
SAS 2006 – IEEE Sensors Applications Symposium
Houston, Texas USA, 7-9 February 2006

An Ensemble Technique to Handle Missing Data from Sensors

Hussein Syed Mohammed, Nicholas Stepenosky and Robi Polikar*
Electrical and Computer Engineering, Rowan University,

136 Rowan Hall, Glassboro, NJ 08028, USA.
Email: {syedmo77, stepen91}@students.rowan.edu

*Corresponding author: polikar@rowan.edu

Abstract – Automated classification is often used in advanced
systems to monitor system events. All data, and hence features
from all sensors, must be present in order to make a meaningful
classification. An ensemble approach, Learn++.MF, was recently
introduced that allows classification with up to 10% of feature
missing, where several classifiers are trained on random subsets of
the available sensor data. Given an instance with missing features,
only those classifiers trained with the available features are then
used in classification. In this paper, we present a modified
approach that accommodates up to 30% missing features along
with the effect of varying algorithm parameters.

I . INTRODUCTION

A. The Missing Feature Problem

Most classification algorithms require that the number and
nature of the features be set before the training. Once the
training is complete, the field data must contain the exact
same number of features as the training data for the classifier
to make a decision. Instances missing even a single feature
cannot be processed. It is not unusual for training, validation
or field data to have missing features in some (or even all) of
their instances, as bad sensors, failed pixels, malfunctioning
equipment, unexpected noise causing signal saturation, data
corruption, etc. are familiar scenarios in many practical
applications. A pragmatic approach often used in such cases
is to ignore such instances with missing features. This rather
brute-force approach is suboptimal, and may not even be
feasible if all instances are missing one or more features.
There are other theoretical approaches all of which are
popular research topics in pattern recognition. Many of them
rely on Bayesian or other estimation techniques for extracting
“class” probabilities from partial data, by integrating or
averaging over missing portions of the feature space [1,2].
Such methods also include data imputation [3], and
expectation maximization [4]. Another alternative is
searching for the optimal subset of features so that fewer
features are required; however, the problem still remains if
one (or more) of these optimal features is missing.

 Learn++.MF follows an alternate strategy, combining an
ensemble of classifiers approach with random feature
selection [5]. It is inspired in part by the Random Subspace
Method (RSM) [6], where an ensemble of classifiers are
trained using random subsets of the features to improve the

diversity of the ensemble to aid in its generalization
performance, or in optimal feature selection [7]. We explore
an alternate application of this strategy, namely, the missing
features problem. In essence, by having access to a large
number of classifiers each trained with a different random
subset of features, an instance with a missing feature or
features can be classified by those classifiers which did not
use the (currently) missing features in their training. These
classifiers are henceforth referred to as usable classifiers. The
Learn++.MF algorithm aims to be a pragmatic solution to the
missing feature problem in sensor data.

B. Ensemble of Classifiers

Ensemble based approaches have been well researched for
improving classifier accuracy [8,9,10 and 11], however, their
potential for addressing the missing feature problem, as well
as the incremental learning problem have been mostly
unexplored. Learn++ was originally developed for the latter,
where the algorithm learns from new data, even when
instances from new classes or categories are introduced [12].
Learn++.MF is a modification of Learn++, designed to take
advantage of the ensemble approach for solving the missing
feature problem. In this paper, we present the Learn++.MF
algorithm, results on two datasets based on sensor readings,
as well as the analysis of its performance for various feature
subset sizes and the ratio of features missing.

II. THE LEARN++.MF ALGORITHM

The pseudocode of Learn++.MF is given in Figure 1. The
inputs to the algorithm are (1) the training data set D; (2) the
percentage of features, pof, to be used for training individual
classifiers; (3) the number of classifiers to be created T; and
(4) the sentinel value sen to designate a missing feature. The
data set D contains m instances, each with f number of
features. At each iteration t=1,…,T, the algorithm creates an
additional classifier ht. Also, a discrete distribution Pt is
created on the feature set, which essentially gives a
normalized weight to each feature. At iteration t, a subset of
features, Fselection(t), is drawn according to Pt, such that those
features with higher weights are more likely to be selected.
These features are then used in training current classifier, ht.
P1 is initialized to be uniform, unless there is reason to
choose otherwise, so that each feature initially has equal

1010-7803-9581-6/06/$20.00 ©2006 IEEE

likelihood of being selected into Fselection(1) . This is done to
allow each classifier to be as diverse as possible.

For each iteration, Pt is first normalized to obtain a
legitimate distribution (step 1). Next, pof % of the features
are randomly drawn from Pt (step 2) which constitute the set
Fselection(t). The tth classifier ht is trained (step 3) using the
features in Fselection(t) and tested on training data (step 4). We
require that ht achieves a minimum of 50% correct
classification on its training data to ensure that a meaningful
classification capacity. Next, the distribution Pt is updated
(step 5) such that the weights of those features that appear in
Fselection(t) are reduced by a factor of f. Those features that
were not in the current selection effectively receive higher
weights when Pt is normalized again in step 1 of iteration t+1.
This strategy helps ensure that every feature, on average, gets
an equal probability of being selected.

Algorithm Learn++.MF

Input:

Sentinel value sen.

Integer T, specifying the number of iterations.

Training data set miD ii ,,1|, yx with m

instances and f features.

Percentage of features, pof, used to train each
classifier

Training

Initialize fjjfjP ,,1,,/1)(1

Do for t = 1,2,...,T:

1. Normalize Pt so that it is a proper distribution.

2. Draw pof% of features for Fselection(t) from Pt.

3. Generate a weak classifier ht using only those
features in Fselection(t) for each instance in training.

4. Calculate the performance of this classifier, Perft

 on D. If Perft < 50 %, discard ht and go to step 2.

5. Reduce the distribution weight of the current
feature Fselection(t) set by a constant factor.

end loop

Validation / Testing

 Do for i = 1,2,...,m:

1. Let Mfeat(i) be the missing features for xi

2. Combine those classifiers whose feature set did not
include Mfeat(i) using weighted majority voting.

 end loop

Fig. 1. Pseudo code of Algorithm Learn++.MF

During the validation phase, the algorithm searches for
sentinels (place holders for missing values). To ensure that
actual values are not mistaken for the sentinel, it should be
chosen as a value or character that is not expected to occur in
the data. All features j, j=1,…,f with a sentinel value in the
given instance are then flagged and placed into the set of
missing features Mfeat(i) for that instance xi. Finally, all
classifiers ht whose feature selection list Fselection(t) did not
include those in Mfeat(i) (that is, all classifiers that did not use
any of the features in Mfeat(i)) are combined through majority
voting to determine the classification of instance xi.

III. SIMULATION RESULTS

The algorithm was tested on a two real world databases. In
each case, different percentages of features (the pof
parameter) were used for training. The databases include a
gas identification database and a database classifying radar
returns through the ionosphere (a benchmark database from
UCI [13]). In all cases, multilayer perceptron (MLP)
networks were used as the base classifier. Since MLPs in the
ensemble were trained as weak classifiers, training
parameters, such as the error goal or number of hidden layer
nodes did not need fine tuning. We define the total number of
features in the dataset as the number of features per instance
times the number of instances, and a single test trial as
evaluating the algorithm with 0.0%, through 30.0% of total
number of features randomly missing from the test dataset.
For each pof, the test trials are repeated 10 times whose
average values and confidence intervals are presented below.
Missing features were simulated by randomly replacing
actual feature values with sentinels.

A. Gas Identification (GI) Database

This database consisted of responses of six quartz crystal
microbalances (QCMs) to five volatile organic compounds,
including ethanol (ET), xylene (XL), octane (OC), toluene
(TL), and trichloroethylene (TCE). Of the 384 six-
dimensional signals, 180 were used for training and 204 for
testing, whose distributions appear in Table 1. A single
optimized classifier trained using all features tested on the
test dataset with no missing features performed at 86.23%,
setting the benchmark target for our experiments. Two values
of pof were considered: 33.3% and 50%, corresponding to 2
and 3 features, respectively (out of 6). T was set as 100
classifiers. The results are presented in Tables 2 and 3.

102

Table 1. Data Distribution of GI Data

Training Data Test Data

ET 30 34
OC 30 34
TL 50 62
TCE 30 34
XL 40 40
Total 180 204

Table 2. Performance on GI Data (pof = 33.3%)

%Features
Missing

% Mean Performance
of 10 Trials

% Instances
Processed

0.00 83.3 +/- 0.00 100
2.50 82.6 +/- 0.64 100
5.00 82.6 +/- 0.52 100
7.50 82.6 +/- 0.52 100
10.00 82.0 +/- 0.76 100
20.00 80.5 +/- 1.50 100
30.00 79.0 +/- 1.78 100

Table 3. Performance on GI Data (pof=50%)

%
Features

% Mean Performance
of 10 Trials

 % Instances
Processed

0.00 85.3 +/- 0.00 100
2.50 85.3 +/- 0.30 100
5.00 85.1 +/- 0.54 100
7.50 84.2 +/- 1.07 100
10.00 84.0 +/- 1.11 99.5
20.00 82.4 +/- 1.05 99.5
30.00 80.9 +/- 1.20 98.5

Figure 2 shows the performance of the Learn++.MF
algorithm on the GI database. We observe that the algorithm
performed quite well, close to its target performance of
86.23%, even for substantial amount of missing features. It
clearly shows, as expected, that the performance declines as
the percent of missing features increases. It should be noted
further that an increase in the pof does increase performance
initially, albeit mildly, however the performance drop is
steeper with increased missing features. As the percent of
missing features increases, the performance of the ensemble
that was trained on a smaller pof drops much slower than the
ensemble that was trained on a larger pof.

The last column indicates the percent of instances that
could be processed by the ensemble. Note in the last column
of Table 3 that, as the percent of missing features increases,
there were some instances that could not be processed by any
of the available classifiers. However, this number was
relatively small, since the total number of features was
relatively small (six) to begin with.

Fig. 2. Mean Performance of Learn++.MF on GI Data over 10 trials

This result demonstrates the need to have a large number
of classifiers in order to include as many combinations of
feature sets possible. Despite the fact that the ensemble that
was trained on a smaller pof had a better mean performance
as the percent of missing features increased, it should be
noted that it was only able to classify a smaller number of
instances. As discussed next, the number of instances that
cannot be processed can be reduced by increasing the total
number of classifiers generated, but it is also more severely
affected from increased percent of missing features, when the
total number of features is high to begin with.

B. Ionosphere Radar Return (ION) Database

This benchmark database obtained from the UCI machine
learning repository [13], consisted of 60 training instances
and 210 test instances of radar returns through the
ionosphere. This system consists of a phased array of 16
high-frequency antennas with a total transmitted power on the
order of 6.4 kW. The targets were free electrons in the
ionosphere. "Good" radar returns are those showing evidence
of some type of structure in the ionosphere. "Bad" returns are
those that do not; whose signals pass through the ionosphere.
The data distribution is given in Table 4. A single strong
classifier trained with all features tested on the test dataset
with no missing features performed at 92.65%. We used 3
sets of pof to train the ensemble separately. The network in
the ensemble was trained with 8 (pof = 23.5%), 10 (pof =
29.4%) and 12 (pof = 35.3%) out of 34 of the available
attributes. Each instance was tested with an ensemble of 1000
classifiers. The mean classification performances for the
ION data are presented in Tables 5-7.

103

Table 4. Data Distribution of ION Data

 Training Data Test Data
Good 30 100
Bad 30 110

Total 60 210

Table 5. Performance on ION Data (pof = 23.5%)

%
Features

% Mean Performance
of 10 Trials

% Instances
Processed

0.00 84.9 +/- 0.00 100
2.50 84.3 +/- 0.35 100
5.00 84.5 +/- 0.29 100
7.50 83.9 +/- 0.22 100
10.00 83.5 +/- 0.49 100
20.00 83.2 +/- 0.59 99.5
30.00 80.7 +/- 1.58 93.8

Table 6. Performance on ION Data (pof = 29.4%)

%
Features

% Mean Performance
of 10 Trials

% Instances
Processed

0.00 87.7 +/- 0.00 100
2.50 87.4 +/- 0.34 100
5.00 87.3 +/- 0.44 100
7.50 86.6 +/- 0.44 100
10.00 86.2 +/- 0.56 100
20.00 84.6 +/- 1.14 98.6
30.00 78.4 +/- 1.50 82.9

Table 7. Performance on ION Data (pof = 35.3%)

%
Features

% Mean Performance
of 10 Trials

% Instances
Processed

0.00 90.9 +/- 0.00 100
2.50 90.7 +/- 0.28 100
5.00 90.6 +/- 0.59 100
7.50 90.5 +/- 0.50 100
10.00 90.9 +/- 0.39 100
20.00 86.0 +/- 0.93 95.7
30.00 79.3 +/- 1.49 70.0

Several interesting observations can be made from Tables
5-7. First, we observe that the algorithm performs quite well,
similar to its target benchmark value of 92.65%, even for
relatively large percent of features missing. Specifically,
there is very little or no performance drop up until 10% of the
features missing. Second, using a larger pof value provides a
better initial performance with fewer missing features, but
high pof values also cause a more severe performance drop as
the percent of missing features past the 10% mark. For
example, the initial performance of the algorithm using 6 out
of 34 features (pof=17.6%) is 89.8% with no features
missing, and drops only to 84.4% when 30% of the features
are missing.

Fig. 3. Mean Performance of Learn++.MF on ION Data over 10 trials

Conversely, when the classifiers are trained with 12 of the
34 features (pof=35.3%), the initial performance is 91% with
no features missing, but it drops to 79% when 30% of the
features are missing. This makes sense: a high pof value
yields better individual classifiers resulting higher
generalization performances, because each classifier is
trained with more features. Figure 3 shows that fewer
classifiers are then available to classify instances with
missing features. Conversely, a low pof value cause
individual classifiers to be weaker, yet, since only few
features are needed to make a classification, a larger percent
of missing features can be accommodated.

This argument also allows us to explain the effect of pof on
the percent of instances that can be processed by the
ensemble. The ensemble approach allows the algorithm to be
able to process virtually the entire dataset up to 20% of the
features missing. However, the ratio of the instances that can
be processed by the ensemble decreases sharply with 30%
missing features particularly when pof is high: with larger
number of features used for training, fewer classifiers are
available to accommodate when many features are missing.
In fact, there may be no classifier available for a specific
combination of missing features. Hence, this justifies the
training of a larger number of classifiers when dealing with
larger set of features. Of course, in the limiting case, if all
features were used for training (pof=100%), no classifier
would then be available even for a single missing feature,
which brings us back to the motivation behind using an
ensemble trained with random feature subsets

IV. DISCUSSIONS & FUTURE WORK

We present the Learn++.MF algorithm as an alternate and
practical solution to the missing feature problem, a common
problem in many sensors applications. The algorithm creates
an ensemble of classifiers, each trained with a random subset

104

of the features, so that any instance with missing features can
still be classified using classifiers that did not use those
missing features in their training. Thus far, the algorithm has
performed remarkably well for up to 10 – 15% of the features
missing, typically for any pof value in the 15-50% range.

Two databases, drawn from practical real life applications,
were used to evaluate the proposed algorithm. The initial
results have been promising, indicating the feasibility of the
approach for such applications. The behavior of the algorithm
in terms of varying the pof and the effect of its performance
with the increase in the percent of missing features has been
fairly constant.

The algorithm Learn++.MF would be particularly useful,
when one or more of the sensors malfunction, or when some
of the data become corrupt. It may be expensive, difficult,
impractical or even impossible to recollect such data, making
it essential to be able to classify data with missing features.
However, it should be noted that the algorithm is still useful
in the case of no missing data.

Our future work entails investigating and deriving the
number of classifiers needed in an ensemble of classifiers to
obtain meaningful performances.

ACKNOWLEDGEMENTS

This material is based upon work supported by the
National Science Foundation under Grant No. ECS-0239090,
“CAREER: An Ensemble of Classifiers Approach for
Incremental Learning.

REFERENCES

[1] V. Tresp, R. Neuneier, S. Ahmad, “Efficient methods for dealing
with missing data in supervised learning,” G. Tesauro, et al.(eds),
Adv. in Neural Inf. Proc. Sys. 7. MIT Press, 1995.

[2] A. Morris, M. Cooke, P, Green, “Some solutions to the missing
feature problem in data classification, with application to noise
robust ASR,” Proc. Int. Conf. Acoustics, Speech, and Signal Proc.,
vol. 2, pp: 737 - 740, 1993.

[3] K.L. Wagstaff, V.G. Laidler, “Making the most of missing values:
object clustering with partial data in astronomy,” 14th Astronomical
Data Analysis and Systems Conf., P. L. Shopbell, M. C. Britton, and
R. Ebert, Eds., Vol. XXX, P 2.1.25, 2005.

[4] M.Jordan, R.Jacobs, "Hierarchical mixtures of experts and the EM
algorithm," Neural Comp., vol.6, no. 2, pp. 181-214, 1994.

[5] S. Krause and R. Polikar, “An Ensemble Approach to the Missing
Feature Problem,” Int. Joint Conf on Neural Net. vol. 1, pp. 553-558,
Portland, OR, 2003.

[6] T.K. Ho, “The Random Subspace Method for constructing Decision
Trees,” IEEE Transactions Pattern Analysis and Machine
Intelligence, vol. 20, no. 8, pp. 832-844, 1998.

[7] M. Skurichina and R Duin, “Combining Feature Subsets in Feature
Selection,” LNCS 3541, pp. 165-175, 2005.

[8] J. Kittler, M. Hatef, R.P. Duin, J. Matas, “On combining classifiers,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20,
no.3, pp. 226-239, 1998.

[9] L. I. Kuncheva, Combining Pattern Classifiers, Methods and
Algorithms. New York, NY: Wiley Interscience, 2005.

[10] L.I. Kuncheva, “A theoretical study on six classifier fusion
strategies, “ IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 2, pp. 281-286, 2002.

[11] Y. Freund and R. E. Schapire, "Decision-theoretic generalization of
on-line learning and an application to boosting," J. of Comp. and
System Sci., vol. 55, no. 1, pp. 119-139, 1997.

[12] R. Polikar, L. Udpa, S. Udpa, V. Honavar, “Learn++: an
incremental learning algorithm for supervised networks,” IEEE
Tran. Sys., Man Cyb, C, vol. 31, pp. 497-508, 2001.

[13] C.L. Blake, C. Merz, UCI Repository of machine learning
databases:http://www.ics.uci.edu/~mlearn/MLRepository.html.

105

