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Abstract – As the average age of our population increases, the 
prevalence of Alzheimer's Disease (AD), the most common 
form of dementia, has grown sharply.  Current diagnosis of AD 
primarily uses longitudinal clinical evaluations and/or invasive 
lumbar punctures for CSF analysis, available only at specia-
lized hospitals, which are generally outside of financial and 
geographical reach of most patients. We expand on our pre-
vious work and describe an ensemble of classifiers based ap-
proach that combines decision and data fusion techniques for 
the early diagnosis of AD using event related potentials (ERP) 
obtained in response to different audio stimuli. In this contri-
bution, we specifically examine various feature set combina-
tions, obtained from different EEG electrode locations and in 
response to different stimulus tones to illustrate the accuracy of 
such a system for AD diagnosis at the earliest stage on a clini-
cally significant cohort size of 71 patients.INTRODUCTION 

Alzheimer’s disease (AD) represents one of the greatest 
health risks to our aging population. A neurodegenerative 
disorder, AD is caused by neuronal death due two misfolded 
proteins, β-amyloid and hyperphosphorylated–τ, which 
cause plaques and neurofibrillary tangles, respectively. 
Symptoms of AD include a gradual loss of memory, motor 
skills, and cognitive impairment. While the disease affects 
an average of 2% of those under 65, the prevalence doubles 
every five years [1;2]. Because of the debilitating effects of 
the disease on the patient, the emotional stress on the family 
or caregivers, and steep financial toll on society, AD has 
become a major health concern.  

While there is currently no treatment that can stop the 
progression of AD, recent pharmacological developments, 
such as acetylcholinesterase inhibitors or glutamate blockers 
can slow the development of AD [3]. However, such drugs 
require that the disease be diagnosed at the earliest stage 
possible, which is a significant challenge. Currently the de-
finitive diagnosis for AD require analyzing brain tissue un-
der the microscope for the presence of plagues and tangles, a 
method only available during an autopsy. A pre-mortem 
diagnosis is commonly done though repeated longitudinal 
clinical evaluations, which include multiple memory tests of 
the subject, and interviews of both subject and their caretak-
ers, and/or the highly invasive lumbar puncture for the anal-
ysis of the cerebrospinal fluid for the presence of β-amyloid 
and hyperphosphorylated–τ. These diagnoses can provide 
90% accuracy; however, they are only available at specia-
lized clinics of major health centers, and are extremely ex-
pensive. At local clinics and hospitals, where most patients 
seek care due to geographic or financial restrictions, the 
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accuracy of diagnosis is estimated as 75%, even with fre-
quent patient monitoring [4] .   

Hence, a reliable, non-invasive, and cost-effective ap-
proach is needed which can be made available to local clin-
ics. Electroencephalogram (EEG), the only brain monitoring 
technology that can provide reasonable time resolution, may 
help provide such an approach. Previous studies have shown 
that the event related potentials (ERP), which are time-
locked averages of the EEG recorded in response to certain 
stimuli using the so-called oddball paradigm can provide 
diagnostically useful information for AD. Specifically, a 
decrease in amplitude and increase in latency of the P300 
component of the ERP, a positive peak that occurs 300 ms 
after the stimulus, has been linked to cognitive decline and 
AD [5-9]. Various signal processing approaches on the raw 
EEG or the P300 has been conducted since then, which veri-
fied the presence of a statistical  correlation, albeit a weak 
one that has mixed success in patient specific diagnosis  [10-
13]. Previous studies have shown that discrete wavelet coef-
ficients of the ERPs, and not that of just the P300 compo-
nents, are more beneficial in patient specific AD diagnosis, 
particularly when the ERPs in response to different types of 
stimuli are combined [14-17]. In this contribution, we show 
that a decision fusion based approach to data fusion, ob-
tained through stacked generalization, that combines loca-
tion specific information obtained from different electrodes 
with stimulus-type specific information provides an even 
further improvement in diagnostic accuracy. We have also 
increased our cohort to 71 subjects for a more clinically sig-
nificant cohort size.  

II. EXPERIMENTAL SETUP 

A. The Oddball Paradigm and ERP Acquisition 
 The ERPs are acquired using an auditory oddball para-

digm protocol. 19 electrodes were used, embedded in an 
elastic cap with two reference electrodes on the ears accord-
ing to the International 10-20 electrode placement system 
(Figure 1). Each electrode was kept below an impedance of 
20kΩ to ensure proper connection with the scalp. Each sub-
ject was tested for 30 minutes with approximately three mi-
nutes of rest for every five minutes of testing. The actual 
data recording was preceded with a one minute practice ses-
sion. Binaural audiometric thresholds were first determined 
using a 1 kHz tone presented to both of the subject’s ears at 
60 dB above the subjects hearing threshold to prevent any 
bias based on the hearing of the patients.  
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Figure 1.  10-20 International system of electrode placement 

1000 random stimuli were presented to each subject with 
65% non-target stimuli of 1 kHz tones, 20% of target stimuli 
of 2 kHz tones, and 15% of novel sounds. A random inters-
timulus interval of 1.0~1.3 seconds was used. Normal and 
target stimuli were delivered in 100 ms long burst with 5ms 
onset and offset envelopes. The novel stimuli were envi-
ronmental sounds, 200ms long, each presented once to en-
sure novelty. The subjects were instructed to press a button 
each time the target tone was presented, and do nothing for 
non-target or novel tones. Time-locked averages of stimulus 
specific responses were computed from raw EEG to obtain 
the ERPs, with each record starting 200ms before the stimu-
lus and ending 800ms after the stimulus. Recordings con-
taining artifacts were rejected by an EEG technician. Re-
maining ERPs were amplified, digitized at 256 Hz, and 
notch filtered at 59-61Hz. The pre-stimulus baseline was 
subtracted from the entire ERP, resulting in 1 s duration of 
256 samples per stimulus type, per channel, per patient. 

B. Patient Cohort 
The primary goal in recruiting the AD cohort was to in-

clude subjects who were in the earliest stages of the disease. 
Along with a clinical assessment of each subject, the cogni-
tive level of each subject was measured using the Mini Men-
tal State Exam, a standardized test that accesses orientation, 
attention, immediate and short-term recall, language, and 
ability to follow written and verbal commands. The test is 
scored on a scale of 0 to 30, 30 being cognitively normal, 
and 0 being vegetative state. A 19 or lower score is consi-
dered cognitive impairment. The average MMSE score for 
the normal (control) cohort was 29, whereas that of AD co-
hort was 25, indicating that the AD cohort was in their earli-
est stages of the disease. Inclusion criteria for AD group was 
satisfying the NINCDS-ADRDA criteria [18] for probable 
AD, which includes a battery of memory tests (including 
MMSE), interviews with the subject and their caregivers, 
clinical dementia rating score of 0.5 or higher for AD cohort 
and 0 for the normal cohort. All subjects were over 60 years 
old. Exclusion criteria for both groups was evidence of any 
other central nervous system damage, or use of sedatives, 
anxiolytic or antidepressants within 48 hours of ERP acqui-
sition. Final cohort included 71 subjects, 34 with AD (aver-
age age 74) and 37 cognitively normal (average age 76). 

III. METHODS 
A. Feature Extraction 
Event Related Potentials are non-stationary signals 

whose frequency content change over time. In order to ex-
tract time-localized frequency band specific information 
from such signals, a time-frequency representation, such as 
the discrete wavelet transform (DWT) is appropriate. The 

DWT decomposes the signal into frequency sub-band using 
a series of successive highpass and lowpass filters and sub-
sampling at each level. The outputs of the highpass filters 
are the detail (DWT) coefficients, whereas the outputs of 
lowpass filters are the approximation coefficients. Using an 
eight coefficient long Daubechies-4 wavelet, the ERPs were 
decomposed into following frequency bands:  

d1:64~128 Hz (N=132) 
d2: 32 ~ 64 Hz (N=69) 
d3: 16 ~ 32 Hz (N=38) 
d4: 8 ~ 16 Hz (N=22) 

d5: 4 ~ 8 Hz (N=14) 
d6: 2 ~ 4 Hz (N=10) 
d7: 1 ~ 2 Hz (N=8) 
a7: 0 ~ 1 Hz (N=8). 

Since the primary information in the ERPs are known to 
be in the sub 8 Hz band, we focused on the decomposition 
levels 5-7, resulting in four frequency bands d5, d6, d7, and 
a7, to explore as various feature sets. We also look at the 
responses to both the target tones and novel sounds, ob-
tained from each electrode. We then constructed a data fu-
sion system for combining information from different elec-
trode locations, stimulus types and frequency bands using a 
ensemble-based decision fusion approach.  
B.  Ensemble Based Systems 

We implement an ensemble of classifiers based decision 
fusion approach for automated classification.  An ensemble 
system consists of a group of classifiers trained on different 
subsets of training data or different feature spaces to gener-
ate different decision boundaries. Classifiers then make dif-
ferent errors on different instances, and a strategic combina-
tion of these classifiers can aid in reducing the total error 
[19]. Most ensemble approaches fall into one of two catego-
ries: classifier selection or classifier (decision) fusion 
[20;21]. In classifier selection, each classifier is trained to 
become an expert in some local area of the feature space.  
Given some instance x, the classifiers trained with data clos-
est to the vicinity of x will make the final decision. In clas-
sifier (decision) fusion all classifiers are trained over the 
entire feature space. A classifier combination rule then 
merges these individual classifiers to form an "expert" to aid 
in an overall system performance increase. Note that clas-
sifier fusion traditionally means the combination of classifi-
ers for classification improvement, where all classifiers are 
trained on the same data source. This is different than data 
fusion, where data from different sources are combined. In 
the approach described below, we use stacked generalization 
as a decision fusion approach, which creates an ensemble of 
classifiers for each data source.  An ensemble based expert 
is therefore created for each data source (for example, for 
each electrode, stimulus type and frequency band combina-
tion). The decisions of these experts are then further com-
bined using an ensemble combination rule to achieve deci-
sion fusion based data fusion.  
C.  Decision Fusion Using Stacked Generalization  

The underlying concept in stacked generalization is to 
use a meta-classifier to confirm or correct what has already 
been learned by a group of preliminary (Tier-1) classifiers. 
Instances occupying a certain region of the feature space 
may be more likely to be misclassified by certain classifiers 
than others. Such a trend can be learned by mapping the 
outputs of an ensemble of classifiers to their true labels.  

In Wolpert’s stacked generalization, an ensemble of clas-
sifiers are first created, whose outputs are used as inputs to a 
second level meta-classifier to learn the mapping between 
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Augmented Stacked Generalization (ASG) 
Inputs 

• Training data { }1 2, , ,=S Nx x x , with correct labels 

yi ∈Ω, { }1, , Cω ωΩ= ; 
• Supervised classifiers for BaseClassifier and a Me-

taClassifier, which can be of the same type. 
• Number  of classifiers T to be generated 

Initial Training: Train Tier-1 classifiers: 
Divide S into K blocks of size N/K, i.e. S1, S2,...,Sk, 
Do for k= 1,2,...,K 

• Train classifiers C1,...,CT on K-1 blocks of data; 
• Test classifiers C1,...,CT on the Kth block; 
• Obtain continuous-valued output of each classifier 

for each class in [0 1] range, indicating each clas-
sifiers support for each class 

End Do loop 
Train meta-classifier CT+1: 

• Form the augmented feature-space by concatenating 
Tier-1 classifier outputs with the original xn used to 
train Tier-1 classifier; 

• Train MetaClassifier CT+1 using  N instances of 
augmented data along with their corresponding class 
labels ω1,...,ωC; 

Intermediate training 
• Retrain Tier-1 classifiers C1,...,CT on the entire S 

Testing: Given an unlabeled instance x’ 
• Obtain and concatenate the outputs of C1,...,CT ,  
• Augment  the outputs of C1,...,CT  with the original 

x’ to obtain the intermediate space feature vector 
• Obtain the output of CT+1 as the predicted  

label for x’. 
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     Figure 2. Block diagram of the standard stacked generalization. 

between the ensemble outputs and the correct class labels 
[22]. The general block diagram of stacked generalization 
can be seen in Figure 2. 
D.  Augmented Stacked Generalization 

We use a modified version of stacked generalization, 
called the augmented stacked generalization (ASG) by aug-
menting the Tier-1 classifier outputs with the original data 
used to train them, before training the meta-classifier. Such a 
process enriches the intermediate feature space used by the 
meta-classifier, thus aiding in overall system performance 
[23]. A two stage training process is implemented, where 
initial training begins with a K-fold cross validation on the 
training dataset (in the original feature space).  This output 
is then utilized as the input (training data in the intermediate 
space) for the meta-classifier.  

ASG starts with dividing the training data of length  
N = 71 into K (roughly) equal blocks, each of length ܰ/ܭ.  
K was chosen as 5 in our implementation. Each classifier in 
the ensemble, C1 through CT, is trained K times, using K-1 
blocks of the training data (~56 subjects).  For each such 
training, one block of data is not seen by Tier-1 classifiers. 
The classifier outputs for each block not seen during training 
(~15 patients) are then augmented with the original data 
used to train that classifier, which creates the training data 
for the meta-classifier (CT+1). The original training labels are 
used in the training process, allowing the meta-classifier to 
determine – and correct – poorly performing classifiers. 

In the intermediate training stage of ASG, the original 
Tier-1 classifiers are discarded, and all N instances of the 
training data are collected.  The Tier-1 classifiers are then 
retrained on the entire training data subset.  During the test-
ing stage, a given test instance is sent to the Tier-1 classifi-
ers.  The output from these classifiers (augmented with the 
original feature vector) is then sent as an input to the MetaC-
lassifier.  The output of the MetaClassifier then constitutes 
the final decision and output of the system.  A pseudocode 
of this process is shown in Figure 3. 

E. Data Fusion 
The output from the ASG algorithm is a decision-fusion-

based expert for each data source.  Training an ensemble of 
such experts (each with data from different sources) creates 
a decision fusion based data fusion approach.   

There are many methods available for combining en-
semble of classifiers’ outputs. In this study, we evaluated the 
sum and majority voting schemes due to their simplicity and 
reported general superiority [24;25].  In-depth discussion of 
the mathematics behind different combination rules, as well 
as their advantages and disadvantages can be found in 
[24;26]. 

 

Figure 3. Pseudocode of the ASG algorithm 

IV. RESULTS 
The diagnostic accuracies for top performing 16 individ-

ual feature sets (experts), as obtained by the stacked genera-
lization, are shown in Table 1, all of which were in the 0 – 4 
Hz range. All performance figures are averages of 100 inde-
pendent trials obtained by random shuffling of the data. 95% 
confidence intervals are also provided for all averages. The 
multi-layer perceptron (MLP) was used as the base classifier 
(as it provides continuous estimates of support for each 
class, useful for ASG and necessary for the sum rule), with a 
single hidden layer of 10 nodes and 0.01 error goal, chosen 
with cross validation based prior experience on this data. 
The naming convention in Table 1 is as follows: [tone] 
[electrode] [frequency band], e.g., NCZ12 represents ERP 
obtained in response to Novel tone, at CZ electrode, decom-
posed to 1-2 Hz band (i.e., using DWT d7 coefficients).   

The decisions obtained using these feature sets are then 
combined using the sum and majority vote rules, whose re-
sults are shown in Table 2. Three feature set combinations 
were created for the final ensemble decision based on prior 
knowledge, electrode location and spectral diversity. 
FS1:NCZ12+NCZ24+NPZ24+NT812+NPZ24+TFP212+ 

 TPZ01+TF812+TP324 
FS2:NPZ12+NPZ24+NCZ24+NT812+TFP212+NCZ12 
FS3:TFP212+TF812+TPZ01+NCZ12+NPZ24+NT812+NPZ12 
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TABLE 1 - INDIVIDUAL FEATURE SET PERFORMANCES 
Feature Set Average (%) Best Trial (%) 

NPZ12 70.11±1.19 88.67 
NPZ01 69.41±1.85 77.13 
NCZ12 69.13±1.36 78.00 
TPZ12 67.55±1.65 81.02 
TPZ24 66.87±0.86 89.89 
TF812 66.51±1.87 82.48 
NFZ24 66.23±1.73 75.14 
NCZ24 64.70±1.23 88.19 
NT812 63.99±1.32 86.44 
TFP212 63.97±1.59 79.11 
NPZ24 62.97±1.16 73.69 
TP324 62.58±1.77 79.66 
TPZ01 62.54±1.01 81.33 
TP312 62.54±1.95 79.66 
TCZ24 62.43±1.25 79.55 
NOZ12 61.79±1.73 79.40 

TABLE 2. - ENSEMBLE SYSTEM PERFORMANCE 
SUM MAJORITY VOTING 

 Avg (%) Best(%)  Avg (%) Best(%) 
FS1 84.51±1.8 94.70 FS1 74.33±1.3 82.14 
FS2 81.30±1.7 82.99 FS2 71.78±2.1 86.60 
FS3 82.44±2.0 87.03 FS3 73.15±2.2 82.00 

Table 2 indicates that ASG based ensemble performance 
exceeds that of both community clinic diagnostic accuracy, 
as well as individual feature set performances. The sum rule 
on the first feature set combination performed the best over-
all, attaining an average performance of 84.51 ±1.8% (aver-
age of 100 trials), with the single best performance (of the 
100 trials) being 94.70%. These are significantly improved 
(3~5%) performance figures compared to our previous ef-
forts, where we have looked at standard boosting based ap-
proaches as reported in [14-17]. 

V. CONCLUSIONS 
The primary goal of this study was to investigate the ef-

fectiveness of decision fusion based data fusion approach in 
combining ERP data from different electrode locations and 
stimulus types used in EEG data collection for the early di-
agnosis of Alzheimer’s disease. These preliminary results 
indicate that there is indeed complementary information in 
different data sources, which can be extracted and synergis-
tically combined using the described approach. The diagnos-
tic accuracy of this approach, reaching approximately 84%, 
significantly exceeds that of community clinics, and ap-
proaches even that of expert neurologists using the 
NINCDS-ADRDA criteria.  We should note however that 
the gold standard used in this work was the data labeled by 
expert neurologists, and hence the performance figures 
simply reflect the ability of the approach to match the diag-
nosis of these experts. The actual performance of the ap-
proach to diagnose the disease can be slightly below or 
above the reported numbers. 
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