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Abstract. We have previously introduced the Learn++ algorithm that provides 
surprisingly promising performance for incremental learning as well as data fu-
sion applications. In this contribution we show that the algorithm can also be 
used to estimate the posterior probability, or the confidence of its decision on 
each test instance. On three increasingly difficult tests that are specifically de-
signed to compare posterior probability estimates of the algorithm to that of the 
optimal Bayes classifier, we have observed that estimated posterior probability 
approaches to that of the Bayes classifier as the number of classifiers in the en-
semble increase. This satisfying and intuitively expected outcome shows that 
ensemble systems can also be used to estimate confidence of their output. 

1   Introduction 

Ensemble / multiple classifier systems have enjoyed increasing attention and popular-
ity over the last decade due to their favorable performances and/or other advantages 
over single classifier based systems. In particular, ensemble based systems have been 
shown, among other things, to successfully generate strong classifiers from weak clas-
sifiers, resist over-fitting problems [1, 2], provide an intuitive structure for data fusion 
[2-4], as well as incremental learning problems [5]. One area that has received some-
what less of an attention, however, is the confidence estimation potential of such 
systems. Due to their very character of generating multiple classifiers for a given da-
tabase, ensemble systems provide a natural setting for estimating the confidence of 
the classification system on its generalization performance.  

In this contribution, we show how our previously introduced algorithm Learn++ [5], 
inspired by AdaBoost but specifically modified for incremental learning applications, 
can also be used to determine its own confidence on any given specific test data in-
stance. We estimate the posterior probability of the class chosen by the ensemble us-
ing a weighted softmax approach, and use that estimate as the confidence measure. 
We empirically show on three increasingly difficult datasets that as additional classi-
fiers are added to the ensemble, the posterior probability of the class chosen by the 
ensemble approaches to that of the optimal Bayes classifier. It is important to note 
that the method of ensemble confidence estimation being proposed is not specific to 
Learn++, but can be applied to any ensemble based system. 
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2   Learn++ 

In ensemble approaches using a voting mechanism to combine classifier outputs, the 
individual classifiers vote on the class they predict. The final classification is then de-
termined as the class that receives the highest total vote from all classifiers. Learn++ 
uses weighted majority voting, a rather non-democratic voting scheme, where each 
classifier receives a voting weight based on its training performance.  One novelty of 
the Learn++ algorithm is its ability to incrementally learn from newly introduced data.  
For brevity, this feature of the algorithm is not discussed here and interested readers 
are referred to [4,5]. Instead, we briefly explain the algorithm and discuss how it can 
be used to determine its confidence – as an estimate of the posterior probability – on 
classifying test data. 

For each dataset (Dk) that consecutively becomes available to Learn++, the inputs to 
the algorithm are (i) a sequence of m training data instances xk,i along with their cor-
rect labels yi, (ii) a classification algorithm BaseClassifier, and (iii) an integer Tk 
specifying the maximum number of classifiers to be generated using that database. If 
the algorithm is seeing its first database (k=1), a data distribution (Dt) – from which 
training instances will be drawn - is initialized to be uniform, making the probability 
of any instance being selected equal.  If k>1, then a distribution initialization se-
quence, initializes the data distribution.  The algorithm then adds Tk classifiers to the 
ensemble starting at t=eTk+1 where eTk denotes the number of classifiers that cur-
rently exist in the ensemble. The pseudocode of the algorithm is given in Figure 1. 

For each iteration t, the instance weights, wt, from the previous iteration are first 
normalized (step 1) to create a weight distribution Dt.  A hypothesis, ht, is generated 
using a subset of Dk drawn from Dt (step 2).  The error, εt, of ht is calculated: if εt > ½, 
the algorithm deems the current classifier ht to be too weak, discards it, and returns to 
step 2; otherwise, calculates the normalized error βt (step 3).  The weighted majority 
voting algorithm is called to obtain the composite hypothesis, Ht, of the ensemble 
(step 4). Ht represents the ensemble decision of the first t hypotheses generated thus 
far. The error Et of Ht is then computed and normalized (step 5). The instance weights 
wt are finally updated according to the performance of Ht (step 6), such that the 
weights of instances correctly classified by Ht are reduced and those that are misclas-
sified are effectively increased. This ensures that the ensemble focus on those regions 
of the feature space that are yet to be learned. We note that Ht allows Learn++ to make 
its distribution update based on the ensemble decision, as opposed to AdaBoost which 
makes its update based on the current hypothesis ht. 

3   Confidence as an Estimate of Posterior Probability 

In applications where the data distribution is known, an optimal Bayes classifier can 
be used for which the posterior probability of the chosen class can be calculated; a 
quantity which can then be interpreted as a measure of confidence [6]. The posterior 
probability of class ωj given instance x is classically defined using the Bayes rule as: 
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Fig. 1. Learn++ Algorithm 
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Since class distributions are rarely known in practice, posterior probabilities must 
be estimated. While there are several techniques for density estimation [7], such  
techniques are difficult to apply for large dimensional problems. A method that can 
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estimate the Bayesian posterior probability would therefore prove to be a most valu-
able tool in evaluating classifier performance. Several methods have been proposed 
for this purpose [6-9]. One example is the softmax model [8], commonly used with 
classifiers whose outputs are binary encoded, as such outputs can be mapped into an 
estimate of the posterior class probability using  
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where Aj(x) represents the output for class j, and N is the number of classes. Cj(x) is 
then the confidence of the classifier in predicting class ωj for instance x, which is an 
estimate of the posterior probability P(ωj|x).  The softmax function essentially takes 
the exponential of the output and normalizes it to [0 1] range by summing over  
the exponentials of all outputs. This model is generally believed to provide good es-
timates if the classifier is well trained using sufficiently dense training data. 

In an effort to generate a measure of confidence for an ensemble of classifiers  
in general, and for Learn++ in particular, we expand the softmax concept by using  
the individual classifier weights in place of a single expert’s output.  The ensemble 
confidence, estimating the posterior probability, can therefore be calculated as: 
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The confidence, Cj(x), associated with class ωj for instance x is therefore the expo-
nential of the sum of classifier weights that selected class ωj, divided by the sum of 
the aforementioned exponentials corresponding to each class.  The significance of this 
confidence estimation scheme is in its consideration of the diversity in the classifier 
decisions: in calculating the confidence of class ωj, the confidence will increase if the 
classifiers that did not choose class ωj have varying decisions as opposed to having a 
common decision, that is, if the evidence against class ωj is not strong.  On the other 
hand, the confidence will decrease if the classifiers that did not choose class ωj have a 
common decision, that is, there is strong evidence against class ωj. 

4   Simulation Results 

In order to find out if and how well the Learn++ ensemble confidence approximates 
the Bayesian posterior probability, the modified softmax approach was analyzed on 
three increasingly difficult problems. In order to calculate the theoretical Bayesian 
posterior probabilities, and hence compare the Learn++ confidences to those of Bayes-
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ian probabilities, experimental data were generated from Gaussian distribution. For 
training, 100 random instances were selected from each class distribution, using 
which an ensemble of 30 MLP classifiers were generated with Learn++. The data and 
classifier generation process was then repeated and averaged 20 times with randomly 
selected data to ensure generality. For each simulation, we also benchmark the results 
by calculating a mean square error between Learn++ and Bayes confidences over the 
entire grid of the feature space, with each added classifier to the ensemble.   

4.1   Experiment 1 

A two feature, three class problem, where each class has a known Gaussian distribu-
tion is seen in Fig. 2.  In this experiment class 1, 2, and 3 have a variance of 0.5 and 
are centered at [-1, 0], [1, 1], and [1, -1], respectively.  Since the distribution is known 
(and is Gaussian), the actual posterior probability can be calculated from Equation 1, 
given the known likelihood P(x|ωj) that can be calculated as    
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where d is the dimensionality, and  µj and Σj are the mean and the covariance matrix 
of the distribution from which jth class data are generated. Each class was equally 
likely, hence P(ωj)=1/3. For each instance, over the entire grid of the feature space 
shown in Fig.2, we calculated the posterior probability of the class chosen by the 
Bayes classifier, and plotted them as a confidence surface, as shown in Fig.3a. Calcu-
lating the confidences of Learn++ decisions on the same feature space provided the 
plot in Fig 3b, indicating that the ensemble confidence surface closely approximates 
that of the Bayes classifier.  
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Fig. 2. Data distributions used in Experiment 1 
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Fig. 3. (a) Bayesian and (b) Learn++ confidence surface for Experiment 1 

It is interesting to note that the confidences in both cases plummet around the deci-
sion boundaries and approach 1 away from the decision boundary, an outcome that 
makes intuitive sense. To quantitatively determine how closely the Learn++ confi-
dence approximates that of Bayes classifier, and how this approximation changes with 
each additional classifier, the mean squared error (MSE) was calculated between the 
ideal Bayesian confidence surface and the Learn++ confidence – over the entire grid of 
the feature space - for each additional classifier added to the ensemble. As seen in 
Fig.4, MSE between the two decreases as new classifiers are added to the ensemble, 
an expected, but nevertheless immensely satisfying outcome. Furthermore, the  
decrease in the error is exponential and rather monotonic, and does not appear to  
indicate any over-fitting, at least for as many as 30 classifiers added to the ensemble.  

The ensemble confidence was then compared to that of a single MLP classifier, 
where the confidence was calculated using the MLP’s raw output values.  The mean 
squared error was calculated between the resulting confidence and the Bayesian con-
fidence and has been plotted as a dotted line in Fig. 4 in comparison to the Learn++ 
confidence.  The single MLP differs from classifiers generated using the Learn++ algo-
rithm on two accounts.  First, the single MLP is trained using all of the training data 
where each classifier in the Learn++ ensemble is trained on 2/3 of the training data.  
Also, Learn++ confidence is based on the discrete decision of each classifier.  If there 
were only one classifier in the ensemble, “all” classifiers would “agree” resulting in a 
confidence of 1. Therefore, confidence of a single MLP can only be calculated based 
on the (softmax normalized) actual output values unlike Learn++ which uses a 
weighted vote of the discrete output labels. 

4.2   Experiment 2 

To further characterize the behavior of this confidence estimation scheme, Experiment 1 
was repeated by increasing the variances of the class distributions from 0.5 to 0.75, re-
sulting in a more overlapping distribution (Fig. 5) and a tougher classification problem. 

Learn++ was trained with data generated from this distribution, its confidence cal-
culated over the entire grid of the feature space and plotted in comparison to that of 
Bayes classifier in Fig. 6. We note that low confidence valleys around the decision 
boundaries are wider in this case, an expected outcome of the increased variance. 
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Fig. 4. Mean square error as a function of number of classifiers - Experiment 1 
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Fig. 5. Data distributions used in Experiment 2 
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Fig. 6. (a) Bayesian and (b) Learn++ confidence surface for Experiment 2 
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Fig. 7. Mean square error as a function of number of classifiers - Experiment 2 

Fig.7 shows that the MSE between the Bayes and Learn++ confidences is once 
again decreasing as new classifiers are added to the ensemble. Fig. 7 also compares  
Learn++ performance to a single MLP, shown as the dotted line, as described above. 

4.3   Experiment 3 

Finally, an additional class was added to the distribution from Experiment 1 with a 
variance of 0.25 and mean at [0 0] (Fig. 8), making it an even more challenging clas-
sification problem due to additional overlap between classes.  

Similar to the previous two experiments, an ensemble of 30 classifiers was gener-
ated by Learn++, and trained with data drawn from the above distribution. The confi-
dence of the ensemble over the entire feature space was calculated and plotted in 
comparison with the posterior probability based confidence of the Bayes classifier 
over the same feature space. Fig. 9 shows these confidence plots, where the Learn++ 
based ensemble confidence (Fig. 9b) closely approximates that of Bayes (Fig. 9a).  
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Fig. 8. Data distributions used in Experiment 3 
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Fig. 9. (a) Bayesian and (b) Learn++ confidence surface for Experiment 3 

Fig. 9 indicates that Learn++ assigns a larger peak confidence to the middle class 
than the Bayes classifier.  Since the Learn++ confidence is based on the discrete deci-
sion of each classifier, when a test instance is presented from this portion of the space, 
most classifiers agree on the middle class resulting in a high confidence. However, the 
Bayesian confidence is based on the distribution of the particular class and the distri-
bution overlap of the surrounding classes, thus lowering the confidence.   

Finally, the MSE between the Learn++ confidence and the Bayesian confidence, 
plotted in Fig. 10, as a function of ensemble population, shows the now-familiar char-
acteristic of decreasing error with each new classifier added to the ensemble.  For 
comparison, a single MLP was also trained on the same data, and its mean squared er-
ror with respect to the Bayesian confidence is shown by a dotted line. 
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Fig. 10. Mean square error as a function of number of classifiers - Experiment 3 

5   Conclusions and Discussions 

In this contribution we have shown that the confidence of an ensemble based classifi-
cation algorithm in its own decision can easily be calculated as an exponentially nor-
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malized ratio of the weights. Furthermore, we have shown - on three experiments of 
increasingly difficult Gaussian distribution - that the confidence calculated in this way 
approximates the posterior probability of the class chosen by the optimal Bayes clas-
sifier. In each case, we have observed that the confidences calculated by Learn++ ap-
proximated the Bayes posterior probabilities rather well. However, in order to quanti-
tatively assess exactly how close the approximation was, we have also computed the 
mean square error between the two over the entire grid of the feature space on which 
the two classifiers were evaluated. We have plotted this error as a function of the 
number of classifiers in the ensemble, and noticed that the error decreased exponen-
tially and monotonically as the number of classifiers increased; an intuitive, yet quite 
satisfying outcome. No over-fitting effects were observed after as many as 30 classifi-
ers, and the final confidences estimated by Learn++ was typically within 2% of the 
posterior probabilities calculated for the Bayes classifier. While these results were ob-
tained by using Learn++ as the ensemble algorithm, they should generalize well to 
other ensemble and/or boosting based algorithms. 
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