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[Ensemble of classifiers for incremental learning, 

data fusion, and missing feature analysis]

T
his article is about the success story of a seemingly simple yet extremely powerful
approach that has recently reached a celebrity status in statistical and engineering
sciences. The hero of this story—bootstrap resampling—is relatively young, but the
story itself is a familiar one within the scientific community: a mathematician or a
statistician conceives and formulates a theory that is first developed by fellow math-

ematicians and then brought to fame by other professionals, typically engineers, who point to
many applications that can benefit from just such an approach. Signal processing boasts some
of the finest examples of such stories, such as the classic story of Fourier transforms or the
more contemporary tale of wavelet transforms. 

Originally developed for estimating sampling distributions of statistical estimators from lim-
ited data, bootstrap techniques have since found applications in many areas of engineering—
including signal processing—several examples of which appear elsewhere in this issue. This
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article, however, is about bootstrap-inspired techniques in com-
putational intelligence; specifically in ensemble of classifiers-
based algorithms, which themselves have many applications in
signal processing. 

We start with a brief review of the bootstrap-based
approaches used in computational intelligence, where the pri-
mary parameter of interest is the true prediction error of a clas-
sifier on previously unseen data. We then describe how
bootstrap-inspired techniques enabled development of ensem-
ble-based algorithms and describe some of the more popular
examples of such algorithms. These algorithms, which generate
an ensemble of classifiers by training each classifier on a different
bootstrap sample of the training data, have the unique ability to
create a strong classifier from a collection of weak classifiers
that can barely do better than random guessing. 

Our primary focus in this article, however, is some of the
more challenging problems of computational intelligence that
can also be addressed by bootstrap-inspired techniques, includ-
ing incremental learning, data fusion, and the missing feature
problem. In incremental learning, the goal is to learn novel and
supplementary information from new data that later become
available, even in such hostile learning environments that intro-
duce new classes. In data fusion, we are interested in integrating
complementary information into an existing classifier’s knowl-
edge base, particularly when such information comes from dif-
ferent sources. Finally, in the missing feature problem, the
challenge is to classify data whose certain features (predictors)
used to train the classifier are missing. 

The central theme in addressing each of these problems
using ensemble-based systems is to generate an ensemble of
diverse classifiers, where each classifier is trained on a strategi-
cally selected bootstrap sample of the original data. We discuss
the ability of bootstrap-based approaches to address these
issues and present the outcomes of implementations of such
approaches on a variety of real-world problems.

BOOTSTRAP TECHNIQUES IN 
COMPUTATIONAL INTELLIGENCE
Bootstrap techniques are concerned with the following funda-
mental problem: “if we make an estimate about a parameter of a
population of unknown distribution based on a single dataset of
finite size, how good is this estimate?” Precise formulas to deter-
mine the goodness of such an estimate are well established in
statistics; however, these formulas make certain assumptions
about the underlying distributions that are often violated in
real-world applications. Even then, most formulations calculate
goodness of the estimate only when the parameter of interest is
the sample mean.

In 1979, Efron proposed a solution that only became practi-
cally feasible by the recent availability of computing power. His
approach was simple and elegant, if not controversial at first:
treat the available dataset as if it were the entire population, and
take repeated samples from this (pseudo) distribution [1]. He
called each such sample a bootstrap sample, from which the sta-
tistic of interest is estimated. Repeating this process many

times, we can simulate having many samples from the original
distribution and hence calculate a meaningful confidence inter-
val of the estimate. Furthermore, such an estimate can be
obtained for any statistic of interest, and not just for the mean.

In signal processing, bootstrap methods are widely used for
signal detection and spectral estimation, details and many appli-
cations of which can be found elsewhere in this issue as well as
in Zoubir and Iskander’s recent text [2]. In computational intel-
ligence, however, the statistic of particular interest is often the
true generalization error of a classifier that is trained on a finite-
size training dataset. Given such a classifier, how can we esti-
mate its performance in classifying previously unseen field data?
To answer this question, let us formally define the classification
problem. 

In supervised classification, we are given a training dataset
S = {x1, x2, . . . , xn}, where xi ∈ X is the i th instance in the fea-
ture space X , along with their correct labels yi ∈ � ,
� = {ω1, ω2, . . . , ωC } for a C -class problem. S is drawn from a
fixed but unknown distribution D of labeled instances. The true
class for each instance is determined by a fixed mapping func-
tion g : X → �, also unknown to us. A classifier is trained on S,
producing a hypothesis h, whose goal is to satisfy
h(x) = g(x),∀x ∈ X . However, we usually end up with a hypoth-
esis that can only provide u = h(x) = ĝ(x), u ∈ �, as an esti-
mate of g(x). In order to evaluate the goodness of this estimate,
we define the “classification performance evaluation function”
Q(h(x)) = I [[y �= u]], (Q(x) in short), where I [[•]] is the indica-
tor function. The true error is the probability that h will incor-
rectly classify instance x drawn from D, i.e.,
Err = P(h(x) �= y) = ED[Q(x)], where ED[.] indicates expecta-
tion with respect to D. We can now define several estimates of
this true error Err.

In resubstitution (empirical) error, the classifier is evaluated
on the training data S :

ÊrrR = 1
n

n∑
i =1

Q(xi) , x ∈ S . (1)

Since the same dataset S is used both for training and testing,
ÊrrR is usually optimistic, underestimating the true error. The
difference between the two is the bias of the estimate, whereas
the variation of this estimate among several trials is its variance.
We wish to minimize both, which may often be contradictory to
each other. In a hold-out estimate, S is partitioned into two sub-
sets, STR and STE, for training and testing, respectively. The
classifier is trained on STR and evaluated on STE:

ÊrrH = 1
nTE

nTE∑
i =1

Q(xi) , x ∈ STE, (2)

where nTE is the cardinality of STE. There are two problems with
this approach, however: a suboptimal classifier is obtained by
using fewer training data points, and error estimate depends on
the exact split of S into training and test subsets. Both issues
can be avoided by the cross-validation (or jackknife) estimate,
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where the dataset S is divided into K-blocks, each of size n/K.
Concatenating the first K − 1 blocks produces the first training
subset S1

TR. The remaining K th block, denoted SK
TE, then serves

as the test subset, on which the first error estimate is obtained
by using (2). This process is repeated K times, leaving a different
block out in each case. The K-fold cross validation (CV) error
estimate is then the average of K individual error estimates:

ÊrrCV = 1
K

K∑
k=1


 1

nk
TE

nk
TE∑

i =1

Q
(

xk
i

)
 , xk ∈ Sk

TE . (3)

A special case of the K-fold CV, called leave-one-out (LOO), is
obtained by choosing K = n, where STR consists of all of S
except a single instance x, which then serves as the test set. Let
S(i )

TE be the test point left out during i th training session.
Equation (3) then reduces to 

ÊrrLOO = 1
n

n∑
i =1

Q(xi) , xi ∈ S(i )
TE . (4)

The LOO estimate is an unbiased estimate of the true error;
however, it suffers from high variance due to individual esti-
mates being calculated on single xi. In the bootstrap estimate,
specifically designed to reduce this variance, S is treated as the
entire population, with a distribution equal to 1/n—per occur-
rence—for each instance xi (as discussed below, incremental
learning, data fusion, and missing feature can all be addressed
by modifying this very distribution). Sample subsets of size n are
then drawn from this distribution with replacement. Let each
such dataset be S∗b

TR, where ∗b indicates the bth bootstrap sam-
ple. Certain instances of S will appear multiple times in S∗b

TR,
whereas others will not appear at all. Those xi not included in
S∗b

TR constitute the test set, S∗b
TE of cardinality nb

TE ,on which the
bootstrap error estimate εb is computed. Repeating this process
B times gives B such error estimates. The final error estimate is
then the mean of the individual bootstrap errors [3]:

Êrr ∗ = 1
B

B∑
b=1

εb = 1
B

B∑
b=1


 1

nb
Te

nb
Te∑

i =1

Q(xb
i )


, xb ∈ S∗b

TE. (5)

Choosing a sufficiently large B, the large variance among
individual estimates can be reduced thanks to averaging [3].
Several improvements have since been made to this estimate
such as the 0.632 estimator, which recognizes that the probabil-
ity of any given xi to appear in a sample is 1 − (1 − 1/n)n ≈
0.632 for large n. The 0.632 estimator calculates the error as the
weighted average of the bootstrap and resubstitution errors,
using weights 0.632 and 0.368, respectively:

Êrr.632 = 1
B

B∑
b=1

(0.632 · εb + 0.368ÊrrR) . (6)

While this estimate further reduces the variance, it may
increase the bias if the classifier memorizes the training data.

The more recently proposed 0.632+ bootstrap estimator [4]
detects when and how much the classifier is overfitting and pro-
portionately reduces the weight of ÊrrR. The comparison of
these different estimates has been well researched and can be
found in [3]–[7].

BOOTSTRAP-INSPIRED TECHNIQUES IN 
ENSEMBLE SYSTEMS: AN OVERVIEW
Beyond error estimation, bootstrap-based ideas have also been
used in recent development of many ensemble-based algo-
rithms. These algorithms use multiple classifiers, generally to
improve classification performance: each classifier provides an
alternative solution whose combination may provide a superior
solution than the one provided by any single classifier. The
underlying idea is in fact an intuitive one that we routinely use
in our daily lives when we seek multiple opinions before making
an important decision. In doing so, we weigh and combine indi-
vidual opinions, in hope of making a more informed decision.
Consulting several doctors before agreeing to a major surgery,
or asking for references before hiring an employee, are examples
of such behavior.

The primary benefit of using ensemble systems is the reduc-
tion of variance and increase in confidence of the decision. Due
to many random variations in a given classifier model (different
training data, different initialization, etc.), the decision obtained
by any given classifier may vary substantially from one training
trial to another—even if the model structure is kept constant.
Then, combining the outputs of several such classifiers by, for
example, averaging the output decisions, can reduce the risk of
an unfortunate selection of a poorly performing classifier. 

Another use of ensemble systems includes splitting large
datasets into smaller and logical partitions, each used to train a
separate classifier. This can be more efficient than using a single
model to describe the entire data. The opposite problem, having
too little data, can also be handled using ensemble systems, and
this is where bootstrap-based ideas start surfacing: generate
multiple classifiers, each trained on a different subset of the
data, obtained through bootstrap resampling. 

While the history of ensemble systems can be traced back to
some earlier studies such as [8], [9], it is Schapire’s 1990 paper
that is widely recognized as the seminal work on ensemble sys-
tems. In strength of weak learnability [10], Schapire introduced
boosting, an elegant approach to generate a strong classifier by
combining weaker ones. The boosting algorithm, and its popu-
lar successor AdaBoost [11], generate an ensemble of classifiers,
each trained with a subset of the training data resampled from
the original training dataset; hence, a bootstrap approach.
Unlike the standard bootstrap, however, the data distribution is
strategically altered for each new classifier, giving boosting its
unique attributes. Two more recent competitors to boosting are
Breiman’s bagging (bootstrap aggregation) used for small
datasets [12], and pasting small votes used for large datasets
[13], both of which follow a standard bootstrap resampling
process. Other ensemble architectures that use the cross valida-
tion/jackknife approach for splitting training data include
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Wolpert’s stacked generalization [14] and Jacob and Jordan’s
mixture of experts [15], [16]. 

The key enabling concept in all ensemble based systems is
diversity. Clearly, there is no advantage in combining classifiers
that provide identical outputs. An ensemble system is most ben-
eficial if classifier outputs are independent, or better yet, nega-
tively correlated. Specifically, we need classifiers that only differ
in their misclassification but agree otherwise. Then, the ensem-
ble can augment the correct decision and average out the indi-
vidual errors (Figure 1). Diversity among classifiers can be
achieved in many ways, such as training classifiers with different
subsets of the features (so-called random subspace methods
[17]). However, using different training data subsets obtained by
resampling of the original training data is most commonly used
and constitutes the link between ensemble systems and boot-
strap techniques. 

Of course, once the classifiers are generated, a strategy is
needed to combine their outputs. In simple majority voting, a
commonly used combination rule, each classifier votes on the
class it predicts, and the class receiving the largest number of
votes is the ensemble decision. It can be shown that if classifier
outputs are independent, and each classifier predicts the correct
class with a probability of one half or higher, the correct classifi-

cation performance of the ensemble approaches “one” as the
number of classifiers increases (Condorcet Jury Theorem (1786)
[18]). In weighted majority voting, each classifier is given a vot-
ing weight inversely proportional to its resubstitution error. The
class with the largest total vote is then declared the winner.
Algebraic combination (e.g., sum, product) of the class-specific
outputs can also be used, where the class receiving the highest
combined support is then chosen by the ensemble. Theoretical
analyses of these and other combination rules can be found in
[19], [20].

BAGGING
Let S be the original training dataset of n instances, and S∗

b ,
b = 1, . . . , B be the bth bootstrap sample of size n drawn from
S. One classifier is trained with each S∗

b . This resampling will
result in substantial overlap in the composition of individual S∗

b .
In order to ensure that a diverse set of classifiers is generated
despite similar training datasets, individual classifiers are often
forced to be weak (by using a small architecture, early termina-
tion of training, etc.). Once the training is complete, an ensem-
ble decision is obtained by simple majority voting of B classifier
outputs (Algorithm 1). Note that bagging, just like all other
ensemble algorithms discussed here, is independent of the

[FIG1] Bootstrap data subsets are used to train different classifiers, which form different decision boundaries. These boundaries can be
averaged to obtain a more accurate decision boundary.
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model chosen for the individual classifier and can be used with
any supervised classifier.

Algorithm 1: Bagging
Inputs for Algorithm Bagging

■ Training data S = {x1, x2, . . . , xn}, xi ∈ X , with correct
labels ωi ∈ � = {ω1, · · · , ωC}
■ Weak learning algorithm WeakLearn, 
■ Integer B, specifying number of iterations.

Do b = 1, . . . , B
1)  Obtain bootstrap sample S∗

b by randomly drawing n
instances, with replacement, from S.
2)  Call WeakLearn with S∗

b and receive the hypothesis (classi-
fier) hb : X → �.
3)  Add hb to the ensemble, E.

End Do Loop

Test: Simple Majority Voting—Given unlabeled instance z

1)  Evaluate the ensemble E= {h1, . . . , hB} on z.
2)  Let the vote given to class ω j by classifier hb be

vb, j =
{

1, if hb picks class ω j

0, otherwise
(7)

3)  Obtain total vote received by each class

Vj =
B∑

b=1

vb, j, j = 1, . . . , C . (8)

4)  Choose the class that receives the highest total vote as the
final classification. 

BOOSTING
Unlike bagging, boosting alters the training data distribution
before each new bootstrap sample is obtained. The altered distri-
bution ensures that more informative instances are drawn into
the next dataset. It is this iterative distribution update that

[FIG2]  Block diagram of AdaBoost.M1.
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allows boosting to make its boldest claim: a strong learner with
arbitrarily high accuracy can be obtained by combining weak
learners that can merely do better than random guessing; i.e.,
strong and weak learnability are equivalent [10].

Given training dataset S of n instances for a binary classifica-
tion problem, the first classifier C1 is trained using a bootstrap
sample of m < n instances. The training data subset S2 for the
second classifier C2 is chosen such that exactly half of S2 is cor-
rectly classified by C1. The third classifier C3 is then trained
with instances on which C1 and C2 disagree. The three classi-
fiers are combined through a three-way majority vote. Schapire
showed that the error of this algorithm has an upper bound: if
the largest individual error of all three classifiers (as computed
on S) is ε, then the error of the ensemble is bounded above by
f(ε) = 3ε2 − 2ε3. Note that f(ε) ≤ ε for ε < 1⁄2. That is, as long
as all classifiers can do at least better than random guessing,
then the boosting ensemble will always outperform the best
classifier in the ensemble. The performance can be further
improved by repeated application of the boosting process. The
pseudocode of boosting is shown in detail in Algorithm 2,
whereas its theoretical development can be found in [10].

Algorithm 2: Boosting
Inputs for Algorithm Boosting

■ Training data S of size n, correct labels ωi ∈ � = {ω1, ω2};
■ Classifier model WeakLearn.

Training
1)  Select m < n patterns without replacement from S to cre-
ate data subset S1.
2)  Call WeakLearn and train with S1 to create classifier C1.
3)  Create dataset S2 as the most informative dataset, given
C1, such that half of S2 is correctly classified by C2, and the
other half is misclassified. To do so:

a)  Flip a fair coin. If Head, select samples from S and pres-
ent them to C1 until the first instance is misclassified. Add
this instance to S2. 
b)  If Tail, select samples from S and present them to C1

until the first one is correctly classified. Add this instance
to S2. 
c)  Continue flipping coins until no more patterns can be
added to S2.

4)  Train the second classifier C2 with S2.
5)  Create S3 by selecting those instances for which C1 and C2

disagree. Train C3 with S3.

Testing—Given a test instance z
1)  Classify z by C1 and C2. If they agree on the class, this
class is the final classification.
2)  If they disagree, choose the class predicted by C3 as the
final classification.

ADABOOST
Arguably the best known of all ensemble-based algorithms,
AdaBoost (Adaptive Boosting) extends boosting to multiclass

and regression problems [11]. Its intuitive structure, elegant
theory, and its precise performance guarantee make AdaBoost
one of the most influential algorithms in recent history of com-
putational intelligence. The most popular of AdaBoost’s varia-
tions, AdaBoost.M1 for multiclass problems, is described here,
whose pseudocode appears in Algorithm 3 and its conceptual
block diagram in Figure 2.

Algorithm 3: AdaBoost
Inputs for Algorithm AdaBoost.M1

■ Training data S = {x1, x1, . . . , xn}, xi ∈ X with correct
labels yi ∈ �, � = {ω1, . . . , ωC};
■ Weak learning algorithm WeakLearn; integer B, number of
classifiers 

Initialize

D1(i ) = 1/n . (9)

Do for b = 1, 2, . . . , B :
1)  Draw bootstrap training data subset S∗

b according to cur-
rent distribution Db.
2)  Train WeakLearn with S∗

b , receive hypothesis hb : X → �.
3)  Calculate the error of hb:

εb =
∑

i

I [[hb(xi) �= yi ]] · Db(i ). If εb >
1
2
, abort . (10)

4)  Calculate normalized error

βb = εb/(1 − εb) ⇒ 0 ≤ βb ≤ 1 (11)

5)  Update distribution Db:

Db+1(i ) = Db(i )
Zb

×
{

βb, if hb(xi) = yi

1, otherwise
(12)

where Zb is a normalization constant chosen so that Db+1 is a
proper distribution.

End Do Loop

Test—Weighted Majority Voting: Given an unlabeled instance z,
1)  Obtain total vote received by each class

Vj =
∑

b:hb(z)=ω j

log(1/βb), j = 1, . . . , C . (13)

2)  Choose the class that receives the highest total vote as the
final classification. 

In AdaBoost.M1, bootstrap training data samples are drawn
from a distribution D that is iteratively updated such that subse-
quent classifiers focus on increasingly difficult instances. This is
done by adjusting D such that previously misclassified instances
are more likely to appear in the next bootstrap sample. The clas-
sifiers are then combined through weighted majority voting.
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The distribution D starts out as uniform (9), so that all instances
have equal probability to be drawn into S∗

1 . At each iteration b, a
new training set is drawn, and a weak classifier is trained to pro-
duce a hypothesis hb. The error of this hypothesis with respect
to the current distribution is calculated (10) as the sum of dis-
tribution weights of the instances misclassified by hb .
AdaBoost.M1 requires that this error be less than one half, a
requirement with its roots in the Jury Condorcet theorem [18]
mentioned above. The normalized error is obtained in (11) as
βb, which is then used in the distribution update rule of (12).
Note that Db(i) is reduced by a factor of βb, if xi is correctly
classified by hb, and left unchanged otherwise. When the distri-
bution is normalized so that Db+1(i) is a proper distribution,
the weights of those instances that are misclassified are effec-
tively increased. Once the training is complete, test data are
classified by this ensemble of B classifiers using weighted major-
ity voting, where each classifier receives a voting weight that is
inversely proportional to its normalized error [(13) and (14)].
The weighted majority voting then chooses the class ω receiving
the highest total vote from all classifiers:

hfinal(xi) = arg max
ω∈�

B∑

b=1

I [[hb(xi) = ω]] · log(1/βb). (14)

The theoretical analysis of this algorithm shows that the
ensemble error E of AdaBoost is bounded above by [11]

E < 2B�B
b=1

√
εb(1 − εb). (15)

Since εb < 1/2, ensemble error E monotonically decreases
as new classifiers are added. Conventional wisdom indicates that
adding classifiers—beyond a certain limit—would eventually
lead to overfitting of the data. One of the most celebrated fea-
tures of AdaBoost, however, is its surprising resistance to over-
fitting, a phenomenon whose explanation is based on the
margin theory [21].

STACKED GENERALIZATION AND MIXTURE OF EXPERTS
The idea in stacked generalization is to learn whether training data
have been properly learned. Bootstrap-inspired resampling pro-
vides a natural mechanism to do so: classifiers C1, . . . , CB, called
tier-1 classifiers, are first generated on bootstrap (or similarly
obtained) subsets of the training data. A meta-classifier C∗ is then
trained to map the tier-1 classifier outputs to their correct labels
[14]. CV-type selection is typically used: specifically, the entire
training dataset is divided into B blocks, and each tier-1 classifier is
first trained on (a different set of) B − 1 blocks of the training data.
Each classifier is then evaluated on the Bth (pseudo-test) block,
not seen during training. The outputs of these classifiers on their
pseudo-training blocks along with the actual correct labels for
those blocks constitute the training dataset for C*. 

Mixture of experts (MoE) is a similar algorithm, but tier-1
classifiers are combined through a weighted combination rule

that uses a gating network [15]. The gating network typically
implements the expectation-maximization (EM) algorithm on
the training data to determine the gating weights [16]. Figure 3
illustrates the structure for both algorithms, where boxes and
connections in solid lines are common to both, and dashed lines
indicate MoE-specific components only. 

EMERGING AREAS FOR BOOTSTRAP INSPIRED 
METHODS IN ENSEMBLE SYSTEMS
New areas have recently emerged that make creative use of
bootstrap-inspired ensemble systems. Three of these, incremen-
tal learning, data fusion, and missing feature, are described
below.

INCREMENTAL LEARNING
Many real-world applications, where data become available in
batches over a period of time, require that the information pro-
vided by each dataset be incrementally learned. The problem
becomes particularly challenging if the previously seen data are
no longer available when new data arrive, as the traditional
approach of combining old and new data to train a new classifier
then becomes infeasible. Learning from new data without hav-
ing access to old data, while retaining previously acquired
knowledge, is called incremental learning. For a sequence of
training datasets, an incremental learning algorithm produces a
sequence of hypotheses, where the current hypothesis describes
all data seen thus far but depends only on previous hypotheses
and the current data. 

This definition raises the stability–plasticity dilemma: some
information will inevitably be lost to learn new information
[22]. This is because stability is the ability of a classifier to retain
its knowledge, whereas plasticity is the ability to learn new
knowledge; and the two phenomena typically contradict each
other. Many popular classifiers, such as the multilayer percep-
tron (MLP), radial basis function networks, and support vector
machines are all stable classifiers. In their native form, they are
not structurally suitable for incremental learning. 

While there are several approaches for incremental learning,
we focus on recently developed ensemble-based systems that
make creative use of bootstrap based ideas. These approaches
involve generating an ensemble of classifiers for each dataset
that becomes available, resulting in an ensemble of ensembles. A
suitably modified version of AdaBoost, run iteratively for each
new dataset, can learn incrementally if the data distribution
does not change in time (stationary learning) [23]. However, a
more interesting—and arguably more challenging—problem is
the introduction of new classes, or different number of classes
being represented in each new dataset. By making strategic
modifications to the bootstrap resampling distribution, a similar
approach can still be used to learn incrementally under these
scenarios. Learn++ is such an algorithm, shown to learn incre-
mentally from new data, even when such data introduce new
classes [23], [24].

Recall that the distribution update rule in AdaBoost is
designed to focus its bootstrap samples on increasingly difficult
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instances, determined according to the performance of the last
classifier (12). However, in incremental learning, the algorithm
must also focus on those instances that carry novel informa-
tion. This can be accomplished more effectively by controlling
the distribution update rule (and the bootstrap resampling) by
the performance of the entire ensemble instead of the previous
classifier, and appropriately reinitializing the distribution every
time a new dataset is introduced, so that the algorithm can
immediately focus on the novel information in the new data.
Algorithm 4 shows the pseudocode of Learn++, which imple-
ments these ideas.

Algorithm 4: Learn++
Inputs for Algorithm Learn++

For each dataset drawn from DSk k = 1, 2, . . . , K
■ Training data S k = {xi|x ∈ X, i = 1, . . . , nk} with correct
labels yi ∈ �, � = {ω1, . . . , ωC};
■ Supervised algorithm BaseClassifier, and the number of
classifiers Bk to be generated

Do for each dataset DSk, k = 1, 2, . . . , K:

Initialize

w1(i) = D1(i) = 1/nk, ∀i, i = 1, 2, · · · , nk. (16)

If k > 1, Go to Step 6: Evaluate composite hypothesis Hk−1
Bk−1

on new S k, update weights; End If
Do for b = 1, 2, . . . , Bk:

1)  Set

Db = w

/
nk∑

i =1

wb (i ) so that Dbis a distribution (17)

2)  Draw a bootstrap sample S k
b of size n < nk from

Db, and train BaseClassifier on S k
b

3)  Obtain hypothesis hk
b , calculate its error

εk
b =

∑
i

I [[hk
b (xi) �= yi]] Db(i) on S k

b . (18)

If ε k
b > 1/2, discard hk

b , go to Step 2. Otherwise,

β k
b = ε k

b

/(
1 − ε k

b

)
(19)

4)  Obtain composite hypothesis

H k
b (x) = arg max

ωc∈�

k∑
p=1

b∑
q=1

log
(
1
/
β

p
q
)

I
[[

hp
q(x) = ωc

]]
(20)

5)  Compute the error of H k
b on S k:

E k
b =

mk∑
i =1

Db(i ) · I
[[

|H k
b (xi) �= yi|

]]
(21)

6)  Set

Bk
b = E k

b

/(
1 − E k

b

)
, (22)

update the weights:

wb+1(i ) = wb(i ) ×
{

Bk
b , H k

b (xi) = yi

1, otherwise.
(23)

End Do Loop
End Do Loop

[FIG3]  Block diagram for stacked generalization and mixture of expert models.
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[FIG4]  Block diagram of the Learn++ algorithm.
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[FIG5]  Typical response patterns for the VOC database.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
ET TL

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
XL

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
TCE

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
OC

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

CLASS→ ET OC TL TCE XL TEST
T S1 (3) 80 ± 4.1 93 ± 2.4 89 ± 1.9 - - 52 ± 0.9
T S2 (7) 86 ± 3.1 94 ± 1.9 78 ± 3.1 83 ± 6.9 - 68 ± 1.4
T S3 (14) 86 ± 3.5 95 ± 1.8 68 ± 2.9 92 ± 2.3 80 ± 8.6 84 ± 1.9

[TABLE 1]  GENERALIZATION PERFORMANCE (%) OF LEARN++ ON VOC DATA.
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Call Weighted Majority Voting and output the final hypothesis.

Hfinal (xi) = arg max
ωc∈�

∑
k

∑
b

log
(

1
/

β k
b

)

·
(

I
[[

hk
b (xi) = ωc

]])
. (24)

First, note that the distribution update rule in (23) is now a
function of the composite hypothesis Hk

b , which represents the
overall ensemble decision. It is obtained as the weighted
majority voting of all classifiers generated thus far, as shown in
(20). Hence, the bootstrap sample for training the next classifi-
er focuses specifically on what
the ensemble has not seen
and/or learned thus far, giving
it the incremental learning
ability. Also note that when
new data become available,
Learn++ first initializes the
distribution to be uniform on
the new data in (16) and calls
the then-current composite
hypothesis H k−1

Bk−1
to evaluate

the existing ensemble on the new data. The distribution is
adjusted based on this evaluation, before the first bootstrap
sample is even drawn from the new data. In doing so, the algo-
rithm tracks those instances of the new data that have already
been learned by the current ensemble, and instead focuses on
other instances that carry the novel information. Finally, note
that all classifiers are retained to prevent loss of information,
assuming that all previous data still carry relevant information.
If previous information is no longer relevant, then a forgetting
mechanism can be introduced to remove irrelevant classifiers
[25], [26]. The block diagram of the entire algorithm is illus-
trated Figure 4. We now look at two real-world applications
where Learn ++ can be used to learn incrementally from new
data that subsequently introduce instances of previously
unseen classes. 

APPLICATION: IDENTIFICATION OF VOLATILE 
ORGANIC COMPOUNDS (VOCS)
This is a challenging real-world problem of identifying VOCs
from the responses of six quartz crystal microbalance (QCM)
type chemical sensors. The five classes are the individual VOCs
to be identified: ethanol (ET), toluene (TL), xylene (XL), thri-
choloroethylene (TEC), and octane (OC). The features are
changes in resonant frequencies of six QCMs when exposed to a

particular VOC. Figure 5 illustrates the typical normalized
response patterns, where each bar represents the response from
one QCM. Note that TL and XL responses are particularly simi-
lar. The training data comes in three batches. In the first dataset
S1, data from ET (20 instances), OC (20 instances), and TL 
(40 instances) were available. Dataset S2 introduced 25 TCE
instances as well as 10 from ET, OC, and XL each, and the last
dataset S3 introduced 40 XL instances with only ten from each
of the previous four. A validation set was used to determine free
algorithm parameters such as ensemble size, and a separate
TEST set (15 to 30 instances in each class) was used for evaluat-
ing the performance. The small size of this database makes this

problem challenging but also
a good fit for bootstrap-based
approaches. The algorithm
was trained in three training
sessions TS1 ∼ TS3 , during
each of which only the cur-
rent dataset was seen by the
algorithm; hence, incremen-
tal learning. 

Table 1 presents the class-
specific classification per-

formance on the TEST data, as well as the overall generalization
performance on the entire TEST data after each training ses-
sion. Ensemble size for each session is shown in parentheses in
the first column. The 95% confidence intervals are obtained
through ten independent trials. The class-specific performances
on instances of the classes seen during training are very good,
but the overall performance is only 52% on the entire TEST
data after the first training session TS1. This makes sense, as the
algorithm has only seen three of the five classes of the overall
database. The performance increases steadily, reaching 68%
after TS2, and 84% after TS3. This demonstrates that the algo-
rithm can learn incrementally and also retain previously
acquired knowledge as indicated by retained class-specific
performances. 

APPLICATION: OPTICAL CHARACTER RECOGNITION (OCR)
The OCR database [27] consists of handwritten numerical char-
acters 0 ∼ 9, digitized on an 8x8 grid. This database was available
in its entirety at once; however, it was partitioned into four sets
to simulate an incremental learning environment. The larger
number of classes and the relatively larger size of the database
allowed us to experiment with challenging scenarios, such as dif-
ferent classes being represented in each database. Table 2 shows
the data distribution for this experiment. Similar to the VOC

DATASET ↓ 0 1 2 3 4 5 6 7 8 9 TEST (%)
S1 250 250 250 0 0 250 250 0 0 250 59.16 ± 0.11
S2 100 100 100 250 250 100 100 0 0 100 77.25 ± 0.36
S3 0 0 50 150 150 50 50 400 400 0 89.26 ± 0.97
TEST 100 100 100 100 100 100 100 100 100 100 —

[TABLE 2]  DATA DISTRIBUTION AND INCREMENTAL LEARNING GENERALIZATION PERFORMANCE ON OCR DATA.

A BOOTSTRAP-BASED METHOD CAN
PROVIDE AN ALTERNATIVE APPROACH
TO THE MISSING DATA PROBLEM BY

GENERATING AN ENSEMBLE OF
CLASSIFIERS, EACH TRAINED WITH A
RANDOM SUBSET OF THE FEATURES.



problem, the algorithm was trained in three training sessions,
using five MLPs as base classifiers in each session. For space con-
siderations, and due to large number of classes, generalization
performance on the entire TEST data (but not class-specific per-
formances) is also provided in Table 2, following each of the
training sessions. The increasing performance on the test data
once again demonstrates the incremental learning ability of the
approach. Incremental learn-
ing performance of the algo-
rithm on other datasets, with
comparison to AdaBoost, can
be found in [23].

DATA FUSION
In many applications of auto-
mated decision making, it is
also common to receive data
from different sources that
provide complementary information. A suitable combination of
such information is known as data fusion and can lead to
improved accuracy of the classification decision compared to a
decision based on any of the individual data sources alone. The
conceptual similarity between incremental learning and data
fusion allows an ensemble-based system for the former to be
suitably modified for data fusion: both involve learning from dif-
ferent sets of data, except that the consecutive datasets in data
fusion are obtained from different sources and/or consist of dif-
ferent features. Apart from regular voting weights, feature spe-
cific voting weights are also needed to incorporate any prior
information on the usefulness of a specific feature set.

APPLICATION: NONDESTRUCTIVE TESTING 
OF NATURAL GAS PIPELINES
Nondestructive testing (NDT) is the evaluation of an object to
detect internal defects without compromising the object’s
structural integrity. The defect is typically an anomaly in the
object’s structure, such as crack, corrosion, mechanical dam-
age, porosity, etc. The testing usually involves launching some
form of energy into the material and analyzing the received sig-
nal reflected from the discontinuities within the material.
Common NDT methods include ultrasonic testing, magnetic
flux leakage imaging, x ray, and eddy-current imaging. NDT
applications are numerous, such as defect identification in gas
transmission pipelines, power plant
tubings, engine components, etc.

In this application, we are interested
in automated identification of four
types of discontinuities commonly
occurring in gas transmission pipelines.
Nondestructive inspection of these
pipelines is critical, as certain defects,
such as cracks, may eventually cause
gas leak and explosion, if not detected
early. Figure 6 illustrates typical images
of five categories of interest, obtained

through two physically very different imaging modalities: magnetic
flux leakage and ultrasonic testing. 

Due to difficulties in collecting real data, this dataset was
also very small: 21 images for five categories. Two images from
each class were chosen randomly for training, and the remain-
ing 11 were used for testing. Keeping the training and test sizes
constant, the process was repeated 40 times, drawing a different

bootstrap sample in each trial.
Data from each imaging
modality was first used indi-
vidually to train an ensemble
of 30 classifiers using
Learn++ with MLPs as base
classifiers and discrete cosine
transform coefficients as fea-
tures. These classifiers were
then fused by weighted major-
ity voting. While identification

performances of individual sources were 81.60 ± 3.62% (MFL)
and 79.87 ± 2.69% (UT), the performance of the ensemble-
based fusion (of 60 classifiers) was 95.02 ± 1.99%. The signifi-
cant improvement over individual performances indicates that
the two data sources do provide complementary information,
and that such information can be fused using the ensemble-
based approach described above. Implementation details and
results on other applications can be found in [28].

MISSING FEATURES/MISSING DATA
It is not unusual for training, validation, or field data to have
missing features, as bad sensors, failed pixels, malfunctioning
equipment, data corruption, etc., are all familiar scenarios in
real-world applications. While theoretically rigorous and well-
established approaches exist to handle missing data, these typi-
cally involve estimating the values of the missing data, and they
require either sufficiently dense training data, some prior
knowledge of the underlying distribution that generated the
data, or both. In such cases, particularly if each instance is miss-
ing several features, methods that estimate the value of the
missing data become less reliable. Simple data imputation,
Bayesian estimation, and expectation maximization are exam-
ples of such approaches. 

A bootstrap-based method can provide an alternative
approach to the missing data problem by generating an ensemble

[FIG6]  Typical MFL and UT images for four discontinuities compared to no-defect.
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of classifiers, each trained with a random subset of the features.
Such an approach is similar to algorithms that employ random
subspace methods (RSM) [17], which are typically used to
improve classification accuracy, or to select optimal subset of fea-
tures when the feature space is redundant [29]. Using RSM for
missing features was recently addressed in [30], where random
feature selection was used within the Learn++ structure under
the name Learn++.MF.

Learn++.MF generates a sufficiently large number of classi-
fiers; each trained with a random subset of the features. Since
each classifier is trained on a subset of the features, an instance
with missing features can still be classified by majority voting
of those classifiers whose training data did not include the fea-
tures currently missing. In doing so, Learn++.MF takes full
advantage of the existing data, rather than trying to estimate
the values of the missing data. The algorithm makes the basic
assumption that there is randomly distributed redundancy in
the features, an assumption satisfied by many applications of
nontime-series data. Figure 7 illustrates this approach. On the
left, an ensemble of ten classifiers are trained on a six-feature
problem, f1, . . . , f6, using the full set of features. At the time of
testing, if an instance is missing even a single feature, say f2,
none of the classifiers can be used, since each classifier needs a
value for f2. On the right, the same ensemble is constructed by
training each classifier using only three randomly selected fea-
tures. Those features not used in training are indicated with an
X for each classifier. For example, C1 was trained using features
f1, f5, and f6; C2 was trained using f2, f4, and f6, etc. In this
case, a test instance missing feature f2 can still be classified by
(highlighted) classifiers C1, C3, C4, C6, C9, and C10. In fact, up
to three missing features can be accommodated in this particu-
lar example.

Algorithm 5 shows the pseudocode of Learn++.MF, where B
classifiers are trained using nof features randomly selected from
a total of f features. Fselection(b) lists those features used to train
bth classifier Cb. Note that each feature subset is an independent
bootstrap sample on the features. During testing, we first deter-
mine which features are missing in the given test instance zi,
and keep the index of these features in Mfeat(i). Classifiers

whose training features Fselection(b) do not include any of the
features in Mfeat(i) are combined through simple majority vot-
ing to classify zi.

Algorithm 5: Learn++.MF
Inputs for Algorithm Learn+++.MF

■ Sentinel value sen, indicating a missing or corrupt value,
and integer B, indicating the ensemble size.
■ Training data S = {xi|x ∈ � f ; i = 1, . . . , n} with correct
labels yi ∈ � = {ω1, . . . , ωC}.
■ Number of features, nof < f , to be used to train each
classifier.

Do for b = 1, 2, . . . , B:
1)  Draw nof bootstrap features into Fselection(b).
2)  Generate classifier Cb using features in Fselection(b).
3)  If the performance of Cb on S, Perfb < 50%, discard Cb

and go to Step 2.
End Do Loop

Validation/Testing
Given test data S̃ = {zi|z ∈ � f ; i = 1, . . . , m}

Do for i = 1, 2, . . . , m :
1)  Determine missing features of zi :

Mfeat(i ) = arg
j

(zi( j) == sen), ∀ j, j = 1, . . . , f (25)

2) Classify zi with majority voting:

C(zi) = arg max
ωc∈�

∑

b:Cb(zi)=ωc

I [[Mfeat(i ) /∈ Fselection(b)]].

(26)

End Do Loop

The algorithm’s primary free parameter nof, indicating the
number of features to be selected into the feature subset, must
be determined judiciously. Choosing nof much smaller than f

[FIG7]  Training an ensemble of classifiers on random feature subsets.
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allows the algorithm to accommodate instances with larger
number of features missing (up to f − nof ). However, using
very few features to train each classifier may result in poor clas-
sifier performance, as training with very few features may pre-
vent the classifier from converging to a solution. 

APPLICATIONS
We now return to the five-class, six-feature VOC identifica-
tion problem introduced earlier. Previous experiments using
optimized classifiers trained
on the entire dataset
(S1 ∪ S2 ∪ S3 ) with all six
features, and evaluated on the
test data with no missing fea-
tures, provided a generaliza-
tion performance of 86.2%,
setting the benchmark target
performance for this database.
Two values of nof were consid-
ered: nof = 2 and nof = 3,
out of six features. Missing features were simulated by ran-
domly removing a certain ratio of the features [percent miss-
ing features (PMF)] from the test data. Table 3 summarizes the
test performances and the percentage of instances that could
be processed—correctly or otherwise—with the existing
ensemble. All results indicate 95% confidence intervals
obtained through ten independent trials of the entire experi-
ment. The first row with 0.0% PMF is the algorithm’s perform-
ance when individual classifiers were trained using nof
features but evaluated on a fully intact test data. The proximity
of this number (85.3% for nof = 3) to the benchmark target
(86.2%, nof = 6) indicates that this dataset does in fact have
redundant features. 

Since the feature subsets for each classifier are selected at
random, it is possible that a particular set of features available
for any given instance—after removing the missing ones—do
not match the feature combinations selected by any of the
classifiers. Such an instance cannot be processed by the
ensemble, as there would be no classifier trained with the
unique combination of the available features. The column “%
Instances Processed (PIP)” in Tables 3 and 4 indicate the per-
centage of those instances that can be processed by the ensem-

ble. PIP decreases as PMF
increases, particularly for
datasets with large number of
features. In this experiment,
98% of all instances could
still be processed (using
nof = 3), at an accuracy of
81.54% (only 4.5% drop from
target rate), even when 20%
of data were missing.

Also consider the 64-fea-
ture, ten-class OCR database, which had a target performance of
98.5%. Table 4 presents the results of the ensemble using three
nof values of 16, 20, and 24 out of 64 features. Notice for this
dataset that the performances do not change much for different
values of nof; however, the PIP differs substantially at high PMF
cases: while larger nof values provide (slightly) higher initial
performance, smaller nof values—as expected—allow larger
portion of instances to be processed as the amount of missing
data increase.

CONCLUSIONS
Bootstrap-based algorithms have had profound influence on
how we make inference from small sample datasets. Perhaps

(nof = 2/6) (nof = 3/6)

% MISSING % MEAN % INSTANCES % MEAN % INSTANCES  
FEATURES (PMF) PERFORMANCE PROCESSED (PIP) PERFORMANCE PROCESSED (PIP)
0.00% 77.45 ± 0.00 100 85.29 ± 0.00 100
2.50% 77.70 ± 0.47 100 84.80 ± 0.23 100
5.00% 77.89 ± 0.58 100 84.79 ± 0.76 100
7.50% 77.39 ± 0.83 100 84.75 ± 0.87 100
10.00% 77.18 ± 0.60 100 84.28 ± 0.69 100
20.00% 77.08 ± 0.90 100 81.56 ± 0.66 98

[TABLE 3]  LEARN++ .MF PERFORMANCE ON VOC DATA WITH UP TO 20% MISSING FEATURES (B = 200).

(nof = 16/64) (nof = 20/64) (nof = 24/64)

% MEAN % MEAN % MEAN
(PMF) PERFORMANCE (PIP) PERFORMANCE (PIP) PERFORMANCE (PIP)
0.00% 96.27 +/− 0.00 100 96.69 +/− 0.00 100 97.02 +/− 0.00 100
2.50% 96.25 +/− 0.04 100 96.66 +/− 0.07 100 97.02 +/− 0.08 100
5.00% 96.11 +/− 0.11 100 96.50 +/− 0.09 100 96.93 +/− 0.08 100
7.50% 95.99 +/− 0.11 100 96.41 +/− 0.15 100 96.50 +/− 0.08 100
10.00% 95.78 +/− 0.07 100 96.08 +/− 0.10 100 95.86 +/− 0.17 99
20.00% 92.44 +/− 0.07 97 90.61 +/− 0.29 83 89.89 +/− 0.42 59

[TABLE 4]  LEARN++ .MF PERFORMANCE ON OCR DATA WITH UP TO 20% MISSING FEATURES (B = 1,000).

USING DIFFERENT TRAINING DATA
SUBSETS OBTAINED BY RESAMPLING 

OF THE ORIGINAL TRAINING DATA 
IS MOST COMMONLY USED 
AND CONSTITUTES THE LINK 

BETWEEN ENSEMBLE SYSTEMS 
AND BOOTSTRAP TECHNIQUES.
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somewhat more quietly, bootstrap-inspired ensemble
approaches have also enjoyed great attention in computational
intelligence problems, particularly for those problems with
small data size. This article reviewed several examples of these
algorithms that allow us to create strong classifiers from an
ensemble of weaker ones. Such algorithms make good use of
small datasets by training multiple classifiers on bootstrap sam-
ples of the available data.

Bootstrap approaches also allow us to address a suite of new
challenges in computational intelligence. Three such problems
were reviewed in this article. Incremental learning of new infor-
mation from additional datasets, particularly when such data
introduce new concept classes, can be achieved by creating an
ensemble of ensembles. A new ensemble is generated using each
new dataset, where individual classifiers are trained with boot-
strapped samples of the training data, whose distribution is
adjusted to ensure that the novel information is efficiently
learned. In data fusion, a similar approach is followed, even
when the individual datasets are drawn from different sources,
and hence use different feature sets. Finally, for the missing fea-
ture problem, an ensemble of classifiers is trained, where train-
ing data for each classifier is obtained as a bootstrap sample on
the features. The instances missing certain features are then
classified by the combination of those classifiers whose training
data did not include the missing features.
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