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Abstract – Automated classification is often used in advanced 
systems to monitor system events. All data, and hence features 
from all sensors, must be present in order to make a meaningful 
classification. An ensemble approach, Learn++.MF, was recently 
introduced that allows classification with up to 10% of feature 
missing, where several classifiers are trained on random subsets of 
the available sensor data. Given an instance with missing features, 
only those classifiers trained with the available features are then 
used in classification. In this paper, we present a modified 
approach that accommodates up to 30% missing features along 
with the effect of varying algorithm parameters.

I .  INTRODUCTION

A. The Missing Feature Problem 

Most classification algorithms require that the number and 
nature of the features be set before the training. Once the 
training is complete, the field data must contain the exact 
same number of features as the training data for the classifier 
to make a decision. Instances missing even a single feature 
cannot be processed. It is not unusual for training, validation 
or field data to have missing features in some (or even all) of 
their instances, as bad sensors, failed pixels, malfunctioning 
equipment, unexpected noise causing signal saturation, data 
corruption, etc. are familiar scenarios in many practical 
applications. A pragmatic approach often used in such cases 
is to ignore such instances with missing features. This rather 
brute-force approach is suboptimal, and may not even be 
feasible if all instances are missing one or more features. 
There are other theoretical approaches all of which are 
popular research topics in pattern recognition. Many of them 
rely on Bayesian or other estimation techniques for extracting 
“class” probabilities from partial data, by integrating or 
averaging over missing portions of the feature space [1,2]. 
Such methods also include data imputation [3], and 
expectation maximization [4]. Another alternative is 
searching for the optimal subset of features so that fewer 
features are required; however, the problem still remains if 
one (or more) of these optimal features is missing. 

 Learn++.MF follows an alternate strategy, combining an 
ensemble of classifiers approach with random feature 
selection [5]. It is inspired in part by the Random Subspace 
Method (RSM) [6], where an ensemble of classifiers are 
trained using random subsets of the features to improve the 

diversity of the ensemble to aid in its generalization 
performance, or in optimal feature selection [7]. We explore 
an alternate application of this strategy, namely, the missing 
features problem. In essence, by having access to a large 
number of classifiers each trained with a different random 
subset of features, an instance with a missing feature or 
features can be classified by those classifiers which did not 
use the (currently) missing features in their training. These 
classifiers are henceforth referred to as usable classifiers. The 
Learn++.MF algorithm aims to be a pragmatic solution to the 
missing feature problem in sensor data. 

B. Ensemble of Classifiers

Ensemble based approaches have been well researched for 
improving classifier accuracy [8,9,10 and 11], however, their 
potential for addressing the missing feature problem, as well 
as the incremental learning problem have been mostly 
unexplored. Learn++ was originally developed for the latter, 
where the algorithm learns from new data, even when 
instances from new classes or categories are introduced [12]. 
Learn++.MF is a modification of Learn++, designed to take 
advantage of the ensemble approach for solving the missing 
feature problem. In this paper, we present the Learn++.MF 
algorithm, results on two datasets based on sensor readings, 
as well as the analysis of its performance for various feature 
subset sizes and the ratio of features missing. 

II. THE LEARN++.MF ALGORITHM

The pseudocode of Learn++.MF is given in Figure 1. The 
inputs to the algorithm are (1) the training data set D; (2) the 
percentage of features, pof, to be used for training individual 
classifiers; (3) the number of classifiers to be created T; and 
(4) the sentinel value sen to designate a missing feature. The 
data set D contains m instances, each with f number of 
features. At each iteration t=1,…,T, the algorithm creates an 
additional classifier ht. Also, a discrete distribution Pt is
created on the feature set, which essentially gives a 
normalized weight to each feature. At iteration t, a subset of 
features, Fselection(t), is drawn according to Pt, such that those 
features with higher weights are more likely to be selected. 
These features are then used in training current classifier, ht.
P1 is initialized to be uniform, unless there is reason to 
choose otherwise, so that each feature initially has equal 
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likelihood of being selected into Fselection(1) . This is done to 
allow each classifier to be as diverse as possible. 

For each iteration, Pt is first normalized to obtain a 
legitimate distribution (step 1). Next, pof % of the features 
are randomly drawn from Pt (step 2) which constitute the set 
Fselection(t). The tth classifier ht is trained (step 3) using the 
features in Fselection(t) and tested on training data (step 4). We 
require that ht achieves a minimum of 50% correct 
classification on its training data to ensure that a meaningful 
classification capacity. Next, the distribution Pt is updated 
(step 5) such that the weights of those features that appear in 
Fselection(t) are reduced by a factor of f. Those features that 
were not in the current selection effectively receive higher 
weights when Pt is normalized again in step 1 of iteration t+1.
This strategy helps ensure that every feature, on average, gets 
an equal probability of being selected. 

Algorithm Learn++.MF 

Input: 

Sentinel value sen.

Integer T, specifying the number of iterations. 

Training data set miD ii ,,1|, yx  with m

instances and f features. 

Percentage of features, pof, used to train each 
classifier

Training

Initialize fjjfjP ,,1,,/1)(1

Do for t = 1,2,...,T:

1. Normalize Pt so that it is a proper distribution.

2. Draw pof% of features for Fselection(t) from Pt.

3. Generate a weak classifier ht using only those 
features in Fselection(t) for each instance in training. 

4. Calculate the performance of this classifier, Perft

 on D. If Perft < 50 %, discard ht and go to step 2.   

5. Reduce the distribution weight of the current 
feature Fselection(t) set by a constant factor.  

end loop

Validation / Testing 

  Do for i = 1,2,...,m:

1. Let Mfeat(i) be the missing features for xi

2. Combine those classifiers whose feature set did not 
include Mfeat(i) using weighted majority voting. 

  end loop 

Fig. 1. Pseudo code of Algorithm Learn++.MF

During the validation phase, the algorithm searches for 
sentinels (place holders for missing values). To ensure that 
actual values are not mistaken for the sentinel, it should be 
chosen as a value or character that is not expected to occur in 
the data. All features j, j=1,…,f with a sentinel value in the 
given instance are then flagged and placed into the set  of 
missing features Mfeat(i) for that instance xi. Finally, all 
classifiers ht whose feature selection list Fselection(t) did not
include those in Mfeat(i) (that is, all classifiers that did not use 
any of the features in Mfeat(i)) are combined through majority 
voting to determine the classification of instance xi.

III.  SIMULATION RESULTS

The algorithm was tested on a two real world databases. In 
each case, different percentages of features (the pof
parameter) were used for training. The databases include a 
gas identification database and a database classifying radar 
returns through the ionosphere (a benchmark database from 
UCI [13]). In all cases, multilayer perceptron (MLP) 
networks were used as the base classifier. Since MLPs in the 
ensemble were trained as weak classifiers, training 
parameters, such as the error goal or number of hidden layer 
nodes did not need fine tuning. We define the total number of 
features in the dataset as the number of features per instance 
times the number of instances, and a single test trial as 
evaluating the algorithm with 0.0%, through 30.0% of total 
number of features randomly missing from the test dataset. 
For each pof, the test trials are repeated 10 times whose 
average values and confidence intervals are presented below. 
Missing features were simulated by randomly replacing 
actual feature values with sentinels. 

A. Gas Identification (GI) Database 

This database consisted of responses of six quartz crystal 
microbalances (QCMs) to five volatile organic compounds, 
including ethanol (ET), xylene (XL), octane (OC), toluene 
(TL), and trichloroethylene (TCE). Of the 384 six-
dimensional signals, 180 were used for training and 204 for 
testing, whose distributions appear in Table 1. A single 
optimized classifier trained using all features tested on the 
test dataset with no missing features performed at 86.23%, 
setting the benchmark target for our experiments. Two values 
of pof were considered: 33.3% and 50%, corresponding to 2 
and 3 features, respectively (out of 6). T was set as 100 
classifiers. The results are presented in Tables 2 and 3. 
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Table 1. Data Distribution of GI Data 

Training Data Test Data 

ET 30 34 
OC 30 34 
TL 50 62 
TCE 30 34 
XL 40 40 
Total 180 204 

Table 2. Performance on GI Data (pof = 33.3%) 

%Features 
Missing 

% Mean Performance 
of 10 Trials 

% Instances 
Processed 

0.00 83.3 +/- 0.00 100 
2.50 82.6 +/- 0.64 100 
5.00 82.6 +/- 0.52 100 
7.50 82.6 +/- 0.52 100 
10.00 82.0 +/- 0.76 100 
20.00 80.5 +/- 1.50 100 
30.00 79.0 +/- 1.78 100 

Table 3. Performance on GI Data (pof=50%) 

%
Features 

% Mean Performance 
of 10 Trials 

 % Instances 
Processed 

0.00 85.3 +/- 0.00 100 
2.50 85.3 +/- 0.30 100 
5.00 85.1 +/- 0.54 100 
7.50 84.2 +/- 1.07 100 
10.00 84.0 +/- 1.11 99.5 
20.00 82.4 +/- 1.05 99.5 
30.00 80.9 +/- 1.20 98.5 

Figure 2 shows the performance of the Learn++.MF 
algorithm on the GI database. We observe that the algorithm 
performed quite well, close to its target performance of 
86.23%, even for substantial amount of missing features. It 
clearly shows, as expected, that the performance declines as 
the percent of missing features increases. It should be noted 
further that an increase in the pof does increase performance 
initially, albeit mildly, however the performance drop is 
steeper with increased missing features. As the percent of 
missing features increases, the performance of the ensemble 
that was trained on a smaller pof drops much slower than the 
ensemble that was trained on a larger pof.

The last column indicates the percent of instances that 
could be processed by the ensemble. Note in the last column 
of Table 3 that, as the percent of missing features increases, 
there were some instances that could not be processed by any 
of the available classifiers. However, this number was 
relatively small, since the total number of features was 
relatively small (six) to begin with. 

Fig. 2. Mean Performance of Learn++.MF on GI Data over 10 trials

This result demonstrates the need to have a large number 
of classifiers in order to include as many combinations of 
feature sets possible.  Despite the fact that the ensemble that 
was trained on a smaller pof had a better mean performance 
as the percent of missing features increased, it should be 
noted that it was only able to classify a smaller number of 
instances. As discussed next, the number of instances that 
cannot be processed can be reduced by increasing the total 
number of classifiers generated, but it is also more severely 
affected from increased percent of missing features, when the 
total number of features is high to begin with.  

B. Ionosphere Radar Return (ION) Database 

This benchmark database obtained from the UCI machine 
learning repository [13], consisted of 60 training instances 
and 210 test instances of radar returns through the 
ionosphere. This system consists of a phased array of 16 
high-frequency antennas with a total transmitted power on the 
order of 6.4 kW. The targets were free electrons in the 
ionosphere. "Good" radar returns are those showing evidence 
of some type of structure in the ionosphere. "Bad" returns are 
those that do not; whose signals pass through the ionosphere. 
The data distribution is given in Table 4. A single strong 
classifier trained with all features tested on the test dataset 
with no missing features performed at 92.65%.  We used 3 
sets of pof to train the ensemble separately. The network in 
the ensemble was trained with 8 (pof = 23.5%), 10 (pof =
29.4%) and 12 (pof = 35.3%) out of 34 of the available 
attributes. Each instance was tested with an ensemble of 1000 
classifiers.  The mean classification performances for the 
ION data are presented in Tables 5-7. 
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Table 4. Data Distribution of ION Data 

 Training Data Test Data 
Good 30 100 
Bad 30 110 

Total 60 210 

Table 5. Performance on ION Data (pof = 23.5%) 

%
Features 

% Mean Performance 
of 10 Trials 

% Instances 
Processed 

0.00 84.9 +/- 0.00 100 
2.50 84.3 +/- 0.35 100 
5.00 84.5 +/- 0.29 100 
7.50 83.9 +/- 0.22 100 
10.00 83.5 +/- 0.49 100 
20.00 83.2 +/- 0.59 99.5 
30.00 80.7 +/- 1.58 93.8 

Table 6. Performance on ION Data (pof = 29.4%) 

%
Features 

% Mean Performance 
of 10 Trials 

% Instances 
Processed 

0.00 87.7 +/- 0.00 100 
2.50 87.4 +/- 0.34 100 
5.00 87.3 +/- 0.44 100 
7.50 86.6 +/- 0.44 100 
10.00 86.2 +/- 0.56 100 
20.00 84.6 +/- 1.14 98.6 
30.00 78.4 +/- 1.50 82.9 

Table 7. Performance on ION Data (pof = 35.3%) 

%
Features 

% Mean Performance 
of 10 Trials 

% Instances 
Processed 

0.00 90.9 +/- 0.00 100 
2.50 90.7 +/- 0.28 100 
5.00 90.6 +/- 0.59 100 
7.50 90.5 +/- 0.50 100 
10.00 90.9 +/- 0.39 100 
20.00 86.0 +/- 0.93 95.7 
30.00 79.3 +/- 1.49 70.0 

Several interesting observations can be made from Tables 
5-7. First, we observe that the algorithm performs quite well, 
similar to its target benchmark value of 92.65%, even for 
relatively large percent of features missing. Specifically, 
there is very little or no performance drop up until 10% of the 
features missing. Second, using a larger pof value provides a 
better initial performance with fewer missing features, but 
high pof values also cause a more severe performance drop as 
the percent of missing features past the 10% mark. For 
example, the initial performance of the algorithm using 6 out 
of 34 features (pof=17.6%) is 89.8% with no features 
missing, and drops only to 84.4% when 30% of the features 
are missing. 

Fig. 3. Mean Performance of Learn++.MF on ION Data over 10 trials 

Conversely, when the classifiers are trained with 12 of the 
34 features (pof=35.3%), the initial performance is 91% with 
no features missing, but it drops to 79% when 30% of the 
features are missing. This makes sense: a high pof value 
yields better individual classifiers resulting higher 
generalization performances, because each classifier is 
trained with more features. Figure 3 shows that fewer 
classifiers are then available to classify instances with 
missing features. Conversely, a low pof value cause 
individual classifiers to be weaker, yet, since only few 
features are needed to make a classification, a larger percent 
of missing features can be accommodated.  

This argument also allows us to explain the effect of pof on 
the percent of instances that can be processed by the 
ensemble. The ensemble approach allows the algorithm to be 
able to process virtually the entire dataset up to 20% of the 
features missing. However, the ratio of the instances that can 
be processed by the ensemble decreases sharply with 30% 
missing features particularly when pof is high: with larger 
number of features used for training, fewer classifiers are 
available to accommodate when many features are missing. 
In fact, there may be no classifier available for a specific 
combination of missing features. Hence, this justifies the 
training of a larger number of classifiers when dealing with 
larger set of features. Of course, in the limiting case, if all 
features were used for training (pof=100%), no classifier 
would then be available even for a single missing feature, 
which brings us back to the motivation behind using an 
ensemble trained with random feature subsets 

IV. DISCUSSIONS & FUTURE WORK

We present the Learn++.MF algorithm as an alternate and 
practical solution to the missing feature problem, a common 
problem in many sensors applications.  The algorithm creates 
an ensemble of classifiers, each trained with a random subset 
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of the features, so that any instance with missing features can 
still be classified using classifiers that did not use those 
missing features in their training. Thus far, the algorithm has 
performed remarkably well for up to 10 – 15% of the features 
missing, typically for any pof value in the 15-50% range.  

Two databases, drawn from practical real life applications, 
were used to evaluate the proposed algorithm.  The initial 
results have been promising, indicating the feasibility of the 
approach for such applications. The behavior of the algorithm 
in terms of varying the pof and the effect of its performance 
with the increase in the percent of missing features has been 
fairly constant.  

The algorithm Learn++.MF would be particularly useful, 
when one or more of the sensors malfunction, or when some 
of the data become corrupt. It may be expensive, difficult, 
impractical or even impossible to recollect such data, making 
it essential to be able to classify data with missing features. 
However, it should be noted that the algorithm is still useful 
in the case of no missing data. 

Our future work entails investigating and deriving the 
number of classifiers needed in an ensemble of classifiers to 
obtain meaningful performances. 
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