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Abstract. An incremental learning algorithm, Learn—, is introduced, for learning additional
information from new data, even when new data include examples of previously unseen classes.
Learn++ takes advantage of synergistic generalization performance of an ensemble of simple
classifiers, each trained with a strategically chosen subset of the training database. As new data
become available, new classifiers are generated, which are then combined through weighted majority
voting. The weights are determined based on the estimated likelihood of each classifier to correctly
classify an instance of unknown class. The voting procedure also allows Learn— to estimate the
confidence level in its own decision.

INTRODUCTION
An increasing number of nondestructive evaluation (NDE) applications resort to pattern

recognition and machine learning algorithms for automated classification and
characterization of NDE signals. Applications of such systems include defect identification in
aircraft engines and wheels [1], in tubings and pipings of nuclear power plants [2, 3], in
artificial heart valves, or even in concrete sewer pipelines [4]. In any automated signal
classification system, the performance of the resulting classifier relies heavily on the
availability of a representative set of training examples. In many practical applications,
however, acquisition of a representative training data is expensive and time consuming.
Consequently, it is not uncommon for such data to become available in small batches over a
period of time. This is particularly true for NDE applications, where large volumes of data
need to be analyzed. For example, in nuclear power plants, data are collected from various
tubings or pipings during different outage periods, and new types of defect and geometry
indications can be discovered in aging components. Classification algorithms developed
using previously collected databases may then become inadequate in successfully identifying
new types of indications.

In such settings, it is necessary to update an existing classifier in an incremental fashion
to accommodate new data without compromising classification performance on old data.
Majority of the popular signal classification algorithms that are commonly used in NDE
applications, however, do not allow incremental learning of additional data particularly when
the new data introduces additional classes. One common approach taken by is therefore
involves discarding the existing classifier, and retraining a new classifier using a combination
of previously used data and the new data. This results in all previous learning to be lost, a
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phenomenon known as catastrophic forgetting. Furthermore, this approach will not even be
feasible if the previously used data is no longer available, a scenario that arises often.

Another issue that is of interest in using automated signal classification systems is the
confidence of such systems in their own decisions. Often times, these systems do make
mistakes, by either missing a defect or incorrectly classifying a geometrical or benign
indication as a defect (false alarm). Both types of mistakes have dire consequences: missing
defects can cause unpredicted and possibly catastrophic failure of the material, whereas a
false alarm can cause unnecessary and premature part replacement, resulting in serious
economic loss. A classification system that can estimate its own confidence would be able to
flag those cases where the classification may be incorrect, and such cases can then be further
analyzed. An algorithm that can

• learn from new data in the absence of previously used data;
• retain the previously acquired knowledge;
• accommodate new classes; and
• estimate the confidence in its own classification

would therefore be of great benefit to NDE community. In this paper, we present an
improved version of the Learn++ algorithm, which satisfies the above-mentioned criteria.
The original Learn++ algorithm, which was presented in [5, 6], achieves incremental learning
by generating an ensemble of simple classifiers for each additional database, which are then
combined by a weighted majority voting algorithm. The new version, presented here adds
improved performance using a different voting mechanism, as well as the capability of the
estimating the decision confidence. The algorithm was tested on a variety of databases:
results involving ultrasonic weld inspection signals, are presented in this paper. Applications
to other databases can be found in [7].

INCREMENTAL LEARNING
Ensemble of Classifiers

Incremental learning has been a topic of active research interest in machine learning and
artificial intelligence. Several terms, such as on-line learning, life long learning, evolutionary
learning, and constructive learning, have been used interchangeably with incremental
learning, and therefore, several variations of this problem have been addressed in the
literature [7]. Such variations include retraining using a combination of original training data
and the new data, incrementally growing or pruning network architectures, restricted
modification of weights for misclassified signals, as well as on-line learning, where the
training is carried out on an instance-by-instance basis. In this paper, we define an
incremental learning algorithm as one that is capable of learning additional information from
new data, which may include new classes, without forgetting prior knowledge and without
requiring access to previously used data.

Learn++ is inspired by Schapire's adaptive boosting (AdaBoost) algorithm [8], which
was originally proposed for improving the accuracy of weak learning algorithms. The idea is
to generate an ensemble of weak classifiers using different distributions of the training data,
followed by a majority voting of the outputs of the weak classifiers to obtain the final
hypothesis. Combining weak classifiers take advantage of the so-called instability of the
weak classifier, which causes the classifiers to construct sufficiently different decision
surfaces for minor modifications in their training datasets. Littlestone et al have shown that
the weighted majority algorithm, which assigns weights to different hypotheses based on an
error criterion to construct a compound hypothesis, performs better than any of the individual
hypotheses [9]. They also showed that the error of the compound hypothesis is closely linked
to the error bound of the best hypothesis. In essence, both AdaBoost and Learn++ employ a
weighted combination of a group of classifiers, rather than using just one classifier as
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conventional classification algorithms do. The main difference between AdaBoost and
Learn++ is that the distribution update rule for AdaBoost is optimized for improving the
accuracy of the classifier on a given database, whereas the distribution update rule for
Learn++ is optimized for learning new information, in particular, new classes. The original
Learn++ also used the weighted majority voting to combine the classifiers, where the voting
weight of each classifier was determined based on the individual performance of the
classifier on its own training dataset. The new version of Learn++ uses the Mahalonobis
distance of the unknown instance to the training datasets to estimate which classifier is more
likely to classify the given instance correctly, and determines the voting weights accordingly.

In the next section we provide the new version of the Learn++ algorithm, along with the
intuitive confidence estimation mechanism based on the voting mechanism. The results on
selected ultrasonic weld inspection database are provided next, followed by concluding
remarks and directions for future research. An excellent overview of ensemble of classifiers
can be found in [10], whereas a review of comparing ensemble of classifiers with other types
of learners can be found in [11].
Learn++ for Incremenal Learning

Figure 1 illustrates the new Learn++ algorithm, which runs iteratively for each new
dataset ®k that becomes available to the classifier. The inputs to Learn++ include a sequence
of m training instances with corresponding target classes, S=[(xi,yj),(x2, y2)?---?(-*WV)L weak
learning algorithm, WeakLearn, and an integer Tk specifying the number of iterations. For each
dataset fZ>k, Learn—I- starts by initializing a distribution function D](i)=l/m, i=0,l,...,m on
current dataset, such that the training instances which will be drawn according to this
distribution will have equal likelihood to be selected into the first training set (Step 1).
Learn++ then enters into an iterative loop, where at each iteration t, a new hypothesis is
generated. During the tih iteration, Learn++ selects a training dataset TRt and a test dataset
TEt according to the current distribution Dtin step 2. In step 3, the weak learning algorithm
WeakLearn is trained using the training dataset TRt. A classification rule, hh is obtained as
the tih hypothesis in step 4. Also in this step, st, the error of ht is obtained by evaluating the
hypothesis on all instances in TRt and TEt. If this error is greater than Vi, current ht is
discarded, and the algorithm returns to step 1 to select a different training dataset. In step 5,
Learn++ computes the mean and variance of the current training dataset, to be used in
determining the Mahalanobis distances. Learn++ then calls the Mahalonobis weighted
majority (MWM) algorithm to compute the composite hypothesis, Ht. The MWM computes
the total vote each class receives, from all previous t hypotheses. Each vote is weighted by
MWt the inverse of the shortest Mahalonobis distance of the current instance x with all TRtc,
subsets of TRt belonging to class c, that have been seen until that iteration:

Mtc=(x-mtcfCtc-l(i-mtc) (1)

MWt = . ! c = l,2,..-,C (2)
mm(Mtc)

where mtc is the mean, and Ctc is the covariance matrix of TRtc
Note that this computation requires only the mean vectors and covariance matrices of the

datasets to be saved, but not the datasets themselves. Also, note that this is in contrast to the
original Learn++ algorithm, where the voting weights were based on the classification
performances of the individual hypotheses on their own training data.

The combination rule ensures that hypotheses that were generated using data similar to
the current instance being evaluated are weighted more heavily than the others. Note that
voting weights are therefore updated dynamically for each instance. The class that receives
the highest total vote becomes the classification rule of the rth composite hypothesis Ht.
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Algorithm Learn++ with Mahalanobis Weighted Majority Voting
Input: For each dataset drawn from 5>k k=l,2,...,K

• Sequence of m training examples S=[(xi,y]), (x2, yi), • • - 9(xm,ymy\ •
• Weak learning algorithm WeakLearn (MLP).
• Integer Tk, specifying the number of iterations.

Do for £=7,2, ...,K:
Initialize w{ = D(i) = l/m, V/ , unless there is prior knowledge to select otherwise.

1 . Set Dt = wt I ]T wt (/) so that Dt is a distribution.
/ i=l

2. Randomly choose training TRtand testing TEt subsets according to Dt.
3. Call WeakLearn, providing it with TRt.
4. Get back a hypothesis ht : X -> Y, and calculate the error of ht : £i = ]T Dt (/')

i'-ht(Xi)*yi
on TRt + TEt. If £t

 > !/2, set t = t - 1, discard ht and go to step 2.
5. Compute the variances and means of the datasets used, and call Mahalanobis weighted

majority, to obtain composite hypothesis Ht = argmax ^MWt , where MWt is the
y&Y rMx)=y

Mahalanobis weight of tth hypothesis.
m

6. Compute the overall error Et = ^Dt (/) = ̂ Dt (/)| Ht (xt ) # yi |] .

lfEt > !/2, set t = t - 1, discard Ht and go to step 2.
7. Set Bt = Et/(l-Et), and update the weights of the instances:

/•\ D= w,(i)xBt

Call Mahalanobis weighted majority on all hypotheses generated so far and
K

Output the final hypothesis: H final = argmax ̂  ^MWt .
yeY k=\ t:hf(x)=y

FIGURE 1. Algorithm Learn — with Mahalonobis weighted majority voting.

The error Et and the normalized error Bt of the composite hypothesis are then computed
in step 6. Finally, in step 7, Learn++ updates the distribution Dt according to the performance
of HI. The distribution update rule decreases the weight of all instances that are correctly
classified by Hh such that they are less likely to be selected into the next training dataset.

Therefore, as the algorithm proceeds, increasingly difficult examples are selected into the
training dataset. This procedure allows rapid learning of new data, since only those instances
of the new dataset that are misclassified by the classifier are used for further training the
classifier. After a pre-specified number of hypotheses are generated, Learn++ computes the
final hypothesis, using a MWM voting on all hypotheses generated up to that point.

Finally, the voting mechanism employed in Learn++ hints a simple procedure for
estimating the confidence of the algorithm in its own classification decisions. In essence, if
the majority of the (weighted) hypotheses agree on the class of a particular instance, we can
interpret this outcome as a high confidence decision. If, on the other hand, the individual
hypothesis votes are distributed equally among different classes, the final decision can be
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interpreted as a low confidence decision. To formalize this approach, let us assume that there
are a total of T hypotheses generated in K training sessions for classifying instances into one
of C classes.
We can then define &, the total vote that class c receives, as

tc= J^MWt t = l,-..,T, c = l,..-9C. (3)
t : h , ( x ) = c

The final classification will then be the class for which %c is maximum. Normalizing the
votes received by each class

allows us to interpret ^c as a measure of confidence of the decision on a 0 to 1 scale, with 1
corresponding to maximum confidence and 0 to no confidence. It should strictly be noted
however that normalized %c values do not represent the accuracy of the results, nor are they
related to the statistical definition of confidence intervals determined through hypothesis
testing. This is merely a measure of the confidence of the algorithm in its own decision.
Keeping this distinction in mind, we can heuristically define the following ranges:
0.0<£ c<0.6 very low confidence, 0.6 < £c < 0.7 low confidence, 0 .7<£ c <0.8 medium
confidence, 0.8 < %c < 0.9 high confidence and 0.9 < %c < 1 very high confidence.

The algorithm was implemented on a database of ultrasonic weld inspection signals
obtained from nuclear power plant pipes. The database is briefly described first followed by
results on incremental learning and confidence estimation.

ULTRASONIC INSPECTION OF NUCLEAR POWER PLANT PIPES
Welding regions are often susceptible to various kinds of defects due to imperfections

introduced into the material during the welding process. In nuclear power plant pipes, such
defects manifest themselves in the forms of intergranular stress corrosion crackings, usually
in an area immediately neighboring the welding region. This region in known as the heat
affected zone. Such cracks can be detected by using ultrasonic techniques. However, also in
vicinity of this area, there are often other type of reflectors, including counterbores and weld
roots, which are considered as geometric reflectors. Counterbores and weldroots do not pose
any threat to the structural integrity of pipe, however, they often generate signals that are
very similar to those generated by cracks. Accurate detection and identification of cracks
from their ultrasonic footprints is therefore crucial, since they can eventually cause structural
damages if remedial actions are not taken. Figure 2 conceptually illustrates the ultrasonic
testing procedure, used to generate the database used in this study. 1 MHz ultrasonic
transducers were used. Figure 3 illustrates typical signals from each type of reflector.

FIGURE 2. Ultrasonic testing of nuclear power plant pipes.
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FIGURE 3. Sample signals from (a) crack, (b) counterbore and (c) weld root.

RESULTS AND DISCUSSIONS
The goal of the classification algorithm in this application is the identification of three

different types of indicators, namely, crack, counterbore and weldroot from the discrete
wavelet transform coefficients of the ultrasonic A-scans. Three training databases Sj~Ss of
300 instances each, and a validation database, TEST, of 487 instances were acquired from the
above described system. 48 - point DWT coefficients were computed for each A-scan to be
used as feature vectors. The training databases were made available to the algorithm at
different times. During each of the three training sessions, only one of the training databases
was made available to the algorithm to test the incremental learning capability of Learn++ on
this database. The weak learning algorithm was a single hidden layer MLP of 30 nodes, with
a large mean square error goal of 0.1. Note that MLPs can be used as weak learners, when
their architecture is kept small, and their error goal is kept high, with respect to the
complexity of the classification problem.

Table 1 presents the results, where rows indicate the classification performance of
Learn++ on each of the databases after each training session (75/5 /=1,2,3}. The numbers in
parentheses in the first row indicate the number of weak classifiers generated in each training
session. We note that the performance on the validation dataset TEST improved steadily as
new databases were introduced, demonstrating the incremental learning ability of the
algorithm. Also, note that the algorithm was able to maintain its classification performance
on the previous datasets, after training with additional datasets. This shows that previously
acquired knowledge was not lost.
TABLE 1. Classification performance of Learn++ on the weld inspection database.

Si
S2

S3

TEST

TSi (6)
95.7%

—

81.9%

TS2 (10)
95%
95%

___
91.7%

TS3(14)
94.3%
95.3%
96.1%
95.6%

As a comparison, the classification performance of a strong learner, with two hidden
layers of 30 and 7 nodes, respectively, and an error goal of 0.0005, was also around 95%,
however, the entire training database (900 instances) were used to train this classifier. We
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therefore conclude that Learn++, by only seeing a fraction of the training database at a time
in an incremental fashion, can perform as good as (or better then) a strong learner that is
trained with the entire database at once.

The algorithm's confidence in each decision was also computed as described earlier.
Table 2 lists a representative subset of the classification results and confidence levels on the
validation dataset after each training session. A number of interesting observations can be
made from Table 2, which is divided into four sections. The first section shows those
instances that were originally misclassifled after the first training session, but were correctly
classified after the second or third sessions. There were 66 such cases (out of 487 in the
TEST dataset). Many of these were originally misclassifled with rather strong confidences.
Note that during the next two training sessions, not only their classification was corrected,
but also the confidence on the classification improved as well.

The second section of the table shows those cases on which the confidence improved
with training. Majority of the instances (396 out of 487) were of this case. The third section
shows examples of those cases, which were still misclassifled at the end of three training
sessions, but the classification confidence decreased with training. Note that the confidence
was very high after the first training session, which decreased to very low after the third
training session. There were 21 such instances, and these are the instances flagged by the
algorithm to be reevaluated. Finally, the fourth section shows the only four instances where
the algorithm either increased its confidence in misclassification or decreased its confidence
in correct classification. These are considered as isolated instances (or outliers), since there
were only four such instances in the entire database.
TABLE 2. Sample confidences on the TEST dataset for each training session.

Instance # True Class Training Session 1
Class Conf

Training Session 2
Class Conf

Training Session 3
Class Conf

Misclassification Corrected with Improved Confidence (66)
25
144
153
177
206
267
286
289
308
323
352
354
438
454

Crack
Crack
Crack
Cbore
Crack
Cbore
Crack
Root
Root

Crack
Crack
Root
Crack
Cbore

Cbore
Cbore
Cbore
Crack
Root
Crack
Cbore
Crack
Cbore
Cbore
Root

Crack
Cbore
Root

0.69
0.54
0.35
0.81
0.43
0.52
0.7

0.92
0.69
0.82
0.81
0.87
0.57

1

Crack
Crack
Crack
Crack
Crack
Cbore
Crack
Crack
Root

Cbore
Crack
Crack
Crack
Root

0.91
0.86
0.54
0.55
0.51
0.86
0.54
0.84
0.47
0.79
0.8
0.64
0.76

1

Crack
Crack
Crack
Cbore
Crack
Cbore
Crack
Root
Root

Crack
Crack
Root

Crack
Cbore

0.96
0.91
0.76
0.71
0.71
0.96
0.84
0.76
0.87
0.76
0.89
0.79
0.92
0.58

Improved Confidence in Correct Classification (396)
67
313
321
404

Cbore
Crack
Cbore
Root

Cbore
Crack
Cbore
Root

0.66
0.6

0.47
0.59

Cbore
Crack
Cbore
Root

0.94
0.73
0.87
0.73

Cbore
Crack
Cbore
Root

0.96
0.88
0.93
0.96

3
45
78
93

Root
Crack
Cbore
Root

Root
Crack
Crack
Root

0.49
0.78
0.67
0.94

Crack
Crack
Cbore
Crack

0.55
0.61
0.52
0.58

Crack
Crack
Crack
Crack

0.59
0.53
0.55
0.58
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A second database obtained from a similar experimental setup, but with four types of
defects, namely, crack, lack of fusion, porosity and slag, was also used to evaluate Learn++
on an incremental learning problem that involved addition of previously unseen classes. In
this case, the database was also divided into three datasets, however, second and third
datasets introduced additional classes. Learn++ was able to learn the new information, as
well as the new classes with high classification accuracy on a validation dataset. The results
of this experiment have been reported in [5].

CONCLUSIONS AND FUTURE WORK
We have introduced Learn++, as an incremental learning algorithm for supervised neural

networks. The algorithm is also capable of estimating its own confidence through a simple
voting mechanism. The feasibility of the approach has been validated on an inherently
difficult database of ultrasonic weld inspection signals.

Future work includes optimizing the distribution update rule for faster and more robust
training, and testing the versatility of Learn++ with different types of classifiers used as weak
learning algorithms.
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