learning, since they are “com-
pletely stable” classifiers. The approach generally followed for learning from new 
data involves discarding the existing classifier, combining the old and the new data 
and training a new classifier from scratch using the aggregate data. This causes the 
previously learned information to be lost, a phenomenon known as catastrophic for-
getting [2]. Furthermore, training with the combined data may not even be feasible, if 
the previously used data are lost, corrupted, prohibitively large, or otherwise unavail-
able. 
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We have recently introduced an algorithm, called Learn++, capable of learning in-
crementally, even under hostile learning conditions: not only does Learn++ assume 
the previous data to be no longer available, but it also allows additional classes to be 
introduced with new data, while retaining the previously acquired knowledge. 

Learn++ is an ensemble approach, inspired primarily by the AdaBoost algorithm. 
Similar to AdaBoost, Learn++ also creates an ensemble of (weak) classifiers, each 
trained on a subset of the current training dataset, and later combined through 
weighted majority voting. Training instances for each classifier are drawn from an 
iteratively updated distribution. The main difference is that the distribution update 
rule in AdaBoost is based on the performance of the previous hypothesis [3], which 
focuses the algorithm on difficult instances, whereas that of Learn++ is based on the 
performance of the entire ensemble [4], which focuses this algorithm on instances that 
carry novel information. This distinction gives Learn++ the ability to learn new data, 
even when previously unseen classes are introduced. As new data arrive, Learn++ 
generates additional classifiers, until the ensemble learns the novel information. Since 
no classifier is discarded, previously acquired knowledge is retained. Other ap-
proaches suggested for incremental learning, a bibliography of ensemble systems and 
their applications can be found in and within the references of [4 ~9]. 

As reported in [4,5], Learn++ works rather well on a variety of real world prob-
lems, though there is much room for improvement. An issue of concern is the rela-
tively large number of classifiers required for learning instances coming from a new 
class. This is because, when a new dataset introduces a previously unseen class, new 
classifiers are trained to learn the new class; however, the existing classifiers continue 
to misclassify instances from the new class. Therefore, the decisions of latter classifi-
ers that recognize the new class are out-voted by the previous classifiers that do not 
recognize the new class, until a sufficient number of new classifiers are generated that 
recognize the new class. This leads to classifier proliferation. 

In this contribution, we first describe the out-voting problem associated with the 
original Learn++, propose a modified version of the algorithm to address this issue, 
and present some preliminary simulation results on three benchmark datasets. 

2   Learn++.MT 

In ensemble approaches that use a voting mechanism for combining classifier outputs, 
each classifier votes on the class it predicts [10, 11]. The final classification is then 
determined as the class that receives the highest total vote from all classifiers. 
Learn++ uses weighted majority voting [12], where each classifier receives a voting 
weight based on its training performance.  This works well in practice for most appli-
cations. However, for incremental learning problems that involve introduction of new 
classes, the voting scheme proves to be unfair towards the newly introduced class: 
since none of the previously generated classifiers can pick the new class, a relatively 
large number of new classifiers that recognize the new class are needed, so that their 
total weight can out-vote the first batch of classifiers on instances of the new class. 
This in return populates the ensemble with an unnecessarily large number of classifi-
ers. Learn++.MT is specifically designed to address the classifier proliferation issue. 
The novelty in Learn++.MT is the way by which the voting weights are determined. 
Learn++.MT also uses a set of voting weights based on the classifiers’ performances, 
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however, these weights are then adjusted based on the classification of the specific 
instance at the time of testing, through dynamic weight voting (DWV). 

For any given test instance, Learn++.MT compares the class predictions of each 
classifier and cross-references them against the classes on which they were trained. If 
a subsequent ensemble overwhelmingly chooses a class it has seen before, then the 
voting weights of those classifiers not trained with that class are proportionally re-
duced. As an example, assume that an ensemble has seen classes 1 and 2, and a sec-
ond ensemble has seen classes 1, 2 and 3. For a given instance, if the second ensemble 
(trained on class 3) picks class 3, the classifiers in the first ensemble (which has not 
seen class 3) reduce their voting weights in proportion to the confidence of the second 
ensemble. In other words, when the algorithm detects that the new classifiers over-
whelmingly choose a new class on which they were trained, the weights of the other 
classifiers which have not seen this new class are reduced. The Learn++.MT algo-
rithm is given in Figures 1 and 2, and explained in detail below.  

For each dataset (�k) that becomes available to Learn++.MT, the inputs to the al-
gorithm are (i) a sequence of mk training data instances xi and their correct labels yi, 
(ii) a classification algorithm BaseClassifier, and (iii) an integer Tk specifying the 
maximum number of classifiers to be generated using that database. If the algorithm 
is seeing its first database (k=1), a data distribution (Dt) – from which training in-
stances will be drawn – is initialized to be uniform, making the probability of any 
instance being selected equal.  If k>1 then the distribution is updated from the previ-
ous step based on the performance of the existing ensemble on the new data.  The 
algorithm then adds Tk classifiers to the ensemble starting at t=eTk+1 where eTk de-
notes the number of classifiers that currently exist in the ensemble. 

For each iteration t, the instance weights, wt, from the previous iteration are first 
normalized (step 1) to create a weight distribution Dt.  A hypothesis, ht, is generated 
from a subset of �k that is drawn from Dt (step 2).  The error, t, of ht is then calcu-

lated; if t > ½, the algorithm deems the current classifier, ht, to be too weak, discards 
it, and returns to step 2, otherwise, calculates the normalized error βt (step 3).  The 
class labels of the training instances used to generate this hypothesis are then stored as 
CTrt (step 4).  The dynamic weight voting (DWV) algorithm is called to obtain the 
composite hypothesis, Ht, of the ensemble (step 5). Ht represents the ensemble deci-
sion of the first t hypotheses generated thus far. The error of the composite hypothe-
sis, Et is then computed and normalized (step 6). The instance weights wt are finally 
updated according to the performance of Ht (step7) such that the weights of instances 
correctly classified by Ht are reduced (and those that are misclassified are effectively 
increased). This ensures that the ensemble focus on those regions of the feature space 
that are not yet learned, paving the way for incremental learning. 

The inputs to the dynamic weight voting algorithm are (i) the current training data 
(during training) or any test instance, (ii) classifiers ht, (iii) βt, normalized error for 
each ht, and (iv) the vector CTrt containing the classes on which ht has been trained.  
Classifier weights are first initialized (step 1), where each classifier receives a stan-
dard weight that is inversely proportional to its normalized error βt so that those clas-
sifiers that performed well on their training data are given higher voting weights. A 
normalization factor Zc is then created as the sum of the weights of all classifiers 
trained on instances from class c (step 2). 
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Fig. 1. Learn++.MT Algorithm. 

For each instance, a preliminary per-class confidence factor 0<Pc<1 is generated 
(step 3).  Pc is the sum of weights of all the classifiers that choose class c divided by 
the sum of the weights of all classifiers trained with class c (which is Zc). In effect, 
this can be considered as the ensemble assigned confidence of the instance for belong-
ing to each of the c classes. Then, again for each class, the weights are adjusted for 
classifiers that have not been trained with that class, that is, the weights are lowered 
proportional to the ensemble’s preliminary confidence on that class (step 4).  The 
final / composite hypothesis is then calculated as the maximum sum of the weights 
that chose a particular class (step 5). 
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Fig. 2. Dynamic Weight Voting Algorithm for Learn++.MT. 

3   Learn++.MT Simulation Results 

Learn++.MT has been tested on several databases. For brevity, we present results on 
two benchmark databases and one real-world application.  The benchmark databases 
are the Wine database and the Optical Character Recognition database from UCI [13], 
and the real world application is a gas identification problem for determining one of 
five volatile organic compounds based on chemical sensor data. MLPs – normally 
incapable of incremental learning – were used as base classifiers on all three cases. 
Base classifiers were all single layer MLPs with 20~50 nodes and a rather generous 
error goal of 0.1 ~ 0.01 to ensure weak classifiers with respect to the difficulty of the 
underlying problem.  

3.1   Wine Recognition Database 

The Wine Recognition database features 3 classes with 13 attributes. The database 
was split into two training, a validation, and a test dataset.  The data distribution is 
given in Table 1.  In order to test the algorithms’ ability to incrementally learn a new 
class, instances from class 3 are only included in the second dataset.  Each algorithm 
was allowed to create a set number of classifiers (30) on each dataset. The optimal 
number of classifiers to retain for each dataset was automatically determined based on 
the maximum performance on the validation data.  This process was applied 30 times 
on Learn++ and Learn++.MT to compare their generalization performance on the test 
data, the mean results of which are shown in Tables 2 and 3. Each row shows class-
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by-class generalization performance of the ensemble on the test data after being 
trained with dataset ����k=1,2. The last two columns are the average overall gener-
alization performance over 30 simulation trials (on the entire test data which includes 
instances from all three classes), and the standard deviation of the generalization per-
formances. The number of classifiers in the ensemble after each training session is 
given in parentheses. 

Table 1. Wine Recognition database distribution. 

 

Table 2. Learn++ performance results on Wine Recognition database. 

 

Table 3. Learn++.MT performance results on Wine recognition database. 

 
 
Tables 2 and 3 show that Learn++.MT not only incrementally learns the new class, 

but also outperforms its predecessor by 15% using a significantly fewer number of 
classifiers. The poor performance of Learn++ in the new class (class 3) is explained 
below within the context of larger database simulations. 

3.2   Optical Character Recognition Database 

The optical character recognition (OCR) database features 10 classes (digits 0 ~ 9) 
with 64 attributes. The database was split into four to create three training and a test 
subset, whose distribution can be seen in Table 4.  In this case, we wanted to evaluate 
the performance of each algorithm on a fixed number of classifiers (rather than de-
termining the number of classifiers via a validation set) so that they can be compared 
on equal number of classifiers. Each algorithm was allowed to create five classifiers 
with the addition of each dataset (total of 15 classifiers in three training sessions).  
The data distribution was deliberately made rather challenging, specifically designed 
to test the algorithms’ ability to learn multiple new classes at once with each addi-
tional dataset while retaining the knowledge of previously learned classes.  In this 
incremental learning problem, instances from only six of the ten classes are present in 
each subsequent dataset resulting in a rather difficult problem. Results previously 
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obtained using Learn++ on this data using less challenging data distributions was in 
the order of  lower to mid 90% range [4,5]. Results from this test are shown in Tables 
5 and 6, which is formatted similar to the previous tables. 

Table 4. OCR data distribution. 

 

Table 5. Learn++ performance results on OCR database. 

 

Table 6. Learn++.MT performance results on OCR database. 

 
 

Interesting observations can be made from these tables. First, we note that Learn++ 
was able to learn the new classes, 3 and 8, only poorly after they were first introduced 
in �2 but able to learn them rather well, when further trained with these classes in 
�3. Similarly, it performs rather poorly on classes 4 and 9 after they are first intro-
duced in �3, though it is reasonable to expect that it would do well on these classes 
with additional training. More importantly however, Learn++.MT was able to learn 
new classes quite well in its first attempt. Finally, recall that the generalization per-
formance of the algorithm is computed on the entire test data which included in-
stances from all classes. This is why the generalization performance is only around 
60% after the first training session, since the algorithms have seen only six of the 10 
classes in the test data. Both Learn++ and Learn++.MT exhibit an overall increase of 
generalization performance as new datasets are introduced – and hence the ability of 
incremental learning. Learn++.MT, however, is able to learn not only faster, but better 
than Learn++, as demonstrated by the significant jump in generalization performance 
(81% to 89%). 

3.3   Volatile Organic Compound Recognition Database 

The Volatile Organic Compound (VOC) database is a real world dataset that consist 
of 5 classes (toluene, xylene, hectane, octane and ketone) with 6 attributes coming 
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from six (quartz crystal microbalance type) chemical gas sensors.  The dataset was 
divided into three training and a test dataset.  The distribution of the data is given in 
Table 7, where a new class was introduced with each dataset. 

Table 7. Volatile Organic Compounds database. 

 
 

Again both algorithms were incrementally trained with three subsequent training 
datasets. In this experiment, both algorithms were allowed to generate as many classi-
fiers as necessary to obtain their maximum performance.  Learn++ generated a total 
of 36 classifiers to achieve its best performance. Learn++.MT, however, not only 
generated only 16 classifiers, but it also provided significant improvement in gener-
alization performance.   

Table 8. Learn++ performance results on VOC database. 

 

Table 9. Learn++.MT performance results on VOC database. 

 
 

The results averaged over 20 trials are given in Tables 8 and 9. We note that both 
algorithms provide a performance characteristic that is similar to those obtained with 
the previous databases. Specifically, Tables 8 and 9 show a significant increase from 
Learn++ to Learn++.MT on the average generalization performance. Furthermore, 
Learn++.MT was able to accomplish its performance using 20 fewer classifier, and 
learning each new class faster than its predecessor. 

4   Conclusions and Discussions 

In this paper we presented Learn++.MT, a modified version of our previously intro-
duced incremental learning algorithm, Learn++. The novelty of the new algorithm is 
its use of preliminary confidence factors in assigning voting weights, based on a 



60      Michael Muhlbaier, Apostolos Topalis, and Robi Polikar 

cross-reference of the classes that have been seen by each classifier during training. 
Specifically, if a majority of the classifiers that have seen a class votes on that class, 
the voting weights of those classifiers who have not seen that class are reduced in 
proportion to the preliminary confidence. This allows the algorithm to dynamically 
adjust the voting weights for each test instance. The approach overcomes the out-
voting problem inherent in the original version of Learn++ and prevents proliferation 
of unnecessary classifiers. The new algorithm also provided substantial improvements 
on the generalization performance on all datasets we have tried so far. We note that 
these improvements are more significant in those cases where one or several new 
classes are introduced with subsequent datasets. 

It is also worth noting that, Learn++.MT is more robust than its predecessor. One 
of the reasons why Learn++ is having difficulty in learning a new class when first 
presented is due to difficulty in choosing the strength of the base classifiers. If we 
choose too weak classifiers, the algorithm is unable to learn. If we choose too strong 
classifiers, the training data are learned very well, resulting in very low  values 
which then causes very high voting weights, and hence even a more difficult out-
voting problem. This explains why Learn++ requires larger number of classifiers or 
repeated training to learn the new classes. Learn++.MT, by significantly reducing the 
effect of the out-voting problem, improves the robustness of the algorithm, as the new 
algorithm is substantially more resistant to more drastic variations in the classifier 
architecture and parameters (error goal, number of hidden layer nodes, etc.). 

We should also note however, while we have used MLPs as base classifiers, both 
algorithms are in fact independent of the type of the base classifier used, and can learn 
incrementally with any supervised classifier that lacks this ability. In fact, the classi-
fier independence of Learn++ was demonstrated and reported in [5]. 

Further optimization of the distribution update rule, the selection of voting weights, 
as well as validation of the techniques on a broader spectrum of applications are cur-
rently underway. 
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