
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011 1517

Incremental Learning of Concept Drift
in Nonstationary Environments

Ryan Elwell, Member, IEEE, and Robi Polikar, Senior Member, IEEE

Abstract— We introduce an ensemble of classifiers-based
approach for incremental learning of concept drift, characterized
by nonstationary environments (NSEs), where the underlying
data distributions change over time. The proposed algorithm,
named Learn++.NSE, learns from consecutive batches of data
without making any assumptions on the nature or rate of drift;
it can learn from such environments that experience constant or
variable rate of drift, addition or deletion of concept classes, as
well as cyclical drift. The algorithm learns incrementally, as other
members of the Learn++ family of algorithms, that is, without
requiring access to previously seen data. Learn++.NSE trains one
new classifier for each batch of data it receives, and combines
these classifiers using a dynamically weighted majority voting.
The novelty of the approach is in determining the voting weights,
based on each classifier’s time-adjusted accuracy on current
and past environments. This approach allows the algorithm to
recognize, and act accordingly, to the changes in underlying
data distributions, as well as to a possible reoccurrence of
an earlier distribution. We evaluate the algorithm on several
synthetic datasets designed to simulate a variety of nonstationary
environments, as well as a real-world weather prediction dataset.
Comparisons with several other approaches are also included.
Results indicate that Learn++.NSE can track the changing
environments very closely, regardless of the type of concept drift.
To allow future use, comparison and benchmarking by interested
researchers, we also release our data used in this paper.

Index Terms— Concept drift, incremental learning, learning in
nonstationary environments, multiple classifier systems.

I. INTRODUCTION

MUCH of the recent history of machine learning research
has focused on learning from data assumed to be

drawn from a fixed yet unknown distribution. Learning in a
nonstationary environment (or learning concept drift), where
the underlying data distribution changes over time; however,
has received much less attention despite the abundance of
applications that generate inherently nonstationary data. While
algorithms for learning in such environments have recently
started to appear in the literature, many make restrictive
assumptions such as assuming slow or gradual drift, non-
cyclical environments, no new classes, partial availability of
old data, or have not been tested on meaningful and truly

Manuscript received July 31, 2010; revised January 7, 2011, and April 6,
2011; accepted June 4, 2011. Date of publication August 4, 2011; date of
current version October 5, 2011. This work was supported by the National
Science Foundation under Grant ECCS 0926159.

The authors are with the Signal Processing & Pattern Recognition Lab-
oratory, Electrical & Computer Engineering Department, Rowan University,
Glassboro, NJ 08028 USA [e-mail: ryan.elwell@gmail.com; (Corresponding
author: polikar@rowan.edu)].

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2011.2160459

nonstationary real world test beds. Yet, if the ultimate goal of
computational intelligence is to learn from large volumes of
data that come from real applications, then the need for a gen-
eral framework for learning from—and adapting to—a nonsta-
tionary environment can be hardly overstated. Given new data,
such a framework would allow us to learn any novel content,
reinforce existing knowledge that is still relevant, and forget
what may no longer be relevant, only to be able to recall, if and
when such information becomes relevant again in the future.

This paper describes such a framework and proposes an
incremental learning algorithm, Learn++.NSE, that does not
put restrictions on how slow, rapid, abrupt, gradual, local,
global, cyclical or otherwise changes in distributions may be,
whether new data introduce new concept classes or remove old
ones, or whether old data are still relevant or even available.
Learning new data in the absence of old data requires incre-
mental learning, which raises the so-called stability–plasticity
dilemma, where “stability” describes retaining existing (and
still relevant or recurring) knowledge and “plasticity” refers
to learning new knowledge [1]. We show that learning in such
an environment and obtaining a meaningful stability–plasticity
balance can be achieved by a strategic combination of an
ensemble of classifiers that use dynamically assigned weights.

Interestingly, we also show that the proposed framework
is consistent with the existing models of human learning,
such as the Schema [2], [3], and Scaffolding Theory [4].
Schema describes a body of knowledge that is continually
updated and modified as information is acquired through
new experiences, given that current and prior knowledge
may conflict. Scaffolding describes the role of a supervisor
in monitoring incoming data and learner’s performance to
improve the learning process.

We organize our discussion as follows. We introduce the
human learning theory in Section II, followed by an overview
of learning concept drift in Section III. The Learn++.NSE
algorithm is introduced in Section IV, followed by a descrip-
tion of real and synthetic datasets used to evaluate the algo-
rithm on various drift scenarios, as well as the comparative
results of Learn++.NSE and other approaches on these sce-
narios in Section V. Discussions and concluding remarks are
provided in Section VI.

II. HUMAN LEARNING

Knowledge acquisition is fundamental to both human and
machine learning, and since the brain is often confronted with
new environments containing information that may conflict
with its prior knowledge or experience, connections between

1045–9227/$26.00 © 2011 IEEE

1518 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

machine and human learning can provide guidelines for devel-
oping concept drift algorithms. In this section, we briefly
review the two main theories of human leaning, and point
out the similarities and connections to machine learning.

A. Schema Theory

Piaget asserts that an equilibrium, similar to that seen in
physical processes, also applies to human cognition, describ-
ing the learning process as a constant effort to maintain or
achieve balance between prior and new knowledge [5], [6].
The machine learning counterpart (henceforth indicated by
↔ notation) is of course the [↔ stability–plasticity dilemma]
[1]. Piaget’s model forms the basis of a foundational theory
for human learning, and has been extensively researched,
specifically with regard to the schema theory [2], [3].

Schema theory is a psychological model that describes
the process of human knowledge acquisition and memory
organization for future decision-making. Two properties of this
process are schemata construction [↔ incremental learning],
which is building and categorization of the knowledge base as
new information become available, and schemata activation,
[↔ evaluation/generalization], the utilization of schema to
interpret unknown or novel information.

Schemata construction is the process of building a knowl-
edge base that can adapt to new information, which may
or may not be consistent with the prior knowledge. The
conflicts between the two are the building blocks of human
(and computer) learning. Three terms are used to describe how
such conflicts are handled. Accretion occurs when information
is remembered or interpreted in the context of existing schema,
i.e., when new information is agreeable with the current body
of knowledge. Minor differences between incoming infor-
mation and prior knowledge often necessitate tuning of (or
assimilation into) the schema. When new knowledge cannot be
accommodated under existing schema because of severe con-
flict, the result is restructuring (or accommodation) to create
new schemata that supplements or replaces the prior knowl-
edge base. The machine learning counterpart of schemata
construction is [↔ incremental learning], which also needs
to address the same accretion, tuning and restructuring issues.

Schemata activation occurs for two reasons. First, schemata
are activated during the data acquisition process in order
to determine which type of schemata construction (tuning,
accretion, restructuring) should take place. Here, the current
knowledge base must be evaluated and compared to new
knowledge in order to make connections and determine its
adequacy to handle or understand the new information.

Second, schemata are activated for prediction and extrap-
olation, enabling the brain to interpret novel data and make
predictions; naturally, such predictions are based on current
schemas. Not only can the brain interpret novel information,
but it can also hypothesize about missing material within its
own knowledge base, hence the brain is quite robust in the
presence of structural damage that leads to memory loss.

The counterpart of activation in machine learning is evalu-
ation (validation) of the model performance to iteratively fine
tune the next step of learning as new data become available.

B. Scaffolding Theory

Scaffolding is a tutoring theory developed to enhance human
learning of complex data [4]. Scaffolding is a supervised
learning approach to build schemata by breaking up complex
information such that it is learned in chunks [↔ batch learn-
ing], and by periodically intervening to evaluate performance
within the scope of the most recent information. As we
describe in Section IV, this is precisely what Learn++.NSE
does as it updates the ensemble, one classifier at a time, based
on the current and previous errors on the current batch of data.

The goal of scaffolding is to provide a learner with
both feedback and guidance. Passive supervision provides
the learner with experience–consequence combinations [↔
features–correct labels] as knowledge [↔ data] become avail-
able; whereas active scaffolding enhances learning by com-
plexity reduction [↔ preprocessing, feature selection], prob-
lematizing [7], i.e., finding conflicts between current and
prior knowledge [↔ drift detecting], and fading [7], [8],
preventing redundancy when an environment has been learned
[↔ pruning].

III. CONCEPT DRIFT/NON-STATIONARY LEARNING

A. Definitions

Informally, concept drift refers to a change in the class
(concept) definitions over time, and therefore a change in
the distributions from which the data for these concepts are
drawn. An environment from which such data is obtained is a
non-stationary environment. Starting with the Bayes posterior
probability of a class that a given instance belongs, P(ω|x) =
P(x |ω)P(ω)/P(x), concept drift can be formally defined as
any scenario where the posterior probability changes over
time, i.e., Pt+1(ω|x) �= Pt (ω|x). An in-depth look at this
fundamental definition is important to understand the different
aspects of concept drift.

P(x) describes the feature-based probabilities (evidence) of
the data. Observing P(x) over time allows us to see general
changes in the environment that generates this data. Although
a change in overall distribution of the features often means that
the true decision boundaries are shifting as well, an observa-
tion of change in P(x) is insufficient to definitively indicate
concept drift because of its independence of the class labels.

P(x |ω) describes the likelihood of observing data point x
within a particular class. This likelihood measurement is a
class-dependent probability and is governed by the previously
seen data instances. A shift in likelihood would seem to
indicate that the class labels may also be changing. However,
we assert that it is not until the distribution of one class
shifts such that the true class boundaries are altered that we
can call this change a real concept drift. Class drift without
overlapping of true class boundaries is known as virtual
concept drift [9], and merely shows that the learner is being
provided with additional data from the same environment.
Virtual drift is the result of an incomplete representation of
the true distribution in the current data. The key difference
is that real drift requires replacement learning (where old
knowledge becomes irrelevant [restructuring]), whereas virtual

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1519

drift requires supplemental learning (adding to the current
knowledge [↔ tuning]).

Finally, P(ω), defines class prior probabilities, and
relates class balance to the overall distribution. Since there
is no relation to the features, observing P(ω) does not
reveal information about the decision boundaries between
classes. Yet it does reveal another fundamental aspect of
non-stationary environments dealing with class imbalance, as
class imbalance is known to negatively impact classification
performance [10], [11].

Concept drift can also be viewed in a more abstract sense as
an obstacle caused by insufficient, unknown or unobservable
features in a dataset, a phenomenon known as hidden context
[12]. In such a case, there is an underlying phenomenon that
provides a true and static description over time for each class,
which, unfortunately, is hidden from the learner’s view. View-
ing the problem with the benefit of this (hidden) context would
remove the non-stationarity. Yet, the learner must cope with
the available information. Since we can never know the hidden
context, we use the aforementioned probabilistic definition of
concept drift to describe nonstationary environments.

Quinonero-Candela [11], Minku [13], and Kuncheva [14],
[15] also provided comprehensive summaries for characteriz-
ing different types of concept drift with respect to its speed,
randomness, and cyclical nature. Drift speed describes the
displacement rate in Pt (ω|x) from one time step to the next,
Pt+1(ω|x). Larger displacement within a step denotes fast
drift and usually results in high classifier error. Gradual drift,
however, appears in smaller displacements, results in lower
classification error, and as a result, is more difficult to detect.

Drift randomness is an important descriptor in discerning
between non-stationary and noisy data, and can be described
as the variance of a distribution over a short period time.
Randomness can be viewed in terms of its frequency and mag-
nitude: high variance between two periods of time indicates
a highly unstable environment which, as this level increases,
approaches a state where the environment cannot be learned.

The cyclical nature of drift is a phenomenon that can be
observed in many real-world applications such as climate or
electricity demand modeling. In such cases, class definitions
change in such a way that a previous environment may recur
after some period of time. This recurrence can be periodic or
random.

Finally, addition or deletion of new concepts is typically not
addressed by concept drift algorithms; as such events are char-
acterized more by concept change rather than concept drift.
Hence, we use the more general terminology of learning in
nonstationary environments or nonstationary learning (NSL)
to refer to any drift or change regardless of its nature. The
framework proposed in this paper addresses all issues of NSL,
not just those associated with concept drift.

B. Desired Properties of Concept Drift/NSL Algorithms

Combining schema and scaffolding theories, Kuncheva’s
suggested desiderata for learning concept drift [15], and the
generally accepted definitions of incremental learning [16],
[17], we use the following guidelines to develop a framework

for learning in non-stationary environments. 1) Any given
instance of data can only be seen once for the purpose of
training; therefore knowledge from each instance must be
generalized, summarized or stored in some way in the model
parameters for future use. This requires a truly incremental
(or one-pass) learning, where previous data may not be used
for future training. 2) Since the most recent dataset is a rep-
resentation of the current environment, knowledge should be
categorized based on its relevance to the current environment,
and be dynamically updated as new data become available.
3) The learner should have a mechanism to reconcile when
existing and newly learned knowledge conflict with each other.
More specifically, there should be a mechanism for monitoring
both the incoming data and the learner’s performance on
new and old data for the purpose of complexity reduction,
problematizing, and fading. 4) The learner should have a
mechanism to forget or discard information that is no longer
relevant, but preferably with the added ability to recall such
information if the drift or change follow a cyclical nature.
5) Knowledge should be incrementally and periodically stored
so that it can be activated to produce the best hypothesis for
an unknown (unlabelled) data instance at any time during the
learning process.

C. Review of Existing Approaches

NSL has recently been receiving increasing attention, in part
due to many practical applications, such as spam, fraud or
climate change detection, where data distributions inherently
change over time. Algorithms designed for concept drift can be
characterized in several ways, such as online versus batch algo-
rithms; single classifier versus ensemble-based approaches;
or active versus passive approaches, with active approaches
featuring a drift detection mechanism, learning only when drift
is detected. Passive approaches, on the other hand, assume
possibly ongoing drift and continuously update the model with
each new data(set).

Online algorithms learn one instance at a time, whereas
batch learning requires blocks of instances. Online learners
have better plasticity but poorer stability properties. They also
tend to be more sensitive to noise as well as to the order
in which the data are presented. Batch learners benefit from
the availability of larger amounts of data, have better stability
properties, but can be ineffective if the batch size is too
small, or if data from multiple environments are present in the
same batch. Most batch learners of concept drift typically use
some form of windowing to control the batch size. Earliest
examples of this—also called instance selection—approach
include single classifier, passive batch algorithms STAGGER
[18] and FLORA [12], which use a sliding window to choose a
block of (new) instances to train a new classifier. The window
size is modified via “window adjustment heuristic,” based on
how fast the environment is changing. FLORA has a built-
in forgetting mechanism with the implicit assumption that
those instances that fall outside the window are no longer
relevant, and the information carried by them can be forgotten.
More recently, there have been several additions to this
window-based approach, each introducing its own heuristics

1520 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

on drift detection [19], choice of classifier (such as decision
trees, fuzzy rules, kNN, etc.) [20], [21], or establishing error
thresholds [22]. The primary shortcoming of these approaches
is that they are often not incremental (they need access to
old data), or cannot handle cyclic environments. Other single
classifier active approaches typically include novelty (anom-
aly) detection to determine when changes occur, e.g., by using
control charts-based CUSUM [23], [24], confidence interval on
error [22], [25], other statistical approaches [26], treating NSL
as a prediction problem [27], or deriving online update rules
based on minimization of a penalty function for the perceptron
[28], [29]. Another group of approaches use information theo-
retic measures, e.g., entropy, mutual information or Hoeffding
bounds of individual features for detecting drift and updating a
decision tree [30]–[32]. Many of these approaches also include
a FLORA-like windowing mechanism, so do Hulten et al.’s
concept adapting very fast decision tree [33] or Cohen et al.’s
incremental online-information network [25], [34] algorithms.
Bayesian or Kalman filter-based approaches for online update
of model parameters have also been proposed, e.g., linearly
separable rules [28], for regression [35], or semi-supervised
learning problems [36].

The ensemble-based approaches that combine multiple clas-
sifiers constitute a new breed of NSL algorithms. Kuncheva
puts ensemble-based approaches into one of the three general
categories [15]: given new data, those that: 1) update the
combination rules or voting weights of a fixed ensemble, such
as [37], [38]; the origins of which can be traced to Littlestone’s
Winnow [39] and Freund and Schapire’s Hedge (a precursor of
AdaBoost) [40]; 2) update the parameters of existing ensemble
members using an online learner [22], [41], and/or 3) add new
members to grow an ensemble with each incoming dataset.
The latter category approaches typically use a passive drift
detection along with fixed ensemble size, where the oldest (as
in Street’s Streaming Ensemble Algorithm (SEA) [42], and
Chen and He’s Recursive Ensemble Approach (REA) [43]) or
the least contributing ensemble members are replaced with a
new one (as in Tsymbal’s Dynamic Integration [44], Kolter
and Maloof’s online algorithm, Dynamic Weighted Majority
(DWM) [45]). While most ensemble approaches use some
form of voting, there is disagreement on the type of voting
to be used. For example, Tsymbal relates classifier weight
to performance as well as a proximity factor, giving higher
weight to a classifier if its training data were in the same region
as the testing example [44], whereas Gao—indicating that
weights based on classifier error on data whose distribution
changes is uninformative for future datasets—prefers a simple
(unweighted) majority vote [46].

Other efforts that follow similar ensemble approaches
include [47]–[50], as well as hybrid approaches such as
random forests with entropy [51], and Bifet’s Hoeffding
tree with Kalman filter-based active change detection using
adaptive sliding window (ADWIN) [52], [53]. ADWIN is
also available within the WEKA-like software suite, massive
online analysis at [54]. Alternatively, Scholz and Klinkenberg’s
approach maintains two ensembles—one trained on the current
data, and one trained on a cache of previous data (hence
nonincremental), and chooses the better of the two ensem-

bles in each time step. Classifier weights are based on the
“LIFT” of each classifier, measuring the correlation between
the classifier’s decision and the true class based on conditional
probabilities. Varying LIFT values for a classifier across time
indicate the existence of drift [55]. The way in which the LIFT
values are computed, however, restricts the algorithm to binary
classification problems only.

D. Drift Detection

We conclude this section with a short discussion on drift
detection. Recall that the main goal of the supervisor in
scaffolding theory of human learning is to provide guidance
and feedback to the learner by: 1) problematizing data (deter-
mining and/or removing conflicts between incoming data and
the current knowledge base); 2) simplifying complex data;
and 3) fading, i.e., ceasing the learning process when an
environment has been learned. Each of these tasks requires
some level of feedback about the incoming data or the learner’s
performance at any given time. This feedback is used to
discern how the new information differs from previous data,
and determine the learner’s capability to grasp current con-
cepts. In computer learning of nonstationary environments, the
corresponding problem is to determine when the environment
has sufficiently changed such that the existing models can
no longer explain the current data. Determining when such
a change, i.e., whether concept drift has occurred, is known
as drift detection.

As mentioned above, concept drift algorithms can be active
or passive with respect to the drift detection mechanism. An
active drift detection method seeks to pinpoint the time and
severity of the drift, and allow the classifier to modify or con-
tinue learning accordingly. Hence, active learning integrates
all scaffolding techniques to fine-tune the learner’s plasticity.
A significant downside of active learning, however, is the risk
of having an imperfect detection mechanism which may—and
often does—yield false reports, an all too common occurrence
particularly for noisy datasets. In passive drift detection,
however, the learner acknowledges that the environment may
change at any time or may be continuously changing. The
algorithm then continually learns from the environment by
constructing and organizing the knowledge base. If change has
occurred, this change is learned. If change has not occurred,
existing knowledge is reinforced.

IV. LEARN++ .NSE

A. Background: The Learn++ Family of Algorithms

The proposed algorithm, Learn++.NSE, is a member of
the Learn++ family of algorithms. The common denominator
in all Learn++ algorithms is an ensemble of classifiers that
are incrementally trained (with no access to previous data)
on incoming batches of data, and combined with some form
of weighted majority voting. The distribution update rule for
choosing data for training subsequent ensemble members, and
the mechanism for determining the voting weights are the
distinguishing characteristics of different Learn++ algorithms.
The original Learn++ [16] is an AdaBoost-like algorithm for
learning from a stationary distribution from which data are

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1521

incrementally acquired in batches. Learn++.NC [17] was later
developed for learning New Classes (NC), with new data from
existing classes assumed to remain stationary. Learn++.NC
employs a dynamically weighted consult-and-vote mechanism
to determine which classifiers should or should not vote for
any given instance based on the (dis)agreement among clas-
sifiers trained on different classes. In Learn++.MF, ensemble
members are trained on different subsets of the features, so that
Missing Features (MF) can be accommodated by combining
ensemble members trained on the currently available features
[56]. While all former Learn++ algorithms do some form of
incremental learning, none of them is capable of learning from
a nonstationary environment, and Learn++.NSE is developed
specifically to fill this gap.

Preliminary versions of Learn++.NSE and its early results
have appeared in conference proceedings, such as [57]–[60].
These efforts primarily investigated the impact of: 1) the
type of base classifier [MLP versus SVM. versus Naïve
Bayes(NB)]; 2) the rate of drift (e.g., slow versus rapid);
and 3) pruning (whether age or error-based pruning improve
performance). Based entirely on synthetic data experiments,
we found that the Learn++.NSE is generally independent of
the base classifier, works best if no pruning is used (particu-
larly for recurrent environments), and as expected, the slower
the drift, the better the environment can be tracked. In this
paper, we formally introduce the algorithm in detail, show
that it works on a variety of concept drift scenarios, including
variable drift and class addition/removal, provide a very infor-
mative analysis of voting weights, and compare Learn++.NSE
to several existing popular approaches on carefully designed
synthetic as well as real world data.

B. Algorithm Overview

Learn++.NSE is an ensemble-based batch learning algo-
rithm that uses weighted majority voting, where the weights
are dynamically updated with respect to the classifiers’ time-
adjusted errors on current and past environments. It employs
a passive drift detection mechanism, and uses only current
data for training. It can handle a variety of nonstationary
environments, including sudden concept change, or drift that
is slow or fast, gradual or abrupt, cyclical, or even variable
rate drift. It is also one of the few algorithms that can handle
concept addition (new class) or deletion of an existing class.

The algorithm is provided with a series of training datasets
Dt = xt (i)εX; yt(i)εY , i = 1, . . . , mt , where t is a time
index. Hence, xt (i) is the i th instance of the dataset (environ-
ment), drawn from an unknown distribution Pt (x, y), which
is the current snapshot of a possibly drifting distribution at
time t . At time t + 1, we obtain a new batch of data drawn
from Pt+1(x, y). At each time step there may or may not have
been a change in the environment, and if there was, the rate
of this change is also not known, nor assumed to be constant.
Furthermore, we presume all previously seen data—whether
any of it is still relevant or not—is no longer available, or
storing previous data is not possible or not allowed. Hence,
we ask the algorithm to work in a truly incremental fashion.
Any information previously provided by earlier data must

i=1

Input: For each dataset Dt t = 1,2, ...
Training data {xt (i) ∈ X; yt (i) ∈ Y = {1, ... , c}}, i = 1, ... , mt

Supervised learning algorithm BaseClassifier
Sigmoid parameters a (slope) and b (infliction point)
Do for t = 1,2, ...
If t = 1, Initialize D1 (i) = wt(i) = 1/m1, ∀i,
Go to step 3. Endif
1. Compute error of the existing ensemble on new data

 Et = �mt 1/mt . �Ht−1 (xt (i)) ≠ yt (i)�
2. Update and normalize instance weights
 wt = . Et, Ht−1 (xt (i)) = yt (i)
 1, otherwise
 Set Dt = wt/�mt wt(i) ⇒ Dt is a distribution
3. Call BaseClassifier with Dt, obtain ht: X →Y
4. Evaluate all existing classifiers on new data Dt

 εt = �m
t Dt (i) �h

k
(xt (i)) ≠ yt (i)� for k = 1, ..., t

 If εt >1/2, generate a new h
t
.

 If εt >1/2, set εt = 1/2,
 βt = εt

5. Compute the weighted average of all normalized
 errors for kth classifier h

k
: For a,b ∈ R

 ωt = 1/(1 + e−a(t−k−b)), ω t = ωt /�t−k ωt−j

 βt = �t−k ωt−j βt−j, for k = 1, ..., t
6. Calculate classifier voting weights
 Wt = log(1/βt

7. Obtain the final hypothesis
 Ht (xt (i)) = arg max

c
�

k
Wt

i=1

i
1
mt

i=1

k

k=t

k<t k

k k
), for k = 1, ..., t → 0 ≤ βt

k
≤ 1

k
/(1 − εt

k k k j=0 k

k j=0 k k

k k
), f or k = 1, ..., t

k
. �h

k
(xt (i)) = c�

 (1)

 (2)

 (3)
 (4)

 (5)

 (6)

 (7)
 (8)

 (9)

 (10)

{

Fig. 1. Learn++.NSE algorithm.

necessarily be stored in the parameters of the previously
generated classifiers.

Depending on the nature of drift/change, Learn++.NSE
retains [↔ accretion], constructs or (temporarily) discards
knowledge [↔ tuning, restructuring], so that it can be properly
categorized [↔ activation] when asked to identify new data.

The knowledge base is initialized by creating a single clas-
sifier on the first available batch of data. Once prior knowledge
is available, the current ensemble [↔ the knowledge base] is
evaluated on the new data (Step 1 in Fig. 1). In Step 2, the
algorithm identifies which examples of the new environment
are not recognized by the existing knowledge base [↔ prob-
lematizing]. The knowledge base is updated [↔ restructuring]
in Step 3, by adding a new classifier trained on the current
training data. In Step 4, each classifier (including the one
that has just been created) is evaluated on the training data.
As previously unknown data have been identified in Step 2,
the penalty for misclassifying such data is reduced in the
error calculation. In other words, more credit is given to clas-
sifiers capable of identifying previously unknown instances,
while classifiers that misclassify previously known data are
penalized. In Step 5, classifier error is weighted with respect
to time so that recent competence (error rate) is considered
more heavily for categorizing knowledge. Voting weights are
determined in Step 6 as log-normalized reciprocals of the
weighted errors: if a particular classifier’s knowledge does not
match the current environment, that classifier receives little or
no weight, and is effectively—but only temporarily—removed

1522 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

from the knowledge base. The classifier is not discarded: if
its knowledge becomes relevant again, it is recalled through
higher voting weights it receives on the then current envi-
ronment. Learn++.NSE will only forget temporarily, which is
particularly useful in cyclical environments. The final decision
is obtained in Step 7 as the weighted majority voting of the
current ensemble members.

C. Algorithm Description

As Dt becomes available at time t , Learn++.NSE is pre-
sented with xt (i), i = 1, . . . , mt instances and corresponding
class labels yt (i) At t = 1, instance specific error weights of
the first batch of data, wt (i), and a penalty distribution D1(i)
are initialized to be uniform [as in (1)]. For all subsequent
time steps, these quantities are initialized based on the error
of the existing ensemble on the then current data. At each time
step t , a new classifier is generated, called the t th hypothesis ht

(we use the terms classifier and hypothesis interchangeably).
The ensemble obtained by all hypotheses generated up to and
including time t , is then referred to as the composite hypothesis
H t . With the arrival of each new dataset, Learn++.NSE starts
with computing the error Et of the existing composite hypoth-
esis (H t−1) on the current data in Step 1, which is proportional
to the sum of misclassifications of H t−1 (2). The normalization
factor of 1/mt ensures that 0 ≤ Et ≤ 1 is satisfied. The
instance error weights and the penalty distribution are then
updated in Step 2 using (3) and (4), respectively. The error
weight of instance xt(i) is reduced by a factor of Et < 1
if it is correctly classified by H t−1. Normalizing the error
weights by their sum then provides us with the updated penalty
distribution.

Unlike most other ensemble algorithms, the instance error
weights (i.e., the penalty distribution) in Learn++.NSE are not
used for data (re)sampling or instance selection, but rather
to weigh and assign error (later in Step 4). In fact, since
the environment may change at any time, and that data are
received in (possibly small) batches, all training data in are
Dt used for training, returning the hypothesis ht in Step 3.

In Step 4, the error εt of each existing classifier—and not
just the most recent ht —is evaluated on the training data from
the current environment. Since classifiers are generated at dif-
ferent times, each receives a different number of evaluations: at
time t , ht gets its first evaluation; whereas h1 gets its t th eval-
uation. We use εt

k, k = 1, . . . , t to denote the error of hk—the
classifier generated at time step k—on dataset (environment)
Dt . Henceforth, where applicable, the superscript represents
the time index for the current environment, and the subscript
is the time the relevant classifier is generated.

Each misclassification does not contribute equally to the
error εt

k , however, and the penalty distribution Dt is used
to weigh these errors: for each misclassified instance i , i.e.,
when hk(xt(i)) �= yt(i), the associated penalty weight Dt (i)
is added to those of other misclassified instances to obtain
the error of classifier hk on dataset Dt [(5) in Step 4]. Such
an instance error weighting approach ensures that previously
misclassified instances are given a higher penalty weight than
those correctly classified by the ensemble. More specifically,

the relativity of penalties is based on the overall error of the
ensemble. When the ensemble does well on the new data—
indicating that there has been little or no change in the under-
lying distributions—misclassified points add higher relative
penalty weight (since they should have been learned previ-
ously). When the ensemble performs poorly on the new data—
indicating that the environment has changed substantially—
misclassified data add less relative penalty, since there is little
reason to punish unknown instances of a new environment.
Hence, classifiers that perform well on novel data are deemed
more relevant than others. The goal in this formulation is
to allow the ensemble to learn the new knowledge, while
reinforcing existing and still relevant knowledge.

If the newest classifier is unable to obtain a weighted error
less than 1/2, i.e., if εt

k=t ≥ 1/2, it is discarded since this
classifier is not likely to have a positive contribution to the
ensemble, and a new classifier is trained in its place. Any
other (earlier) classifier, whose error εt

k<t is greater than 1/2,
has its error saturated at 1/2. When normalized, such that
the normalized error β [in (6)] is mapped to [0 1] interval
(where 0 represents perfect classification, and 1 represents
worst-case classification), an error of εt

k = 1/2, is mapped
to β t

k = 1. A classifier with β t
k = 1 receives a final voting

weight of zero (9)—but only when evaluated at time t . This
process effectively removes classifiers whose performance on
the current dataset is poor [by assigning a (near) zero voting
weight], and is equivalent to forgetting (discarding) the knowl-
edge carried by that classifier. Note, however, the classifier
itself is not removed, and the forgetting is only temporary. A
recurring environment can make an earlier classifier relevant
again, triggering a normalized error β t

k<t < 1, and hence a
positive voting weight.

In order to reduce the effects of wide swings in errors,
possibly due to outliers or inherent noise in the data, the
final voting weight of each classifier is further weighted
to emphasize their recent performance, using a sigmoidal
weighting function (Step 5). The sigmoid-based weights ωt

k
are computed and normalized in (7), using two parameters:
parameter a defines the slope and b defines the halfway
crossing point of the sigmoid, collectively controlling the
number of prior time steps to be considered. These parameters
allow averaging classifier decisions over smaller or larger
number of time steps, depending on whether the environment
is changing slowly or rapidly, respectively. The sigmoidal
weights ωt

k are applied to normalized classifier errors β t
k to

obtain the weighted errors in (8) of Step 5. Fig. 2 illustrates
this error weighting mechanism. We emphasize that under
this sigmoidal weighting strategy, any classifier containing
relevant knowledge about the current environment, regardless
of the classifier’s age, can receive a high voting weight.
Classifier age itself has no direct effect on voting weight, but
rather it is the classifier’s performance on recent environments
that determine its “time adjusted” voting weight.

The final voting weights are computed as the logarithm of
the reciprocals of the time-adjusted weighted classifier errors
in Step 6 (9). The final decision of the ensemble (the com-
posite hypothesis H t) on an unlabelled data point is then the
dynamically weighted [as determined in (9)] majority voting

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1523

Time, t

E
rr

or
 o

f
th

e
K

th
 c

la
ss

if
ie

r
h k

t
kε

1/2

1

t-4

C
ur

re
nt

 e
rr

or
 o

f t
he

 k
th

cl
as

si
fi

er
 is

 w
ei

gh
te

d
m

os
t h

ea
vi

ly

k
Classifier h

k
 had its lowest error

when it was first generated

Error truncated to ½ when

si
gm

oi
da

l e
rr

or

w
ei

gh
tin

g
fu

nc
tio

n

actual error exceeded this threshold

Errors of h
k
 on past environments

are weighted less heavily

E
rr

or
 w

ei
gh

tin
g

1

1
2

0

ω t
k

t-3 t-2 t-1 t

Fig. 2. Sigmoidal error weighting in Learn++ .NSE.

of all classifiers [(10) of Step 7]. Classifiers with larger voting
weights—determined based on their average performance on
recent environments—provide the most support for the class
chosen by the ensemble.

Two issues are worth addressing before we discuss the
experiments. First, since Learn++.NSE continuously adds
classifiers, one may be concerned about proliferation of clas-
sifiers. This can be addressed by assigning a cap on ensemble
size and removing additional classifiers based on their age or
error. We do not recommend this, however, as such pruning
reduces the ability of the algorithm to remember recurring
environments as well as its stability during stationary periods.
Our preliminary work showed that performance benefits of
retaining the ensemble far outweighs the additional—and
modest—computational and memory costs [59]. Second, one
may ask whether weaker classifiers should be used to add
diversity to the ensemble. We note that the premise of weak-
learnability [61] does not apply here, as the fixed distribution
assumption is violated in a nonstationary environment. In fact,
since such an environment naturally provides diversity, and
since the classifiers must learn the new knowledge from lim-
ited data in one-pass, we recommend using strong classifiers
in the ensemble.

V. EXPERIMENTAL RESULTS

Several datasets simulating different scenarios of nonstation-
ary environments, such as abrupt, gradual, cyclical or variable
rate drift, addition or removal of a class, etc. have been
generated to determine the behavior of Learn++.NSE, as well
as how it compares to other existing approaches. All datasets
used in this effort can be downloaded from our site at [62].

The following structure is used in all simulations: exper-
iments begin at t = 0 and end at some arbitrary time
t = 1. Within this interval, T consecutive batches of data
are presented for training, where each batch is drawn from a
possibly drifting environment, whose rate or nature of drift is
assumed unknown. Thus, the number T determines the number
of time steps, or snapshots, taken from the data throughout the
period of drift. A large T corresponds to a low rate of drift,
whereas a small T corresponds to a high effective drift rate,

since the algorithm sees fewer snapshots of the data over the
same time period. Preliminary results of Learn++.NSE using
various effective drift rates (i.e., T values) can be seen in [57].
As one would expect, the ability of the algorithm to track the
changing environment is inversely proportional to the rate of
drift. Sigmoid parameters were fixed as a = 0.5 and b = 10. If
desired, an active drift detection can be integrated (our future
work) to determine these parameters dynamically, though these
values worked well on all scenarios we tried.

The Learn++.NSE algorithm is implemented using different
base classifiers [NB, SVM, and classification and regression
tree (CART)] and compared to other ensemble-based con-
cept drift approaches, such as SEA, DWM, and AdaBoost
weighting, which use different learning, weighting and pruning
strategies.

SEA is an ensemble-based incremental batch learner
employing simple majority voting and classifier pruning (to
discard old knowledge) to ensure that the ensemble tracks
new environments. Ensemble weights are determined based
on classifiers’ performance, and weights are also used as the
criterion for pruning. The weakest classifier is discarded when
the ensemble size exceeds a threshold. Our implementation of
SEA is consistent with that in [42], using default ensemble
size (25). Both SVM and CART were used as base classifiers
in SEA versus Learn++.NSE comparison.

DWM is an online learner that utilizes different weighted
majority and ensemble pruning schemes: DWM ensemble
is updated periodically only when necessary by adding a
classifier or pruning a classifier when its weight drops below
a certain performance threshold. DWM pruning is error-based
with no upper limit on ensemble size. In this paper, we
implement the DWM algorithm using an update period of
ρ = 5, pruning threshold of θ = 0.5, and a base classifier
of NB, consistent with the recommended values in [45]. For
a fair comparison, the same NB (and not the stronger SVM)
was used with Learn++.NSE.

We also tried Learn++.NSE with an alternative AdaBoost
based weighting approach as used in Adaptive Classifier
Ensemble-(ACE) [48] and Recursive Adaptive Ensemble (REA)
[43], which uses a classifier’s most recent error (hence no prior
performances considered) in determining voting weight. ACE
uses a temporary pruning strategy, with only top-performing
classifiers selected for voting, while the rest are ignored, but
not discarded. A 95% confidence interval of the top performing
classifier is used as the basis, classifiers with weights that
lie inside this interval maintain their weights, while others
receive a weight of 0 (i.e., they are ignored). Note that this
comparison tells us whether the sigmoidal weighting of past
errors in Learn++.NSE is beneficial. For brevity, we refer to
this weighting scheme as “AdaBoost,” though this notation
does not refer to the Adaboost algorithm itself.

Finally, we also compare Learn++.NSE to a single classifier
trained only on the most recent data. Such comparisons are not
trivial, as a single classifier trained on the latest data has the
best plasticity to track drift, and does not need to be concerned
with “classifier baggage.” Single classifier comparisons tell us
whether using an ensemble of classifiers to weigh in existing
knowledge is beneficial in a nonstationary environment.

1524 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

t > 0

2

2

5

5

8

8

2

2

5

5

8

8

2

2

5

5

8

8

2

2

5

5

8

8

2

2

5

5

8

8

2

2

5

5

8

8

1/5 < t < 2/5

3/5 < t < 4/52/5 < t < 3/5

4/5 < t < 1 t = 1

Fig. 3. Gaussian drift data with class addition/removal.

Essentially, we make three comparisons: comparing batch-
based Learn++.NSE to: 1) an online learner DWM, using
online learning capable base classifier NB; 2) other batch
learners SEA and AdaBoost/ACE using SVMs and CART
(strong and weaker learners, respectively); and 3) to a con-
tinuously updated single classifier of each of NB, SVM, and
CART.

A. Gaussian Drift Data with Class Addition/Removal

This dataset features multiclass data, each drawn from a
Gaussian distribution. Such a dataset allows us to control the
drift environment, while comparing Learn++.NSE to Bayes
classifier. Each class experiences gradual but independent drift,
with class means and variances changing according to the
parametric equations given in Table I. To make this experiment
more challenging, class addition and removal are added to the
drifting scenario. Fig. 3 shows six snapshots of the underlying
data distributions in the t = [0 1] period during which
T = 300 time steps were seen by the algorithm. At each time
step, we select a mere 15–20 samples (only five from each
class) to serve as the current training data Dt . At time t = 2/5,
a new class, C4 appears (and immediately starts drifting), and
class 1, C1, disappears at time t = 4/5. The arrows in Fig. 3
indicate the direction of drift for each class. A movie of the
entire scenario is provided in [62]. The results are shown in
Fig. 4, where we compare the results of Learn++.NSE using
NB and SVM (polynomial kernel, order 6) as base classifiers,
to DWM with its default base classifier NB, the SEA algorithm

 0 60 120 180 240 300

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

t

A
cc

ur
ac

y

Time Step

Bayes Rule
L++.NSE (SVM)
L++.NSE (NB)
Single (SVM)
Single (NB)
DWM (NB)
SEA (SVM)
Adaboost W.

Fig. 4. Comparative results on the Gaussian data.

with SVM, Learn++.NSE with AdaBoost- based (non time-
averaged) error weighting, the standard Bayes classifier (the
best classifier that can be built on this data), as well as single
classifiers.

All results in Fig. 4 are averages of 50 independent trials,
whose 95% confidence intervals are provided as shading
around the performance curves. Each set of results aver-
aged over all times (for this and all other datasets) are
summarized in Table II, which also includes Learn++.NSE,
SEA, AdaBoost and single classifier using CART as the base
classifier (for figure clarity, CART results are not included in
the figures).

We make the following observations. First, the Bayes
classifier performs best, as expected, followed by algorithms
using the NB (also expected due to uncorrelated features).
All classifiers see a performance drop at t = 0.4, when a new
class is added, and a jump at t = 0.6, when a class is removed,
corresponding to increase and decrease in the complexity of
the decision boundaries. There is a major drop in performance
in all classifiers at t = 0.7, where the most class overlap
occurs, representing the most difficult classification problem.

DWM and Learn++.NSE (with NB) are best performers
(with no significant difference between the two); both provid-
ing quick recovery for abrupt changes thanks to online nature
of DWM, and the specific weighting strategy of Learn++.NSE.

Among batch learners, Learn++.NSE outperformed both
AdaBoost (with significance) and SEA (both with SVM
and CART), despite this dataset, not including any recur-
ring environment, favoring the other two algorithms. These
results indicate that Learn++.NSE can consistently employ
past classifiers recognizing those parts of the feature space
previously seen. We believe AdaBoost type weighting suffers
from non-optimal weighting (discarding past performance)
especially as the ensemble grows, and SEA suffers from slow
reaction to change due to uniform voting. Finally, we observe
that Learn++.NSE always outperformed–with significance–a
single classifier trained on the same (NB, SVM or CART)
base classifier (see Table II), indicating that past knowledge is
indeed being successfully utilized by Learn++.NSE.

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1525

TABLE I

PARAMETRIC EQUATIONS FOR GAUSSIAN DRIFT DATA

C1

0 < t < 1/5

2 5

8

2

2

N/A

N/A N/A N/A

N/A

5

8

8

2

N/A

5 − 5t

5 − 5t

2

2

1.5

1.5
1.5

N/A

1.5

1.5
1.52

5

8

8

8 − 10t 1 + 10t

1

1

1

1

1

2

N/A

3 − 10t

6 − 20t

8 − 30t

8 − 30t

8 − 30t

3 − 7.5t

2 − 2.5t

5 − 15t 2 − 5t

1 + 5t

1

1

2 − 5t

8 − 20t

5 + 15t

3 − 10t

2 + 5t

5 + 15t

4 + 20t

4 + 20t 1 + 2.5t

1 + 2.5t

1 + 2.5t1 + 2.5t

2 + 30t

2 + 30t

4 + 20t

N/A

1

1

3 − 5t

N/A

1

1

1 + 5t

N/AN/A

N/A N/A N/A N/A

1/5 < t < 2/5

4/5 < t < 1

3/5 < t < 4/52/5 < t < 3/5

μ
x σ

x
σ

y
μ

y

μ
x σ

x
σ

y
μ

y

C2

C3

C4

C1

C2

C3

C4

C1

C2

C3
C4

μ
x σ

x
σ

y
μ

y

α � 0 α � π/8

α � πα � π7/8

α � π/4

α � π/2

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

STATIC
SAMPLING
WINDOW

AXIS OF
ROTATION

Fig. 5. Snapshots from a 1/2 rotation of the checkerboard data.

B. Rotating Checkerboard Dataset: Variable Rate Drift

A non-Gaussian data set is derived from the canonical XOR
problem, which resembles a rotating checkerboard. As shown
in Fig. 5, the rotation makes this deceptively simple-looking
problem particularly challenging, as the angle and location
of the decision boundaries change drastically every few time
steps. Fig. 5 shows half a rotation (α = 0 to π), indexed to the
parameter α, where the axis of rotation is the lower left corner
of the sampling window. After half a rotation, data are drawn
from a recurring environment, as the [π 2π] interval creates
an identical distribution drift to that of the [0 π] interval. In
order to prevent training on identical snapshots of data and
to increase complexity, 10% random noise was introduced.
Each training dataset is kept particularly small, consisting of
a mere 25 samples (total from both classes) drawn from the
sampling window, making this data further challenging to the
learner. Test data are composed of 1024 data points uniformly
sampled from the current distribution’s entire grid at a 32-
by-32 resolution, sufficient enough to evaluate the learner’s

ability to approximate the sharp angles of the true decision
boundary.

Perhaps the most challenging and unique aspect of this
experiment, however, is the variability introduced in the drift
rate. Fig. 6 shows the four drift rate scenarios designed to
determine the algorithms’ behavior under variable rate drift.
All using 400 time steps from t = 0 to t = 1, these are:
1) constant drift rate of 2pi/400 = 0.016rad/time step; 2) expo-
nentially increasing drift rate (the board rotates increasingly
faster); 3) sinusoidally varying drift rate; and 4) Gaussian pulse
shaped (slow–fast–very fast–fast–slow) drift rate. The data and
movie files describing these scenarios can be found at [62].

Fig. 7 shows result of 50 independent trials on test data
(entire grid as shown in Fig. 5). Each performance curve is
enclosed by its 95% confidence interval to determine statistical
significance of the performance differences. Generalization
performances averaged across all time steps are also pro-
vided in Table II. We make the following observations. First,
Learn++. NSE, using the strong learner SVM, outperforms
all other algorithms, including the single SVM classifier or
other SVM-based ensemble approaches, usually with wide
significance. Second, as expected, algorithms that use NB as
base classifier perform poorly, due to the nature of these data
whose features are class conditionally correlated. Third, when
the environment is changing slowly, for example, during early
and late sections of pulse drift [Fig. 7(b)] and mid sections
of the sinusoidal drift [Fig. 7(d)], the ensemble performances
increase rapidly, and better track the environment compared
to when the rate of change is accelerating (e.g., t = 0.2 − 0.5
s on pulse drift, t = 0.7 − 1 s on exponential drift). We
should mention that the sharp performance peaks in all Fig. 7
plots are simply due to the periodic nature of the problem,
with decision boundaries becoming perpendicular (and hence
simpler) for every π/2 radians. Of course, the number of time
steps the board takes to reach multiples of π/2 radians varies

1526 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

Constant Exp Increase Sinusoidal Pulse

 0 80 160 240 320 400
Time Step

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

R
ad

ia
ns

 p
er

 ti
m

e
st

ep

Fig. 6. Variable drift rate controlled by the rate at which α parameter is
updated for rotating checkerboard dataset.

time step

A
cc

ur
ac

y

0

0.5

0.6

0.7

0.8

0.9

1
80 160 240 320 400

0 0.2 0.4 0.6 0.8 1

(a) (b)

(c) (d)

t

A
cc

ur
ac

y

0

0.5

0.6

0.7

0.8

0.9

1
80 160 240 320 400

0 0.2 0.4 0.6 0.8 1
t

time step
0

0.4

0.6

0.5

0.7

0.8

0.9

1
80 160 240 320 400

0 0.2 0.4 0.6 0.8 1
t

α�π/2 π 3π/2 2π

α�π/2 π 3π/2 2π

0

0.5

0.6

0.7

0.8

0.9

1
80 160 240 320 400

0 0.2 0.4 0.6 0.8 1
t

α�π/2 π 3π/2 2π

α�π/2 π 3π/2 2π

L++.NSE (SVM)
L++.NSE (NB)

Single (SVM)
Single (NB)

DWM (NB)
SEA (SVM)
Adaboost Weighting

Fig. 7. Performances on checkerboard data with (a) constant, (b) gaussian
pulse, (c) exponential, and (d) sinusoidal drift rate.

according to drift scenario: for constant drift [Fig. 7(a)], they
are at t = [0 100 200 300 400]; for pulse drift Fig. 7(b)], at
t = [0 180 200 220 400], etc.

One of the more interesting observations is the behavior of
the algorithm after α = π , This happens at t = 200, 200, 275,
and 200 for the constant, pulse, exponential and sinusoidal
drifts, respectively, after which the distribution repeats itself
in the α = [π ∼ 2π] interval, creating a cyclic environment.
Learn++.NSE shows a significant increase in performance
after this interval, compared to α = [0 ∼ π] interval,
indicating the ability of the algorithm to make effective use
of its prior knowledge, by reactivating early classifiers during
the recurring environments. This is particularly striking in
Fig. 7(a), and even more so in Fig. 7(c), where the performance
improvement due to reactivating old classifiers outweighs the
performance drop due to rapidly accelerating rate of drift that
also occurs at around t = 275(α = π). The second half per-
formances in Fig. 7(b) and (d) are also higher than those of the
first half. Among all comparisons, only Learn++.NSE showed

C
la

ss
if

ie
r

400

400

350
300

300

250
200

200

150
100

100

(3)

(1)
(2)

50
0

0

C
la

ss
if

ie
r

400

400

350
300

300

250
200

200

Time Step Time Step

150
100

100

50
0

0

400

400

350
300

300

250
200

200

(a) (b)

(c) (d)

150
100

100

(5)

(5)

(4)

50
0

0

400

400

350
300

300

250
200

200

150
100

100

50
0

0

Fig. 8. Weight distribution (max in red, min in blue) over time for
checkerboard dataset with (a) constant, (b) pulsing, (c) exponential, and
(d) sinusoidal drift rate.

such an improvement. DWM is limited by the use of an online
classifier that cannot sufficiently update to learn the complex
decision boundary, SEA loses all prior knowledge and thus
shows no improvement over the recurring environment, and
Adaboost weighting is inconsistent in assigning appropriate
weight to the most relevant knowledge at a given time step
even in the presence of recurring data.

In summary, we note that in all base-classifier matched
comparisons, Learn++.NSE provides the best performance:
in online learner comparison, Learn++.NSE with NB signif-
icantly outperforms DWM with NB, as well as single con-
tinuously updated NB; among batch learners, Learn++.NSE
outperforms SEA and AdaBoost, either with SVM or CART
(see Table II for CART results), and Learn++.NSE ensemble
always outperforms, with significance, any single classifier
trained on the same base classifier (NB, SVM or CART).
Furthermore, these results apply regardless of the type of drift
scenario.

Perhaps a more dramatic proof of Learn++.NSE’s ability
to reactivate old classifiers, precisely when they would be
most beneficial, can be seen in Fig. 8, which provides pseudo
color images of member classifier weights at each time step
after their creation. The main diagonal [Arrow (1)] represents
the average weight of each classifier at the time it is created
(averaged over 50 trials), a vertical cross-section at some
t = t∗ shows the average weights of all classifiers at time t∗,
whereas a horizontal cross-section for any classifier (starting
at the diagonal and moving left) indicates the average weights
of that classifier since its creation at each subsequent time
step. The off-diagonal or curved patterns (starting at some
time step t∗∗ on the horizontal axis and moving toward the
vertical axis) indicate the average weight of all classifiers
t∗∗ steps after their creation. For example, Fig. 8(a) shows
that each classifier receives a very high weight, (i.e., it gets
reactivated), exactly 200 steps after its creation [the red off-

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1527

 0 40 80 120 160 200

0 0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

t

A
cc

ur
ac

y

Time Step

L++.NSE (SVM)
L++.NSE (NB)
Single (SVM)
Single (NB)
DWM (NB)
SEA (SVM)
Adaboost Weighting

Fig. 9. Comparative performances on SEA dataset (SVM polynomial kernel,
order: 2).

diagonal, starting at t = 200, Arrow (2)]. This is a very
satisfying observation, as in the constant drift rate experiment,
each classifier experiences a recurring environment exactly
200 steps after its creation. The (blue) off-diagonals (Arrow
3) starting at steps 100 and 300 show reduced weights (i.e.,
classifiers are de-activated), precisely when the checkerboard
pattern is reversed (class definitions flip), and during which
we would expect each classifier to be least useful. The curved
patterns in Fig. 8(b)–(d) shows similar behavior, with the
curves indicating the precise time-varying nature of the drifts.
For example, the red curve (Arrow 4) starting at t = 275 in
Fig. 8(c) indicates that the first classifier (created at t = 0)
waits 275 time steps to be reactivated; whereas classifiers
generated later are activated increasingly sooner: e.g., classifier
created at t = 200 gets reactivated at time step 350. This
makes sense, as in this experiment the board rotates (and the
environment recurs) increasingly faster with each time step
and hence later classifiers get reactivated faster compared to
earlier classifiers. Another interesting observation is the high
weights subsequent classifiers receive when the environment
is near stationary (Arrow 5). Similar patterns can be seen in
other figures where the weight distributions closely follow the
change in drift rate which directly controls how quickly the
distributions repeat themselves.

C. SEA Concepts

The SEA Concepts is developed by Street [42] and has
been used by several algorithms as a standard test for concept
change. This is the dataset on which SEA algorithm was
originally tested. The dataset is characterized by extended
periods without any drift with occasional sharp changes in
the class boundary, i.e., sudden drift or concept change. The
dataset includes two classes and three features, with only two
features being relevant, and the third being noise. Class labels
are assigned based on the sum of the relevant features, and
are differentiated by comparing this sum to a threshold that
separates a 2-D hyper-plane: an instance is assigned to class
1 if the sum of its (relevant) features (f1 + f2) fall below
the threshold, and assigned to class 2, otherwise. At regular
intervals, the threshold is changed, creating an abrupt shift in
the class boundary. Data are uniformly distributed between 0
and 10, and the threshold θt is changed three times throughout

0 117 233 350 466

1950 1960 1970 1980 1990 1999

0.6

0.7

0.8

0.9

1

Years

A
cc

ur
ac

y

Time Step

583

(t � 1)(t � 1)

L++.NSE (SVM)

L++.NSE (NB)

Single (SVM)

Single (NB)

DWM (NB)

SEA (SVM)

Adaboost Weighting

Fig. 10. Comparative performances on weather dataset (SVM polynomial
kernel, order: 2).

the experiment with increasing severity (8→9→7.5→9.5).
Training procedure is identical to that described in [42]: 50 000
points are introduced as training data (25 000 points per class),
in 200 time steps, 250 points/time step. Also as per [42], 10%
class noise is added to the training data. A separate set of
50 000 data points from each environment (with no noise) are
used for testing. The results are shown in Fig. 9 and Table II.

We make the following observations from these results.
DWM has the best recovery rate after concept change in
comparison with Learn++.NSE (with NB), yet a relatively low
convergence in stationary environments, presumably due to
throwing out recent and relevant classifiers during slow or no
change periods. Conversely, the batch-learning Learn++.NSE
provides a higher convergence (final performance) but with
a slower (than DWM) recovery rate. These results point to
a tradeoff between recovery rate and convergence. Among
batch classifiers, SEA has the best convergence in a stationary
environment, yet very poor recovery after concept change
even on its own benchmark dataset. Adaboost weighting also
provides slow recovery and poor convergence after concept
drift, indicating that too much weight is being assigned to old
classifiers. Learn++.NSE (both with NB and SVM), provides
a very good balance between recovery (plasticity) during rapid
changes, and the ability to reach and sustain high performance
(stability) during slow or no drift scenarios. We believe that
this is due to its unique error weighting strategy. Note that
single classifiers do not experience any dip in the performance
as they do not have any baggage; however, they are also
unable to match the performance of ensemble approaches. We
should add that, when averaged across time, Learn++.NSE
does outperform all other base-classifier matched algorithms,
and with significance in most cases (Table II).

D. Nebraska Weather Prediction Data

The U.S. National Oceanic and Atmospheric Administration
has compiled weather measurements from over 9000 weather
stations worldwide [63]. Records date back to the 1930s,
providing a wide scope of weather trends. Daily measure-
ments include a variety of features (temperature, pressure,

1528 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

TABLE II

TIME AVERAGED PERFORMANCE COMPARISONS

L
++

.N
SE

 v
er

su
s

ba
se

-c
la

ss
if

ie
r

m
at

ch
ed

si

ng
le

 c
la

ss
if

ie
r

CB (sinusoid)CB (constant) CB (pulse) CB (exp)

L
++

.N
SE

O
nl

in
e

L
++

.N
SE

 v
er

su
s

O
th

er
 B

at
ch

 A
lg

.

69.9 +/− 1.3

56.6 +/− 1.7

59.6 +/− 1.6

81.9 +/− 0.9

71.6 +/− 0.7

77.8 +/− 1.7

76.6 +/− 1.5

77.3 +/− 1.1

69.3 +/− 0.9

71.6 +/− 1.7

67.8 +/− 1.9

L++.NSE (NB)

Single (NB)

DWM (NB)

L++.NSE (SVM)

SEA (SVM)

Adaboost (SVM)

Single (SVM)

L++.NSE (CART)

SEA (CART)

Adaboost (CART

Single (CART)

70.5 +/− 1.6

54.3 +/− 1.7

56.4 +/− 1.7

84.0 +/− 0.7

78.5 +/− 0.6

83.7 +/− 1.1

79.9 +/− 1.5

81.2 +/− 1.0

77.2 +/− 0.8

80.1 +/− 1.4

69.3 +/− 2.6

69.1 +/− 1.4

56.5 +/− 1.7

59.6 +/− 1.7

81.6 +/− 0.9

73.0 +/− 0.7

78.0 +/− 1.4

76.6 +/− 1.5

77.0 +/− 1.1

70.6 +/− 0.9

72.2 +/− 1.6

67.7 +/− 1.9

71.1 +/− 1.5

55.3 +/− 1.7

57.9 +/− 1.7

83.5 +/− 0.9

75.4 +/− 0.6

80.9 +/− 1.2

78.6 +/− 1.5

79.4 +/− 1.0

73.2 +/− 0.8

75.9 +/− 1.6

68.7 +/− 2.3

L
++

.N
SE

ve
rs

us
 O

nl
in

e
L
++

.N
SE

 v
er

su
s

O
th

er
 B

at
ch

 A
lg

.

Bayes 88.1 +/− 0.0

L++.NSE (NB) 84.0 +/− 0.5 96.6 +/− 0.2 75.9 +/− 0.7

DWM (NB) 84.8 +/− 0.4 96.6 +/− 0.6 71.3 +/− 1.8

Single (NB) 82.3 +/− 1.2 94.7 +/− 0.6 69.4 +/− 1.4

L++.NSE (SVM) 81.0 +/− 0.9 96.8 +/− 0.2 78.8 +/− 1.0

SEA (SVM) 81.3 +/− 0.5 95.7 +/− 0.2 77.8 +/− 1.1

Adaboost (SVM) 78.6 +/− 1.7 96.6 +/− 0.3 70.2 +/− 1.9

Single (SVM) 74.6 +/− 2.4 95.6 +/− 0.4 67.8 +/− 2.0

L++.NSE (CART) 82.8 +/− 0.7 95.8 +/− 0.5 75.7 +/− 1.1

SEA (CART) 81.7 +/− 0.5 95.6 +/− 0.3 72.8 +/− 1.0

Adaboost (CART) 81.3 +/− 1.3 87.8 +/− 0.9 68.5 +/− 1.9

Single (CART) 77.7 +/− 1.9 86.7 +/− 1.0 66.8 +/− 2.0

L
++

.N
SE

 v
er

su
s

ba
se

-c
la

ss
if

ie
r m

at
ch

ed
si

ng
le

 c
la

ss
if

ie
r

Gaussian SEA Weather

0 200 400 600
0

0.05

0.1

0.15

0.2

0.25

Time Step

0 50 100 150 200
0

0.5

1

1.5

2

2.5

Time Step

0 100 200 3000

0.02

0.04

0.06

0.08

0.1

Time Step

Gaussian SEA Weather

T
im

e
(s

)

Learn++.NSE DWM AdaBoostSEA

Fig. 11. Timing diagrams for Gaussian, SEA and weather datasets (with NB classifier).

wind speed, etc.) and indicators for precipitation and other
weather-related events. As a meaningful real world dataset,
we chose the Offutt Air Force Base in Bellevue, Nebraska,
for this experiment due to its extensive range of 50 years
(1949–1999) and diverse weather patterns, making it a long-
term precipitation classification/prediction drift problem.

Eight features were selected based on their availability,
eliminating those with a missing feature rate above 15%.
The remaining missing values were imputed by the mean of
features in the preceding and following instances. Class labels
are based on the binary indicator(s) provided for each daily
reading of rain with 18 159 daily readings: 5698 (31%) posi-

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1529

tive (rain) and 12 461 (69%) negative (no rain). Each training
batch consisted of 30 samples (days), with corresponding test
data selected as the subsequent 30 days. Thus, the learner is
asked to predict the next 30 days’ forecast, which becomes
the training data in the next batch. The dataset included 583
consecutive “30-day” time steps covering 50 years.

Fig. 10 and Table II show the comparative results, from
which we make following observations: Learn++.NSE out-
performs all other algorithms regardless of the base classifier
being used, with SVM providing the best performance; all
pair wise differences, i.e., Learn++.NSE versus DWM with
NB, Learn++.NSE versus SEA, Adaboost Weighting or single
classifier with SVM or CART (see Table II) are statistically
significant at all time steps with wide margins, except with
SEA where the difference is significant only at certain time
instances. Single classifiers, with SVM, NB or CART, per-
formed the worst.

We also observe a strong sinusoidal component in ensemble
performances; computing the Fourier transform revealed a very
strong spectral component corresponding to exactly 1 year,
demonstrating the cyclical drift inherent in the data.

Finally, comparing Learn++.NSE to itself on different base
classifiers, we observe that SVM outperforms CART as well as
NB (except when features are uncorrelated, when NB becomes
strong learner), confirming our belief that strong classifiers
should be preferred in concept drift problems.

We conclude this section with a brief discussion on com-
putational cost of the algorithms under study. Although this
paper is not specific to data-streams, and time and mem-
ory consumption are not primary concerns, such discussion
provides some insight into the algorithms’ behavior. Clearly,
computational efficiency is not a strong attribute of ensemble-
based approaches: by its very nature, when using an ensemble
system instead of a single classifier, we accept a higher
computational cost in return for qualities not possible with a
single classifier, e.g., ability to handle recurrent environments
and class addition or removal. Nevertheless, the complexity
of Learn++.NSE is only linear in the number of classifiers,
and since one classifier is generated per dataset, also linear
in the number of data batches. The actual complexity of the
algorithm depends on the complexity of the base model used
(e.g., SVM is costlier than NB). For SEA, computational order
is constant after reaching the max threshold, whereas that of
DWM depends on update rate, and pruning threshold.

Fig. 11 shows three examples of the average learning time
per time step for all algorithms. Learning time includes the
time to train new classifiers and re-weigh the ensemble mem-
bers. The learning time for Learn++.NSE increase linearly
since all classifiers are maintained and reweighted on the most
recent training data. SEA maintains a steady learning time
once the ensemble reaches a maximum size and then pruned.
The learning time for DWM is more unpredictable, since the
ensemble size is dynamic and classifiers may be added or
pruned, with no upper threshold for ensemble size. DWM’s
per-time-step computational time increases for large datasets,
particularly when old classifiers are not removed during slow
periods, as in the SEA data, for which DWM takes the longest
time (far exceeding that of other algorithms on this dataset).

TABLE III

ALGORITHM RUNTIME SUMMARY

Time Steps: 300 200 583 400

Samples (Train/Test): 20/1024 250/250 30/30 25/1024

Learn++.NSE (s): 50.32 17.21 117.08 71.35

SEA (s): 10.41 5.96 12.26 12.97

DWM (s): 21.11 317.54 53.84 33.17

Adaboost (s): 82.88 20.59 135.83 115.24

Whereas batch learners are capable of evaluating and training
on large amounts of new data at once, DWM must do so on
an instance-by-instance basis, a costly approach as the training
size increases. Table III provides total runtime averaged over
50 trials, from start (t = 0) to finish (t = 1). As expected, SEA
runs the fastest due to its fixed ensemble size, DWM runtime
depends on training size, and the Learn++.NSE and AdaBoost
weighting depends on the number of time steps. Memory wise,
SEA is again the most frugal algorithm, due to fixed ensemble
size, followed by DWM, and Learn++.NSE/AdaBoost. All
experiments were run on Intel Core i7 CPU at 2.67GHz.

VI. CONCLUSION

We described an ensemble of classifiers-based approach,
Learn++.NSE, for learning in nonstationary environments.
The novelty of Learn++.NSE is its strategic use of current
and past classifiers combined with dynamically updated voting
weights, based on their time adjusted errors on current and
recent environments. Such a weighting mechanism allows
Learn++.NSE to learn new knowledge by creating new clas-
sifiers, while using existing knowledge when such knowledge
is still relevant. The primary contribution of Learn++.NSE is
therefore its versatility as a general framework for learning in
nonstationary environments. While many algorithms perform
well on a particular type of drifting environment (e.g., SEA
performs well on concept change, DWM performs well on
relatively gradual drifts, etc.), Learn++.NSE can accommodate
a wide variety of drift scenarios, regardless of whether it
is gradual, abrupt, slow, fast or cyclical, or even variable
rate drift—the last two of which are not generally addressed
by other approaches. The weight analysis of the algorithm
demonstrates that the unique weight assigning strategy used by
Learn++.NSE makes very efficient use of existing knowledge
by reactivating early classifiers precisely when they are needed
the most, and by temporarily disabling them when they are
not relevant. This mechanism allows the algorithm to learn
new knowledge, temporarily forget irrelevant knowledge, and
then recall such knowledge when it becomes relevant again.
To the best of our knowledge, Learn++.NSE is the only
algorithm that has this unique capability. Experiments also
supported our assertion that strong learners are desired for
non-stationary datasets (e.g., NB for data with class con-
ditionally independent features, and SVM for other general
data). We have also shown that the learning mechanisms used
by Learn++.NSE are consistent with that of human learning
according to two well-established human learning theories,
schema and scaffolding. Our future work will focus on the

1530 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 10, OCTOBER 2011

statistical analysis of Learn++.NSE for possible performance
guarantees on different NSE scenarios.

ACKNOWLEDGEMENT

The authors would like to acknowledge M. Muhlbaier and
M. Karnick for their contributions to early stages of this paper,
and J. Kounios for discussions on Human Learning.

REFERENCES

[1] S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and
architectures,” Neural Netw., vol. 1, no. 1, pp. 17–61, 1988.

[2] F. C. Bartlett, Remembering: A Study in Experimental and Social
Psychology. Cambridge, U.K.: Cambridge Univ. Press, 1932.

[3] J. H. Flavell, “Piaget’s legacy,” Psychol. Sci., vol. 7, no. 4, pp. 200–203,
Jul. 1996.

[4] L. S. Vygotsky, Mind and Society: The Development of Higher Psycho-
logical Processes. Cambridge, U.K.: Harvard Univ. Press, 1978.

[5] J. Piaget, Six Psychological Studies. New York: Random House, 1967.
[6] M. H. Appel and L. S. Goldberg, Equilibration: Theory, Research, and

Application. New York: Plenum, 1977.
[7] B. J. Reiser, “Scaffolding complex learning: The mechanisms of struc-

turing and problematizing student work,” J. Learn. Sci., vol. 13, no. 3,
pp. 273–304, 2004.

[8] D. Wood, “Scaffolding, contingent tutoring and computer-based learn-
ing,” Int. J. Artif. Intell. Educ., vol. 12, no. 3, pp. 280–292, 2001.

[9] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, “Han-
dling local concept drift with dynamic integration of classifiers: Domain
of antibiotic resistance in nosocomial infections,” in Proc. 19th IEEE
Int. Symp. Comput.-Based Med. Syst., Salt Lake City, UT, Jul. 2006, pp.
679–684.

[10] J. Gao, W. Fan, J. Han, and P. S. Yu, “A general framework for mining
concept-drifting data streams with skewed distributions,” in Proc. SIAM
Int. Conf. Data Min., vol. 7. 2007, pp. 3–14.

[11] J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Dataset Shift in Machine Learning. Cambridge, MA: MIT
Press, 2009.

[12] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–101, 1996.

[13] L. L. Minku, A. P. White, and Y. Xin, “The impact of diversity on online
ensemble learning in the presence of concept drift,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 5, pp. 730–742, May 2010.

[14] L. I. Kuncheva, “Classifier ensembles for detecting concept change in
streaming data: Overview and perspectives,” in Proc. Eur. Conf. Artif.
Intell., 2008, pp. 5–10.

[15] L. I. Kuncheva, “Classifier ensembles for changing environments,” in
Multiple Classifier Systems, vol. 3077. New York: Springer-Verlag, 2004,
pp. 1–15.

[16] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, “Learn++: An
incremental learning algorithm for supervised neural networks,” IEEE
Trans. Syst., Man Cybern. Part C: Appl. Rev., vol. 31, no. 4, pp. 497–
508, Nov. 2001.

[17] M. Muhlbaier, A. Topalis, and R. Polikar, “Learn++.NC: Combining
ensemble of classifiers with dynamically weighted consult-and-vote for
efficient incremental learning of new classes,” IEEE Trans. Neural Netw.,
vol. 20, no. 1, pp. 152–168, Jan. 2009.

[18] J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy
data,” Mach. Learn., vol. 1, no. 3, pp. 317–354, 1986.

[19] R. Klinkenberg, “Learning drifting concepts: Example selection versus
example weighting,” Intell. Data Anal., vol. 8, no. 3, pp. 281–300, Aug.
2004.

[20] M. Nunez, R. Fidalgo, and R. Morales, “Learning in environments with
unknown dynamics: Toward more robust concept learners,” J. Mach.
Learn. Res., vol. 8, pp. 2595–2628, Nov. 2007.

[21] P. Wang, H. Wang, X. Wu, W. Wang, and B. Shi, “A low-granularity
classifier for data streams with concept drifts and biased class distrib-
ution,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 9, pp. 1202–1213,
Sep. 2007.

[22] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Advances in Artificial Intelligence (Lecture Notes
in Computer Science), vol. 3171. New York: Springer-Verlag, 2004, pp.
286–295.

[23] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers—Part I:
Detecting nonstationary changes,” IEEE Trans. Neural Netw., vol. 19,
no. 7, pp. 1145–1153, Jul. 2008.

[24] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers—Part II:
Designing the classifier,” IEEE Trans. Neural Netw., vol. 19, no. 12,
pp. 2053–2064, Dec. 2008.

[25] L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok,
“Real-time data mining of non-stationary data streams from sensor
networks,” Inf. Fus., vol. 9, no. 3, pp. 344–353, Jul. 2008.

[26] M. Markou and S. Singh, “Novelty detection: A review—Part 2: Neural
network based approaches,” Signal Process., vol. 83, no. 12, pp. 2499–
2521, Dec. 2003.

[27] L. Rutkowski, “Adaptive probabilistic neural networks for pattern clas-
sification in time-varying environment,” IEEE Trans. Neural Netw.,
vol. 15, no. 4, pp. 811–827, Jul. 2004.

[28] E. A. de Oliveira, “The Rosenblatt Bayesian algorithm learning in a
nonstationary environment,” IEEE Trans. Neural Netw., vol. 18, no. 2,
pp. 584–588, Mar. 2007.

[29] N. G. Pavlidis, D. K. Tasoulis, N. M. Adams, and D. J. Hand, “λ-
perceptron: An adaptive classifier for data streams,” Pattern Recognit.,
vol. 44, no. 1, pp. 78–96, Jan. 2011.

[30] P. Vorburger and A. Bernstein, “Entropy-based concept shift detection,”
in Proc. 6th Int. Conf. Data Min., 2006, pp. 1113–1118.

[31] S. Hoeglinger and R. Pears, “Use of Hoeffding trees in concept based
data stream mining,” in Proc. Int. Conf. Inf. Autom. Sustain., Melbourne,
Australia, Dec. 2007, pp. 57–62.

[32] C.-J. Tsai, C.-I. Lee, and W.-P. Yang, “Mining decision rules on data
streams in the presence of concept drifts,” Expert Syst. Appl., vol. 36,
no. 2, pp. 1164–1178, Mar. 2009.

[33] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proc. Conf. Knowl. Disc. Data, 2001, pp. 97–106.

[34] L. Cohen, G. Avrahami, M. Last, and A. Kandel, “Info-fuzzy algorithms
for mining dynamic data streams,” Appl. Soft Comput., vol. 8, no. 4, pp.
1283–1294, Sep. 2008.

[35] S. Srinivasan, J. Samuelsson, and W. B. Kleijn, “Codebook-based
Bayesian speech enhancement for nonstationary environments,” IEEE
Trans. Audio, Speech Lang. Process., vol. 15, no. 2, pp. 441–452, Feb.
2007.

[36] D. R. Lowne, S. J. Roberts, and R. Garnett, “Sequential non-stationary
dynamic classification with sparse feedback,” Pattern Recognit., vol. 43,
no. 3, pp. 897–905, Mar. 2010.

[37] A. Blum, “Empirical support for winnow and weighted-majority algo-
rithms: Results on a calendar scheduling domain,” Mach. Learn., vol. 26,
no. 1, pp. 5–23, Jan. 1997.

[38] Z. Xingquan, W. Xindong, and Y. Ying, “Dynamic classifier selection
for effective mining from noisy data streams,” in Proc. 4th IEEE Int.
Conf. Data Min., Nov. 2004, pp. 305–312.

[39] N. Littlestone, “Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm,” Mach. Learn., vol. 2, no. 4, pp. 285–
318, Apr. 1988.

[40] Y. Freund and R. E. Schapire, “Decision-theoretic generalization of on-
line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1997.

[41] N. Oza, “Online ensemble learning,” Ph.D. dissertation, Dept. Comput.
Sci., Univ. California, Berkeley, 2001.

[42] W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA) for
large-scale classification,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl.
Disc. Data Min., 2001, pp. 377–382.

[43] S. Chen and H. He, “Toward incremental learning of nonstationary
imbalanced data stream: A multiple selectively recursive approach,”
Evolv. Syst., vol. 2, no. 1, pp. 35–50, 2011.

[44] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen,
“Dynamic integration of classifiers for handling concept drift,” Inf. Fus.,
vol. 9, no. 1, pp. 56–68, Jan. 2008.

[45] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An
ensemble method for drifting concepts,” J. Mach. Learn. Res., vol. 8,
pp. 2755–2790, Dec. 2007.

[46] J. Gao, W. Fan, and J. Han, “On appropriate assumptions to mine data
streams: Analysis and practice,” in Proc. Int. Conf. Data Min., 2007,
pp. 143–152.

[47] H. Wang, W. Fan, P. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Disc. Data Min., 2003, pp. 226–235.

[48] K. Nishida and K. Yamauchi, “Adaptive classifiers-ensemble system for
tracking concept drift,” in Proc. Int. Conf. Mach. Learn. Cybern., vol. 6.
Hong Kong, Aug. 2007, pp. 3607–3612.

ELWELL AND POLIKAR: INCREMENTAL LEARNING OF CONCEPT DRIFT IN NONSTATIONARY ENVIRONMENTS 1531

[49] H. He and S. Chen, “IMORL: Incremental multiple-object recognition
and localization,” IEEE Trans. Neural Netw., vol. 19, no. 10, pp. 1727–
1738, Oct. 2008.

[50] J. Gao, B. Ding, F. Wei, H. Jiawei, and P. S. Yu, “Classifying data
streams with skewed class distributions and concept drifts,” IEEE
Internet Comput., vol. 12, no. 6, pp. 37–49, Nov.–Dec. 2008.

[51] H. Abdulsalam, D. B. Skillicorn, and P. Martin, “Classification using
streaming random forests,” IEEE Trans. Knowl. Data Eng., vol. 23,
no. 1, pp. 22–36, Jan. 2011.

[52] A. Bifet, “Adaptive learning and mining for data streams and frequent
patterns,” Ph.D. dissertation, Dept. Lleng. Sist. Inf., Univ. Politècnica
Catalunya, Barcelona, Spain, Apr. 2009.

[53] A. Bifet, E. Frank, G. Holmes, and B. Pfahringer, “Accurate ensembles
for data streams: Combining restricted Hoeffding trees using stacking,”
in Proc. 2nd Asian Conf. Mach. Learn., vol. 13. 2010, pp. 1–16.

[54] A. Bifet. (2010, Dec. 30). MOA: Massive Online Analysis [Online].
Available: http://moa.cs.waikato.ac.nz

[55] M. Scholz and R. Klinkenberg, “Boosting classifiers for drifting con-
cepts,” Intell. Data Anal., vol. 11, no. 1, pp. 3–28, Jan. 2007.

[56] R. Polikar, J. DePasquale, H. S. Mohammed, G. Brown, and L. I.
Kuncheva, “Learn++.MF: A random subspace approach for the missing
feature problem,” Pattern Recognit., vol. 43, no. 11, pp. 3817–3832, Nov.
2010.

[57] M. Karnick, M. Ahiskali, M. D. Muhlbaier, and R. Polikar, “Learning
concept drift in nonstationary environments using an ensemble of
classifiers based approach,” in Proc. Int. Joint Conf. Neural Netw., Hong
Kong, 2008, pp. 3455–3462.

[58] M. Karnick, M. D. Muhlbaier, and R. Polikar, “Incremental learning in
non-stationary environments with concept drift using a multiple classifier
based approach,” in Proc. 19th Int. Conf. Pattern Recognit., Tampa, FL,
Dec. 2008, pp. 1–4.

[59] R. Elwell and R. Polikar, “Incremental learning in nonstationary envi-
ronments with controlled forgetting,” in Proc. Int. Joint Conf. Neural
Netw., Atlanta, GA, Jun. 2009, pp. 771–778.

[60] R. Elwell and R. Polikar, “Incremental learning of variable rate concept
drift,” in Proc. Int. Workshop Multiple Class. Syst., vol. 5519. 2009, pp.
142–151.

[61] R. E. Schapire, “The strength of weak learnability,” Mach. Learn., vol. 5,
no. 2, pp. 197–227, Jun. 1990.

[62] R. Polikar and R. Elwell. (2011, Jun. 18). Benchmark Datasets for Eval-
uating Concept Drift/NSE Algorithms [Online]. Available: http://users.
rowan.edu/∼polikar/research/NSE

[63] U.S. National Oceanic and Atmospheric Administration. Federal Cli-
mate Complex Global Surface Summary of Day Data [Online]. Available
FTP: ftp.ncdc.noaa.gov/pub/data/gsod

Ryan Elwell (M’10) received the B.S. degree in
electrical and computer engineering from Rowan
University, Glassboro, NJ, in 2008, and the M.S.
degree in engineering from Rowan University
in 2009.

He is currently a Technical Leader of radar
applications in the U.S. Army Communications-
Electronics Research, Development, and Engineer-
ing Center, Aberdeen, MD. His current research
interests include neural networks, incremental learn-
ing, digital signal processing, and algorithm devel-

opment for airborne radar exploitation.

Robi Polikar (SM’08) received the B.Sc. degree
in electronics and communications engineering from
Istanbul Technical University, Istanbul, Turkey, in
1993, and the M.Sc. and Ph.D. degrees both in
electrical engineering and biomedical engineering,
from Iowa State University, Ames, in 1995 and 2000,
respectively.

He is currently a Professor of Electrical and Com-
puter Engineering at Rowan University, Glassboro,
NJ. His recent and current works are funded primar-
ily through National Science Foundation’s CAREER

and Energy, Power and Adaptive Systems Programs. His current research
interests include computational intelligence including ensemble systems,
incremental and nonstationary learning, and various applications of pattern
recognition in bioinformatics and biomedical engineering.

Dr. Polikar is a member of the American Society for Engineering Education,
Tau Beta Pi, and Eta Kappa Nu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

