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Abstract—Learning in nonstationary environments, also known as learning concept drift, is concerned with learning from data 
whose statistical characteristics change over time. Concept drift is further complicated if the dataset is class-imbalanced. While 
these two issues have been independently addressed, their joint treatment has been mostly underexplored. We describe two 
ensemble-based approaches for learning concept drift from imbalanced data. Our first approach is a logical combination of our 
previously introduced Learn++.NSE algorithm for concept drift, with the well-established SMOTE for learning from imbalanced data. 
Our second approach makes two major modifications to Learn++.NSE-SMOTE integration by replacing SMOTE with a sub-ensemble 
that makes strategic use of minority class data; and replacing Learn++.NSE and its class-independent error weighting mechanism 
with a penalty constraint that forces the algorithm to balance accuracy on all classes. The primary novelty of this approach is in 
determining the voting weights for combining ensemble members, based on each classifier’s time and imbalance-adjusted accuracy 
on current and past environments. Favorable results in comparison to other approaches indicate that both approaches are able to 
address this challenging problem, each with its own specific areas of strength. We also release all experimental data as a resource 
and benchmark for future research.

Index Terms— incremental learning, concept drift, class imbalance, multiple classifier systems.

——————————      —————————— 

1 INTRODUCTION
omputational models of learning are typically developed for a particular problem domain, and optimized for specific 

conditions within that domain. These conditions usually dictate or restrict the amount and nature of the available data for 

training, the distributions from which such data are drawn, or the mechanism by which data become available, any of 

which can make it difficult to address multiple problems domains concurrently. The two problem domains featured in this 

paper, namely learning concept drift (i.e., learning in nonstationary environments) and learning from imbalanced data 

(i.e., with very few positive and many negative instances), are good examples, as there are well-established approaches for 

each. Many recent efforts – by us as well as other researchers – have separately focused on concept drift and class imbal-

ance. A more general learning framework for accommodating the joint problem, that is, learning from a drifting (nonsta-

tionary) environment that also provides severely unbalanced data, is largely underexplored. With the omnipresence of 

realworld applications, such as climate monitoring, spam filtering, or fraud detection, the importance of developing a 

more general framework can hardly be overstated. For example, in spam identification problem, an official work related e-

mail address may receive many legitimate and few spam e-mails. The goal is then to identify the minority class (spam) so 

that they can be removed. Conversely, a personal e-mail address may receive a large number of spams, but few work re-

lated e-mails, where the goal is then to identify the minority class (work related) e-mails so that they can be saved. Both 

cases are also concept drift problems, as the characteristics of both spam and legitimate e-mails change over time in part 

due to increasingly creative techniques used by spammers, and in part due to changing trends in user interest. Hence, this 

is an example of the joint problem of incremental learning of concept drift from class-imbalanced data. 

C 
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Combining the definition of incremental learning, as suggested by several authors [1-3], along with Kuncheva’s and 

Bifet’s desiderata for nonstationary learning algorithms [4;5], we obtain the desired properties of a general framework for 

learning concept drift from imbalanced data as follows: (i) Learning new knowledge: building upon the current model using 

new data to learn novel knowledge in a wide spectrum of nonstationary environments; (ii) Preserving previous knowledge: 

determining what previous knowledge is still relevant (and hence should be preserved), what is no longer relevant (hence 

should be discarded / forgotten), but with the added ability to recall discarded information if the drift / change follow a 

cyclical nature; (iii) One pass (incremental) learning: learning one instance or one batch at a time without requiring access to 

previously seen data; and (iv) Balance on minority /majority class performance: maintaining high accuracy (recall) on minority 

class without sacrificing majority class performance. 

This paper describes such a framework that includes two related ensemble-based incremental learning approaches,  

namely, Learn++.CDS and Learn++.NIE, neither of which place any restrictions on how slow, fast, abrupt, gradual, or cycli-

cal the change in distributions may be. Both approaches are also designed to handle class imbalance, and are able to learn 

from new data that become available in batches, without requiring access to data seen in previous batches. The streaming 

and nonstationary nature of data strictly require incremental learning, which raises the so-called stability-plasticity di-

lemma, where “stability” describes retaining existing knowledge (for learning stationary subspaces or remembering recur-

ring nonstationary distributions), and “plasticity” refers to learning new knowledge [6]. We show that an ensemble-of-

classifiers based learning model that use carefully selected instances with strategically and dynamically assigned weights 

for combining member classifiers can indeed learn in such a nonstationary environment, and achieve a meaningful bal-

ance of stability and plasticity, even in the presence of class imbalance. 

The primary contribution of this paper is such a general framework for learning from a stream of class-imbalanced da-

ta whose underlying distributions may be changing over time. This work complements our prior work on Learn++.NSE 

(incremental learning for Non Stationary Environments) algorithm for learning concept drift. Learn++.NSE trains a new 

classifier for each new batch of data, combining them using dynamically weighted majority voting, where voting weights 

are based on classifiers’ time-adjusted errors averaged over recent environments [7]. However, Learn++.NSE, like other 

algorithms not specifically designed to accommodate class-imbalance, becomes biased towards majority class in case of 

severe class imbalance. Two approaches are presented in this paper to develop a model that can learn concept drift from 

imbalanced data. The first is a natural combination Learn++.NSE with the Synthetic Minority class Oversampling TEch-

nique (SMOTE), a well-established over-sampling approach that generates strategically positioned synthetic minority data. 

The second approach replaces Learn++.NSE and its class-independent raw classification error with a new penalty con-
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straint that simultaneously enforces both minority and majority class performance. It also replaces SMOTE with a bagging 

based sub-ensemble algorithm that makes strategic use of existing minority data. 

In Sections II, III, and IV, we review the recent research on concept drift, class imbalance, and the joint problem, re-

spectively, and describe the proposed approaches in detail in Section V. Section VI presents the experiments and results 

comparing the proposed approaches to existing ones on a variety of real world and carefully designed synthetic datasets. 

Concluding remarks, including a discussion on computational complexity of these approaches are provided in Section VII. 

2 CONCEPT DRIFT 
In the context of machine learning, an environment that provides data whose joint distributions change over time, such 

that , is referred to as a nonstationary environment (NSE). Here  represents the class (concept) and   

represents a data instance. Since class definitions change over time in a NSE, learning in such an environment is also re-

ferred to as concept drift. Much of early work in NSE learning have primarily focused on the definition of the problem, 

identifying the types of NSE [8-10] and the conditions under which they can be learned [11]. Characterizing such an envi-

ronment is not trivial because the change can be abrupt or gradual, slow or fast, rare or often, random or systematic, cycli-

cal or otherwise. Concept drift can also be perceived, rather than real, due to insufficient, unknown or unobservable fea-

tures – referred to as hidden context, where an underlying phenomenon provides a true and static description over time for 

each class, which, unfortunately, is hidden from the learner. Having the benefit of knowing this (hidden) context would 

remove the nonstationarity. However, the learner can only make use of the information available, and in the absence of 

any information regarding its existence and nature, hidden contexts can only be modeled as a nonstationary environment. 

Concept drift algorithms can be characterized in several ways, such as online vs. batch approaches depending on the 

number of instances used at each training step; single classifier vs. ensemble-based approaches depending on the number 

of classifiers used to make a decision; incremental vs. non-incremental approaches based on whether prior data are reused; 

or active vs. passive approaches depending on whether an active drift detection mechanism is employed. In active drift 

detection, the algorithm explicitly seeks to determine whether and when a change / drift has occurred before taking any 

corrective action. A passive drift detection algorithm, however, assumes that drift may occur at any time, or is continuous-

ly occurring, and hence updates a model every time new data arrive. Active approaches have the advantage of avoiding 

unnecessary updates when no drift is detected, but are prone to both type I and II errors, common on noisy data: the algo-

rithm may fail to update a model when necessary or incorrectly update it when not necessary. Passive approaches avoid 

the problems associated with incorrect drift detection, but have increased computational burden due to constant update. 

Several concept drift algorithms use some form of a sliding window over the incoming data, where the batch of in-
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stances that fall within the window are considered stationary, and a new classifier is generated for each such batch of data. 

STAGGER [9] and FLORA [10] are the first examples of this passive batch-based instance selection approach. Certain ver-

sions of FLORA algorithms also include an active drift detection mechanism, using an adaptive window narrowing or 

widening depending on whether the drift is rapid or slow [10]. FLORA labels the classifiers as relevant, irrelevant or po-

tentially relevant by evaluating them on the most recent data. Each classifier maintains a counter based on the number of 

correctly classified examples, and classifiers are pruned based on their relevance in the current data window. However, 

such an approach causes catastrophic forgetting [12]. Another group of active concept drift approaches are based on con-

trol charts, such as CUSUM (cumulative sum). Alippi and Roveri’s just-in-time (JIT) classifiers [13-15], and their more re-

cent intersection of confidence intervals (ICI) rule [16] are examples of such approaches. Information theoretic measures, such 

as entropy, mutual information, or Hoeffding bounds of individual features have also been used for detecting drift and 

updating a classifier, typically a decision tree [17-19]. Many of these approaches also include a FLORA-like windowing 

mechanism, including Hulten et al.’s concept adapting very fast decision tree (CVFDT) [20] or Cohen et al.’s incremental 

online-information network (IOLIN) algorithms [21;22].  

Most drift detection approaches are generally quite successful in detecting abrupt changes, but may struggle with 

gradual drift. As an online active approach, the Early Drift Detection Method (EDDM) is specifically designed for gradual 

drift [23]. It does so by monitoring the distance between the errors of a classifier and comparing their mean to a threshold. 

EDDM has the ability to flag not only drift, but also issue a warning if necessary.  

Multiple classifier systems (MCS), or ensemble systems, have also been proposed and successfully implemented for 

learning in nonstationary environments [24]. MCS provide a natural mechanism to update a knowledge base by adding, 

removing or updating classifiers. Most ensemble-based algorithms track the environment by adding new (and possibly 

removing old) classifiers to build an ensemble with each incoming dataset. These approaches typically use a passive drift 

detection along with a fixed ensemble size, where the oldest member (as in Street’s Streaming Ensemble Algorithm (SEA)  

[25], and Bifet’s adaptive Hoeffding tree bagging [26]) or the least contributing ensemble member (as in Tsymbal’s Dynam-

ic Integration [27], Kolter and Maloof’s, Dynamic Weighted Majority (DWM) [28]) is replaced with a new one. Voting is 

the most common approach for combining the classifiers, though there is disagreement on what type of voting is most 

suitable for concept drift approaches. Tsymbal combines a proximity measure with classifier performance to determine the 

voting weights, with classifiers whose training and test data are in the same region of feature space being awarded higher 

weights [27]. Gao, on the other hand, advocates simple majority voting [29], pointing out that weights based on classifier 

error on drifting data is uninformative for future datasets. Other variations of ensemble approaches include [30-32].  
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Hybrid approaches that combine active detection, sliding windows and classifier ensembles have also been proposed, 

such as random forests with entropy [33] and Bifet’s novel integration of a Kalman filter combined with an adaptive slid-

ing window algorithm, namely ADWIN  [5;34].  Bifet et. al. has recently released a WEKA-like software suite, Massive 

Online Analysis (MOA) at [35], which includes implementations of ADWIN and a variety of other tools for mining data 

streams with concept drift. Another example of active ensemble approach includes Hoens et. al.’s recent work that com-

bines random subspace approach with Hellinger distance to detect drift in features of the data [36]. 

Ensemble based concept drift algorithms also include our previous work, the incremental Learn++.NSE algorithm 

[7;37-40], which generates a new classifier with each batch of data that become available. The classifiers are combined via 

dynamically weighted majority voting, where weights are based on the time-adjusted error of each classifier, sigmoidally 

averaged over all environments. Learn++.NSE can track a variety of environments, including those with gradual, fast, ab-

rupt, or even cyclical drift. It can identify most and least relevant classifiers, assigning them high and low voting weights, 

and detect when a classifier becomes relevant again, should the environment follows a cyclic path. The algorithm can also 

accommodate addition or removal of classes, a property it shares with other members of Learn++ algorithms [3;12;41]. 

However, just like algorithms mentioned above, Learn++.NSE is not equipped to address imbalanced data. This is because 

the class-independent raw classification error is a major contributor to the classifiers’ weight, and with severely unbal-

anced datasets, classification error is a very poor estimator of the classifier’s overall performance on minority data, which 

is typically the more critical figure of merit. Therefore, a new method of weighting classifiers and measuring their perfor-

mance on all classes (minority and majority) is required to simultaneously address concept drift and class imbalance. 

3 CLASS IMBALANCE IN MACHINE LEARNING

Class imbalance occurs when a dataset does not have (approximately) equal number of examples from each class, which 

may be quite severe in some applications [42]. A comprehensive literature review of learning from imbalanced data can be 

found in [43]. The most obvious solution to class imbalance is under (over) sampling the majority (minority) class data. 

However, each has its own drawbacks: under-sampling throws away data from the majority class, whether they are useful 

or not. Over-sampling, on the other hand, creates exact replicates of the minority instances, which may cause the classifier 

to overfit the minority class instances. More intelligent approaches include condensed nearest neighbor (CNN) rule, which 

removes examples from the majority class that are distant from the decision border [44], or Tomek links that under-samples 

the majority class by defining a distance between two instances from different classes [45].  

A more novel method, however, is used by Chawla’s SMOTE (Synthetic Minority Oversampling TEchnique) algorithm 

[46], which populates the minority class feature space by strategically placing synthetic examples on the line segment con-
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necting two minority instances (see Fig. 2). SMOTE has been shown to improve the classification accuracy on the minority 

class over other standard approaches. Alternatively, SMOTEBoost [47] combines SMOTE and AdaBoost.M2 to further im-

prove F-measure and recall. More recently, bagging ensemble variation (BEV) was proposed [48], which uses bagging to 

train classifiers with all minority class data and subsets of the majority class data. Learn++.UDNC combines preliminary 

confidence measures with a transfer function to adjusts the voting weights of classifiers based on the class imbalance in 

each dataset [3;12;49]. DataBoost-IM algorithm determines hard to classify minority class instances, based on which creates 

new synthetic data [50]. Finally, classifier specific approaches, such as rebalancing designed to work with support vector 

machines (SVMs), have also been recently proposed [51;52]. 

4 PREVIOUS WORK ON COMBINING CLASS IMBALANCE AND CONCEPT DRIFT

Recently, an algorithm for NSE learning from imbalanced data has been proposed by Gao et al. [32;53]. The algorithm, 

referred to as uncorrelated bagging (UCB), is based on a bagging framework that trains classifiers on a subset of the majority 

class instances (whose selection is controlled by a user defined parameter) and the union of all minority class instances 

seen thus far (current + previous positive examples). With each new batch of data, minority class instances are saved and 

accumulated for training the classifiers at the future iterations. However, this approach implicitly assumes that the minori-

ty class data are stationary. This assumption, when violated, can cause the algorithm to misinterpret the true feature space 

of the minority class at subsequent time steps. The issue of handling the accumulated data for lifelong learning is also not 

addressed. It is conceivable that the minority population could become majority as data are accumulated over long periods 

of time, and the data that have been accumulated could be irrelevant in the future.  Furthermore, the approach cannot be 

formally considered incremental since it does not meet the single-pass requirement. Chen and He’s Selectively Recursive 

Approach (SERA) algorithm uses a similarity measure to select previous minority examples that are most similar to those in 

the most recent dataset [54]. SERA is less prone to issues of the minority class drifting compared to UCB [53], and can be 

implemented in two ways: i) generate a single classifier on each dataset; or ii) use biased bagging, BBagging, that manually 

increases the sampling weights of the minority data. SERA effectively discards what it considers as irrelevant accumulated 

instances from the current training set by employing a (Mahalanobis) distance metric. SERA is modified to employ an en-

semble approach in [55;56]. However, this framework is also not strictly incremental, as it requires access to previous data. 

Hence, both approaches listed above work best when the minority data concept is stationary and /or the old (minority 

class) data can be retained for future use. Finally, most recently, Xioufis et. al. have presented a window-based method 

that uses a k-NN for multi-label classification for data that contains concept drift and class imbalance [57]. 
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5 PROPOSED FRAMEWORK FOR LEARNING CONCEPT DRIFT FROM IMBALANCED DATA
A general framework for learning concept drift from streaming imbalanced data should satisfy the aforementioned de-

sired properties: accommodate a variety of concept drift environments (e.g., slow or rapid, gradual or abrupt, cyclical or 

otherwise); learn from possibly severely imbalanced data with good performance on both minority and majority class da-

ta; retain and extract knowledge from past experience when such knowledge is relevant; and  learn incrementally without 

access to the previous data.  In this section, we describe two algorithms that meet these criteria. 

5.1 Learn++.CDS
We start with two approaches, each addressing the individual problem for which they were originally designed: 

Learn++.NSE for learning concept drift [7] and SMOTE for class imbalance [46]. We choose Learn++.NSE primarily due to  

its versatility: its ability to accommodate a variety of concept drift scenarios, including cyclic or variable rate of drift, as 

well as class addition / removal that most other algorithms do not address. For imbalanced data, we choose SMOTE

whose ability to learn from severely imbalanced datasets has been well documented. Therefore, a natural first step would 

         

Figure 1. Learn++.CDS pseudo code    Figure 2. SMOTE pseudo code
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be to suitably combine the strengths of these two algorithms. In such a setting where imbalanced data are received from a 

nonstationary environment, SMOTE can first be used to reduce the imbalance ratio and enrich the minority class feature 

space, followed by Learn++.NSE to learn the drifting concept from the newly rebalanced dataset [58]. We call this approach 

Learn++.CDS (Learn++ for Concept Drift with SMOTE), whose pseudo code is shown in Fig. 1.  

Learn++.CDS is provided with dataset  at time step , drawn from the distribution  that may be different 

from . The algorithm then updates a distribution of instance weights, , by evaluating the existing ensemble, 

, on the most recent dataset,  (Step 1).  The instance index is given by  where  is the number 

of labeled instances at time step . The weights of the misclassified instances are increased and renormalized to create a 

penalty distribution  (Eq. (2), (3) in Step 2) to be later used in computing classifiers’ pseudo errors. A new classifier, 

hypothesis , is trained on  that is enriched by synthetic minority class samples  provided by SMOTE (Steps 3 & 4). 

The pseudo code for SMOTE, adopted from [46], can be found in Fig. 2.  

All classifiers generated up to time  are evaluated on  to obtain their pseudo errors on the new environment (Eq. 

(4), Step 5) through a weighted sum of the penalty distribution. Three critical points are worth mentioning here. First, since 

classifiers are generated at different times, each classifier receives a different number of evaluations: at time ,  is evalu-

ated for the first time, whereas  gets its th evaluation. We use  to denote the pseudo error of , the classi-

fier generated at time step , on dataset . Henceforth, when applicable, the superscript represents the time index for 

the current environment, and the subscript is the time the relevant classifier is generated.  

Second, not all misclassifications contribute equally to the pseudo error , as the penalty distribution  is used to 

weigh the misclassifications. In this weighting scheme, the relativity of penalties is based on the overall ensemble error. 

When the ensemble performs well on the new data – indicating that there has been little or no change in the underlying 

distributions – misclassified instances add higher relative penalty weight (since they should have been learned previous-

ly). When the ensemble performs poorly on the new data – indicating that the environment has changed substantially – 

misclassified data add smaller relative penalty, since there is little reason to punish unknown instances of a new environ-

ment. Hence, classifiers that perform well on novel data are deemed more relevant than others. Note that the weights are 

not used for instance selection, as done in many other boosting approaches [59]. In fact, unlike most concept drift algo-

rithms, there is no instance selection in Learn++.CDS, as all data in the current batch are used for training. Rather, the in-

stance weights are used to control penalty assignment, which is then used to determine voting weights. The goal in this 

formulation is to allow the ensemble learn new knowledge in , while reinforcing still relevant existing knowledge. 

Third, if the pseudo error for the newest classifier on its own training data satisfies ½, it is deemed an ineffec-
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tive classifier and is replaced with a new classifier. However, an earlier classifier with  ½, is simply has its error set 

to ½, which - when normalized (later in step 7) - receives the highest deemed error (and hence the lowest vote) at time 

stamp . Note that while the new classifier with an error ½ is discarded, an earlier classifier with a similar error is 

retained (but assigned a zero weight for that environment). This is because an older classifier currently underperforming 

may become relevant again if the earlier environment on which it performed well recurs. These errors  are 

then normalized to obtain  (Eq. (5) in Step 5). The normalized errors are further weighted to emphasize classi-

fiers’ recent performance, using a sigmoidal weighting function (Step 6), which also serves to reduce the effects of wide 

swings in errors, possibly due to outliers or inherent noise in the data. The sigmoid parameter  defines the slope of the 

sigmoid cutoff, and  refers to the number of prior pseudo errors to be considered before the cutoff. Such a time adjust-

ment approach rewards classifiers that are currently performing well on the most recent environments, even if such classi-

fiers may have been generated long time ago. Classifiers with high pseudo error on current environments then receive 

(near) zero weight, temporarily removing them from affecting the decision. We note that if the same classifier later per-

forms well on a future environment, it is automatically reactivated by receiving a higher voting weight. 

Final voting weights are computed as the logarithm of the reciprocals of the time-adjusted weighted classifier errors in 

Step 6 (Eq. (9), Step 7). The final ensemble decision is then obtained using weighted majority voting (Eq. (10), Step 8). 

5.2 Learn++.NIE
The error metric used for the penalty distribution in Learn++.CDS does not discriminate between instances of different clas-

ses. In an imbalanced dataset, such a class-independent error measurement causes the error to be biased towards the ma-

jority class. Furthermore, in an imbalanced dataset, simple raw classification accuracy (RCA) is misleading, as it can lead 

to low overall error by correctly classifying majority class instances and missing all minority class instances. Yet, it is the 

performance on the minority class data (also called recall) that is usually of utmost importance. Learn++.CDS addresses this 

issue by pre-balancing the originally imbalanced data with synthetic samples generated by SMOTE. An alternate ap-

proach, however, is to optimize the classifier performances on both minority and majority class data, without generating 

synthetic data. Learn++.NIE (Learn++ for Nonstationary and Imbalanced Environments) follows such an approach [60].  

Learn++.NIE makes two strategic modifications compared to Learn++.CDS. First, it employs a different penalty con-

straint that forces the algorithm to balance predictive accuracy on all classes by rewarding classifiers that perform well on 

both minority and majority class data. Furthermore, this constraint can be adjusted to place more or less weight to minority 

or majority class instances, depending on the application, balancing minority recall while preserving a majority 
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class performance. Second, Learn++.NIE also replaces the minority class oversampling of SMOTE with that of a bagging 

based sub-ensemble, which neither oversamples existing minority data, nor generates synthetic data, as described below. 

The pseudo code for Learn++.NIE is shown in Fig. 3. The algorithm employs a variation of bagging (BaggingVariation) 

to generate sub-ensembles of classifiers (Step 1). BaggingVariation, shown in Fig. 4, first divides the training data, , into 

the majority and minority classes. A sub-ensemble of classifiers is generated, each using all of the minority class data and a 

randomly sampled subset of the majority class. A few points are worth noting here. First, no minority data instance is ever 

repeated for balancing class proportions in training any of the classifiers, and unlike SMOTE, no synthetic minority class 

data are generated either. The strategy here is to have each classifier being exposed to a balanced dataset that uses all the 

minority class information and a subset of majority class information. Second, unlike the standard under sampling ap-

proaches, majority class data are not discarded, as each ensemble member is trained on a different bootstrap sample of the 

majority class data. Third, minority (or, for that matter, majority) class data are not accumulated across time: each minority 

class instance is only used on the sub-ensemble generated at the current time ; therefore the implicit – and possibly incor-

rect – assumption of minority class data being stationary is not made by Learn++.NIE. Finally, since data instances are only 

used for generating classifiers at the current time they become available, and are never reused in future classifiers, 

  
Figure 3. Learn++.NIE pseudo code    Figure 4. BaggingVariation pseudo code
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Learn++.NIE meets the strict incremental learning one-pass criterion. The classifiers in each sub-ensemble are then com-

bined via simple majority voting to form a composite hypothesis. The composite hypothesis obtained from the sub-

ensemble at time t is denoted by  in the pseudo code in Fig. 3.  

All existing sub-ensembles (  for ) are evaluated on . Learn++.NIE then computes the error measure 

 to be used in determining the weight of the sub-ensemble. As mentioned above, this measure is not based on the raw 

classification accuracy, but designed to accommodate the imbalanced nature of the data. Specifically, Learn++.NIE uses one 

of three carefully selected measures, the first of which is the weighted recall measure (wrm) for boosting recall and tracking 

drifting concepts. The wrm measure is determined by computing the weighted average of recall on the majority class 

( ) and minority class ( ). The weighted error  is computed using (17) from the performances of the majority 

and minority classes, hence wrm is a convex combination of the recall of the majority and minority classes. The term  con-

trols the weight given to a particular class error and is bound between zero and one ( ). Therefore, we can control 

the penalty incurred for the error of a class rather than penalizing for the misclassification of a particular instance.  

  (17) 

Selecting  (or ) penalizes a classifier for error on the minority (or majority) class only. Thus, we would ex-

pect the ensemble to have a very high minority (or majority) class performance, but poor overall accuracy because a sub-

ensemble is not penalized for not learning the majority (or minority) class. Selecting  typically provides a good bal-

ance between minority class performance and the overall accuracy.  

Two additional figures of merit that can be used to accommodate imbalanced data via Learn++.NIE are the geometric 

mean (G-mean) and F-measure, which are commonly used in assessing classifier performance on imbalanced data. In using 

the former, we acknowledge that sub-ensembles that perform well across all classes should have a larger geometric mean 

than classifiers that perform poorly on any given class. For example, a sub-ensemble may have a relatively high classifica-

tion accuracy but a poor G-mean, if it performs poorly on a minority class. In other words, G-mean indicates if a classifier 

is performing well across all classes or just a majority class. When the G-mean measure is used, is computed as follows: 

  (18) 

where  indicates the performance of sub-ensemble  on class  instances at time . 

The third metric, the F-measure, explicitly tries to balance precision and recall performance, as shown in Eq. (19), 

  (19) 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 

 

  (20) 

where  is the -score or -measure given by Eq.(20). The strategy behind using measures like the F-measure, G-mean 

and weighted recall measure is to allow the algorithm to weigh classifiers on how well they are performing across all clas-

ses, majority and minority.  Thus, if a sub-ensemble is consistently performing poorly on a minority (or majority) class, 

then the final voting weight,  as computed in Eq. (15), will reflect this sub-par performance. Once the sub-ensemble 

errors  are determined, the rest of Learn++.NIE follows as Learn++.CDS, but with individual classifiers  of Learn++.CDS 

being replaced with the corresponding sub-ensembles . We note that while individual classifiers in a sub-ensemble are 

combined via simple majority voting, the sub-ensemble decisions themselves are combined via a weighted majority vote 

(Eq. 16) to obtain the final hypothesis, where voting weights are ultimately based on one of three metrics described above. 

6 EXPERIMENTS
In this section we present an empirical analysis of the Learn++.NIE and Learn++.CDS, including comparisons to other ap-

proaches recently proposed for nonstationary learning from imbalanced data. The experiments include a number of care-

fully designed synthetic datasets, as well as real world problems. The synthetic datasets are particularly useful as we can 

custom build a variety of concept drift scenarios to determine whether the proposed approaches can successfully address 

the joint concept drift – imbalanced data problem under such scenarios. The comparisons also allow us to determine the 

individual strength and weakness of each algorithm, compared to other existing approaches on a broad spectrum of con-

cept drift scenarios. There are four synthetic datasets (drifting Gaussians, rotating checkerboard, shifting hyperplane and 

rotating spirals) and two real world datasets: commonly used electricity dataset, and a new weather prediction dataset. 

We release all data at [61] as a resource to all researchers interested in this field. The existing approaches against which 

Learn++.CDS and Learn++.NIE are compared include SEA, SERA, uncorrelated bagging and Learn++.NSE.  

6.1 Datasets and Preprocessing
All experiments begin at time t = 0 and end at some arbitrary time in the future, during which T consecutive batches of 

data are presented for training. Each batch is drawn from a possibly different source distribution, and the nature of drift 

between any two arbitrary time stamps is assumed unknown. The nature and rate of change in drift are also assumed un-

known to the algorithm. Results of Learn++.NSE using various effective drift rates (i.e., T values) can be seen in our prior 

work [38]. In general, as expected, the ability of the algorithm to track the drift is inversely proportional to the rate of drift.   

The drifting Gaussians dataset has a majority class, comprised of a linear combination of three Gaussian components 

and a minority class drawn from a single Gaussian component. Table 1 presents the parametric equations that govern the 

movement of the mixtures over the time interval, , where  represents  Gaussian component for class . 
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Class 1 and class 2 are majority and minority classes, respectively.  The off-diagonal elements of the covariance matrix for 

all classes are zero. The drift is controlled by varying the mean and covariance of each Gaussian over the duration of the 

experiment. The drift rate was set to 0.01 (T=100 time stamps), resulting in moderate drift rate. Since this is a controlled 

experiment of known distribution, we can also compare all algorithms to the optimal Bayes classifier trained only on the 

current data. The posterior probability of the optimal Bayes classifier at four different time stamps is shown in Fig. 5. Note 

that only the covariance matrices drift during , while the mean vectors remain constant. Then, the component 

means begin to drift and the location of the minority class eventually drifts into the center of the three-majority class mix-

tures as shown in the posterior estimate of Fig. 5(a). Finally, the minority class mode moves out from the center of the 

three majority class modes. The cardinality of the minority class (both training and testing) was set to  of total data.  

The rotating checkerboard problem is a challenging generalization of the classical non-linear XOR problem. The XOR 

problem is the special case when for . The experiment is controlled by two parameters: the relative side 

length of each square with respect to the total length of the board (fixed at 0.5 in our experiments) and the angle of rota-

tion, . By varying the rotation angle in smaller steps between 0 and , a significantly more challenging set of decision 

boundaries can be created. This experiment is particularly effective for observing an algorithm’s ability to learn data in 

recurring environments. Fig. 6 depicts six snapshots of the board, corresponding to half of the rotating  check-

erboard experiment. During the second half , the environment identically repeats the first half, which in turn 

simulates a recurring environment. The minority class consists of 5% of the total data size.  

The shifting hyper-plane problem, now a benchmark in concept drift problems, was introduced by Street & Kim for 

their streaming ensemble algorithm (SEA) [25].  In our implementation, the shifting hyper-plane in [25] was slightly modified 

to induce an imbalanced class distribution as well as a recurring environment. The dataset is characterized by extended 

periods without any drift, with occasional sharp changes in the class boundary, i.e., sudden drift or concept change. The 

dataset includes two classes and three features, only two of which are relevant, and the third being noise. Class labels are 

assigned based on the sum of the relevant features, and are differentiated by comparing this sum to a threshold that sepa-

rates the hyperplanes: an instance is assigned to class 1 if the sum of its relevant features ( ) fall below the threshold 

, and assigned to class 2, otherwise. At regular intervals, the threshold is changed, creating an abrupt shift in the class 

boundary.  Data are uniformly distributed between 0 and 10, and the threshold  is changed three times throughout the 

experiment (4 7 4 7). We then induced class imbalance that also varies as the hyperplane shifts, to include minority 

data cardinality between % and % of total data size. Data also contain 5% class label noise. Datasets are presented 

in batches of 1000 instances for a total of T = 200 time stamps, with three different shifts occurring every 50 time stamps.  
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The rotating spiral dataset consists of four spirals, two for the minority and two for the majority class, as shown in Fig. 7. 

This figure shows the true decision boundaries at six different time stamps where the angle, , varies between . The 

initial feature space for the rotating spiral dataset is shown in Fig. 7(a) and the spirals rotate over 300 time stamps at even-

ly spaced intervals. The environment repeats every 150 time stamps (i.e. ), thus the experiment contains two full rota-

tions, again to simulate a recurring environment. The minority class consists of 5% of the total data size.  

The Electricity Pricing dataset (elec2) was first introduced in [62] and has also been used as a benchmark for concept 

drift problems [23;28]. The dataset provides time and demand fluctuations in the price of electricity in New South Wales, 

Australia. We use the day, period, NSW (New South Wales) electricity demand, VIC (Victoria) electricity demand and the 

Table 1. Drifting Gaussians dataset parametric equations for the drift scenario
      
     

 1 2 5 1 3 2 5 1 

   1 5 8 1 1 8 1 1 8 8 

   1 5 2 1 1 2 1 1 8 2 

 1 1 8 5 1 1 5 1 1 
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scheduled electricity transfer as the features. The task is to predict whether the NSW price will be higher or lower than 

VIC’s in a 24 hour period. Instances with missing features were removed. Since the original dataset does not contain class 

imbalance, one of the classes was under sampled to create an imbalance ratio of approximately 1:18 (minority data is 5.5% 

of total data size). This dataset includes natural concept drift, as the electricity prices change with demand in time. 

Finally, the Weather Dataset is a subset of the NOAA data [63] that we first processed and released as a concept drift da-

taset. While the dataset contains weather data from hundreds of locations around the world, we chose Offutt Air Force 

Base in Bellevue, Nebraska because this location contained over 50 years worth of data, providing not only cyclical sea-

sonal changes, but also possibly long-term climate change. Daily measurements were taken for a variety of features such 

as temperature, pressure, visibility, and wind speed. We chose eight features and set the classification task to predict 

whether rain precipitation was observed on each day. We use a test-then-train strategy for evaluating the algorithms to 

cast this as a prediction problem, rather than a pure classification task. The training size was set to 120 instances (days), 

approximately one season, and data from the next season served as the test data. Minority data cardinality varied between 

10% and 30% throughout the 50-year data. 

6.2 Algorithms for Comparison and Parameter Selection
We use several state-of-the-art algorithms to compare their ability to learn concept drift from imbalanced data. The selec-

tion of algorithms include two that are designed strictly for concept drift (SEA and Learn++.NSE) and others that are de-

signed to handle concept drift and class imbalance. SEA and Learn++.NSE are included to serve as baseline comparisons to 

demonstrate why new algorithms are needed to handle concept drift and class imbalance, and to demonstrate possible 

repercussions of blindly applying concept drift algorithms to imbalanced data. Learn++.NSE comparison allows us to de-

termine the benefit in Learn++.CDS when SMOTE is applied for rebalancing the data in a nonstationary environment. The 

proposed Learn++.CDS and Learn++.NIE algorithms are compared to the following approaches: 

Streaming Ensemble Algorithm (SEA): Benchmark concept drift algorithm. See [25] for implementation details. En-

semble size was limited to 25 (same as suggested by the paper’s authors) for all results presented here. 

Learn++.NSE: Predecessor of our proposed approach, originally designed for concept drift problems. See [7] for im-

plementation details. The  and  parameters were set to 0.5 and 10, respectively.  

Selectively Recursive Approach (SERA): Recently proposed for imbalanced datasets in concept drift problems. See [54] 

for implementation details. Sample size parameter, f, was set to 0.4  and BBagging used five classifiers [54].  

Uncorrelated Bagging (UCB): Recently proposed for imbalanced datasets in concept drift problems [53]. The majority 

class parameter, , was set to 0.4 for all experiments, and the number of classifiers in the ensemble was set to 5.  

We used classification and regression tree (CART) as the base classifier for all algorithms for a fair comparison. The 
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SMOTE parameter for Learn++.CDS was set based on the imbalance in the dataset. The  parameter of Learn++.NIE for the 

weighted error combination was set to  which gives equal weight to the error of each class. Further analysis of the im-

pact of this parameter is discussed in [60]. The under-sampling in the bagging variation for Learn++.NIE was naturally set 

to  where  is the number of instances in a batch and K is the number of classifiers generated at each time stamp. We 

generate K=5 classifiers for each sub-ensemble of Learn++.NIE. For NOAA dataset, however, the under-sampling ratio was 

set to 65% of the batch size as this dataset does not contain a large class imbalance compared to the synthetic datasets. We 

use Learn++.NIE (wrm) to refer to Learn++.NIE using (17) for the error measure . Similarly, Learn++.NIE (fm) and 

Learn++.NIE (gm) use Eq. (18) and (19) to determine . The  and  parameters for Learn++.NIE and Learn++.CDS’s sig-

moid were set to 0.5 and 10, respectively. To avoid the accumulated minority data in UCB becoming a majority class (since 

this issue is not addressed in the original UCB algorithm), we apply a sliding window to the minority class data to ensure 

that we do not train on more positive (minority) instances than negative (majority) ones. Otherwise, original UCB per-

forms even poorer than the results provided below. 

6.3 Evaluation Measures 
Several figures of merit are used for a thorough evaluation of the algorithms. First, while raw classification accuracy (RCA) 

- % of all instances correctly identified – is an important and commonly used metric, it is not an adequate evaluation 

measure with imbalanced datasets. Therefore, we also include the F-measure, area under the receiving operating charac-

teristic curve (AUC), and minority class recall to measure the effectiveness of the competing algorithms. All metrics are 

obtained at each time step, creating a time-series data (presented below). We also average each figure of merit over the 

course of the entire experiment to form a single value that represents how well an algorithm performs on a particular da-

taset. The averages (i.e., F-measure, recall, AUC, RCA, and OPM) are then ranked to make comparisons among algorithms. 

The ranks can range from (1) to (8) where (1) is the best and (8) is the worst performing algorithm. We then use the Fried-

man test as described in [64] to make formal statistical comparisons between classifiers over multiple datasets after all da-

tasets are presented. Since no single algorithm may outperform all others in all measures and all datasets, we also use a 

combined overall performance measure (OPM) and average rank as composite figures of merit. OPM is simply a convex com-

bination of raw classification accuracy, F-measure, AUC and minority class recall:  

  (21) 

with   for the purposes of this study. We selected recall, and not precision, for the calculation of OPM 

since the F-measure is already included in the calculation, and itself is the harmonic mean of precision and recall.  
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6.4  Experimental Results
The time-series representations of the aforementioned figures of merit are first presented below. The shading enveloping 

each curve in the figures below represents a 95% confidence interval based on 40 independent trials unless otherwise not-

ed (refer to the digital copy of the article for color figures). Due to the number of comparisons (6 algorithms and 8 variations on 

several different figures of merit) for each database, we split the results into two sets of figures: i) comparing three ver-

sions of Learn++.NIE with respect to three different error measures (F-measure (fm), G-mean (gm) and weighted recall 

measure – (wrm)); and ii) comparing Learn++.CDS, Learn++.NIE (fm), UCB and SERA. Among three versions of Learn++.NIE, 

F-measure was used as the representative in comparison against other algorithms, since F-measure combines both recall 

and precision. The SEA and Learn++.NSE performances have been omitted in the figures due to space limitations; however, 

their results are included in the tables below which show the time-averaged figures of merit, their 95% confidence inter-

vals and rankings for all algorithms. Before we present the detailed analysis of the experimental results, we first summa-

rize our key observations that were consistent across a wide range of datasets and learning scenarios.   

Learn++.NIE (fm) and Learn++.CDS consistently provide results that rank them in the top three for the composite 

figure of merit (i.e., the overall performance measure - OPM) on nearly all datasets tested. 

Learn++.NIE (fm) and Learn++.CDS typically provide a significant improvement in recall, AUC, and OPM compared 

to their predecessor Learn++.NSE and SEA, while maintaining good raw classification accuracy. UCB usually 

shows the best recall, but that comes at the cost of classification accuracy and F-measure. In fact, while UCB con-

sistently maintains a good rank for recall, it holds the worst rank in terms of overall accuracy. Learn++.NIE (fm) 

and Learn++.CDS provide significant improvement in classification accuracy and F-measure compared to UCB. 

The simple integration of SMOTE into Learn++.NSE has improved the OPM rank on every dataset over 

Learn++.NSE, indicating that a blind use of even a strong concept drift algorithm is ill-advised for imbalanced data.  

Learn++.NIE (fm) typically provides better results than its  (gm) or (wrm) implementations. We find that Learn++.NIE 

(fm) provides significant improvements over (wrm) in AUC, recall and OPM, whereas only AUC is improved 

when compared to (gm). On the other hand, the wrm implementation provides a unique control over recall or pre-

cision performance, a capability that the other two implementations do not have. 

6.4.1 Drifting Gaussians Dataset
The results for the drifting Gaussians dataset are presented in Fig. 8 and 9. The average values of the figures of merits used 

in the evaluation are tabulated in Table 2 along with the results from SEA and Learn++.NSE. There are several observations 

we can make from these results. First, all algorithms experience a major drop in every measure around time step 50, which 
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precisely corresponds to the minority class distribution moving into the middle of the majority class components, making

prediction of minority class the most difficult. UCB appears to be the most robust in terms of recall and AUC, with 

Learn++.NIE catching up in the latter part of the simulation. However, Learn++.NIE (fm) maintains a better average rank 

(closely followed by Learn++.CDS) compared to UCB due to UCB’s poor showing on raw classification accuracy (RCA) and 

F-measure. Specifically, the boost in minority class recall for UCB causes a large drop in classification accuracy. While UCB 

has the best rank for minority class recall and AUC; it drops to rank 7 and 6 for RCA and F-measure, respectively. We will 

see that this is a common trend for UCB on other datasets as well. Note that in an imbalanced data problem, our goal is to 

improve minority class recall, without sacrificing RCA (primarily determined by majority class accuracy). Second, we find 

that Learn++.CDS maintains a better rank compared to Learn++.NSE and SEA in many of the measures in Table 2. This 

demonstrates the value and effectiveness of applying synthetic sampling (SMOTE) to Learn++.NSE for learning unbalanced 

classes. Third, Learn++.NIE and Learn++.CDS algorithms are highly competitive with one another in terms of combined 
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figure of merit, the OPM. Fourth, we also observe that while SERA does well on F-measure, it performs rather poorly on 

other figures of merit. Hence, Learn++.NIE (all implementations) and Learn++.CDS out-rank SERA in terms of the OPM. Fi-

nally, we observe from Fig. 8 that Learn++.NIE (fm) out ranks the Learn++.NIE’s (gm) and (wrm) implementations. 

6.4.2 Rotating Checkerboard Dataset
Fig. 10 and 11 present the results on the rotating checkerboard dataset. The mean values of all figures of merits used in the 

evaluation are tabulated in Table 3. We observe several trends, which appear to be common with those observed in the 

Gaussian experiment. First, Learn++.NSE has very good accuracy (RCA), but primarily due to its performance on the ma-

jority class. Yet, Learn++.CDS further improves the OPM by utilizing SMOTE to build more robust classifiers for unbal-

anced data. In fact, Learn++.CDS performs consistently well across all figures of merit, with the best mean rank, closely 

followed by Learn++.NIE. Learn++.NIE (fm) and Learn++.CDS provide significant improvement to AUC, recall and F-

measure compared to their predecessor Learn++.NSE. Second, as in the Gaussian dataset, UCB ranks best in terms of mi-

nority class recall but ranks lowest in terms of RCA. UCB also experiences a large drop in rank when using the F-measure 

for evaluation. This large drop in rank across measures is not observed for Learn++.NIE (all implementations) or 

Learn++.CDS. Also, observe that Learn++.NIE (fm) maintains a significantly better rank than the (gm) or (wrm) implementa-

tion of Learn++.NIE in terms of OPM and other measures, similar to what was observed with the Gaussian problem. Final-

ly, the performance peaks that appear every 50 time steps coincide with the checkerboard being at right angle, correspond-

ing to the simplest distribution for classification.           

6.4.3 Shifting Hyperplane
Fig. 12 and 13 present the results on the shifting hyperplane problem. The mean values of all figures of merits used in the 

evaluation are tabulated in Table 4. As in other experiments, we first note that Learn++.NIE (all implementations) significant-

ly outperforms Learn++.NSE and SEA in terms of minority class recall. Because this is an abrupt, sudden concept change 

problem, rather than a gradual concept drift problem, of primary importance is the speed of recovery after the sudden 

change, as well as maintaining a high accuracy during the steady state periods. From Fig. 12(d) we observe that 

Learn++.NIE (fm) maintains the best speedy recovery from a sudden change and a high steady state performance in com-

parison to other implementations of Learn++.NIE. Also, Learn++.NIE (fm) does not incur a sudden drop in recall when the 

hyperplane shifts as compared to other Learn++.NIE implementations. Second, Learn++.CDS and Learn++.NIE (all implemen-

tations) are the top ranking algorithms in terms of the overall performance measure and mean rank. Third, SERA main-

tains a constant RCA for nearly all time stamps as shown in Fig. 13(a). This is a result of SERA not using classifiers from 

previous time stamps, thus there is no prior knowledge retained about the majority class. Finally, we observe, again, that 

the boost in minority class recall for UCB comes at the cost of the overall accuracy and F-measure.  
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6.4.4 Rotating Spirals Dataset
Fig. 14 and 15 present the results on the rotating spiral dataset. The mean values of all figures of merits used in the evalua-

tion are tabulated in Table 5. One prominent observation on this recurring environment is all implementations of Learn++ 

algorithms are able to use old information stored in the ensemble to improve several figures of merit when the environ-

ment reoccurs. This is a custom-designed property of all Learn++ family of algorithms, due to their weighting mechanisms 

that can deactivate and reactivate classifiers based on whether they are relevant to the current environment. Notice that all 

versions of Learn++ algorithms (though some – such as wrm implementation - more strongly than others) achieve a signifi-

cant boost in RCA, minority recall, F-measure and AUC when the recurring environment is encountered (time stamps > 

150) as shown in Fig. 14. Several other observations are also worth noting. First, while Learn++.NSE has the best raw classi-

fication accuracy, again this is due to majority class classification. Lacking a mechanism to accommodate imbalanced data, 

Learn++.NSE performs poorly on recall and AUC. Following Learn++.NSE,  Learn++.NIE (fm) has the best raw classification 

accuracy, and unlike Learn++.NSE, it maintains a high performance on all figures of merit. It is highly competitive with 
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 other algorithms across all measures. In fact, Learn++.NIE (fm) outperforms all other algorithms in overall performance 

(OPM), and has the best mean rank across all measures among all algorithms, including Learn++.NIE with wrm and gm. 

This was observed on previous datasets as well. We also observe a significant increase in OPM and mean rank for 

Learn++.CDS (which adds SMOTE to Learn++.NSE) over its predecessor Learn++.NSE, demonstrating the impact of adding 

SMOTE to Learn++.NSE for learning unbalanced classes.  

Table 2. Drifting Gaussians dataset performance and ranking summary
RCA F-measure AUC Recall OPM Average Rank 

Learn++.NSE 97.63±0.18 (1) 66.30±2.62 (4) 83.65±1.43 (7) 58.33±3.15 (7) 76.48±1.85 (7) 5.2 
SEA 97.46±0.18 (3) 64.39±2.44 (5) 82.97±1.31 (8) 56.40±2.84 (8) 75.31±1.69 (8) 6.4 
Learn++.NIE(fm) 96.11±0.27 (5) 67.30±1.95 (3) 95.80±0.67 (2) 86.74±2.01 (2) 86.45±0.99 (2) 2.8 
Learn++.NIE(gm) 95.24±0.27 (6) 63.37±1.86 (7) 92.12±0.89 (4) 86.51±1.90 (3) 84.31±1.23 (4) 4.8 
Learn++.NIE(wrm) 95.20±0.28 (8) 62.93±1.91 (8) 91.60±0.94 (5) 85.42±1.97 (4) 83.79±1.28 (5) 6.0 
Learn++.CDS 97.50±0.20 (2) 74.21±1.90 (1) 92.19±1.07 (3) 80.85±2.45 (5) 86.19±1.41 (3) 2.8 
SERA 97.37±0.22 (4) 70.76±2.28 (2) 85.99±1.46 (6) 73.52±2.96 (6) 81.91±1.73 (6) 4.8 
UCB 95.22±0.30 (7) 63.74±1.94 (6) 96.84±0.54 (1) 92.02±1.56 (1) 86.96±1.09 (1) 3.2 

Table 3. Rotating checkerboard dataset performance and ranking summary 
RCA F-measure AUC Recall OPM Average Rank 

Learn++.NSE 97.45±0.17 (1) 68.25±2.14 (2) 83.76±1.17 (4) 56.55±2.48 (7) 76.50±1.49 (3) 3.4 
SEA 87.41±0.63 (7) 21.93±1.63 (8) 65.75±1.29 (8) 31.87±2.18 (8) 51.74±1.43 (8) 7.8 
Learn++.NIE(fm) 95.06±0.47 (3) 61.45±2.51 (3) 92.62±0.85 (1) 74.32±2.20 (3) 80.86±1.51 (2) 2.4 
Learn++.NIE(gm) 90.02±0.51 (5) 42.11±1.94 (5) 83.37±1.13 (5) 66.76±2.20 (5) 70.57±1.45 (6) 5.2 
Learn++.NIE(wrm) 89.89±0.51 (6) 41.15±1.86 (6) 82.75±1.12 (6) 65.91±2.16 (6) 69.93±1.41 (7) 6.2 
Learn++.CDS 97.18±0.21 (2) 72.93±1.82 (1) 90.89±0.96 (3) 74.50±2.19 (2) 83.88±1.30 (1) 1.8 
SERA 92.89±0.43 (4) 52.57±2.29 (4) 80.80±1.29 (7) 67.39±2.55 (4) 73.41±1.64 (5) 4.8 
UCB 85.78±0.51 (8) 38.26±1.44 (7) 91.89±0.70 (2) 82.33±1.75 (1) 74.57±1.10 (4) 4.4 

 
Table 4. Shifting hyperplane dataset performance and ranking summary 

RCA F-measure AUC Recall OPM Average Rank 
Learn++.NSE 94.98±0.26 (1) 71.98±1.57 (2) 83.30±0.90 (6) 62.87±1.96 (7) 78.28±1.17 (5) 4.2 
SEA 94.00±0.26 (3) 68.13±1.48 (3) 82.00±0.85 (7) 60.28±1.77 (8) 76.10±1.09 (7) 5.6 
Learn++.NIE(fm) 92.38±0.46 (7) 67.27±1.62 (6) 85.93±0.90 (1) 74.83±1.60 (1) 80.10±1.15 (2) 3.4 
Learn++.NIE(gm) 93.03±0.31 (5) 67.90±1.36 (5) 84.51±0.81 (4) 72.17±1.61 (3) 79.40±1.02 (3) 4.0 
Learn++.NIE(wrm) 93.25±0.30 (4) 67.94±1.39 (4) 84.08±0.83 (5) 70.65±1.65 (4) 78.98±1.07 (4) 4.2 
Learn++.CDS 94.75±0.28 (2) 72.24±1.46 (1) 85.16±0.84 (3) 68.80±1.79 (5) 80.24±1.09 (1) 2.4 
SERA 92.47±0.44 (6) 63.01±1.84 (7) 80.11±1.08 (8) 64.68±2.17 (6) 75.07±1.38 (8) 7.0 
UCB 90.77±0.45 (8) 62.05±1.44 (8) 85.84±0.95 (2) 73.34±1.66 (2) 78.00±1.13 (6) 5.2 

Table 5. Rotating spirals dataset performance and ranking summary 
RCA F-measure AUC Recall OPM Average Rank 

Learn++.NSE 97.76±0.11 (1) 86.13±0.76 (1) 91.33±0.49 (6) 76.96±1.17 (6) 88.05±0.63 (6) 4.0 
SEA 96.65±0.12 (4) 78.97±0.84 (7) 88.91±0.50 (7) 69.49±1.15 (7) 83.51±0.65 (7) 6.4 
Learn++.NIE(fm) 97.30±0.13 (2) 85.87±0.65 (2) 97.34±0.26 (2) 89.87±0.73 (3) 92.60±0.44 (1) 2.0 
Learn++.NIE(gm) 96.11±0.16 (6) 80.57±0.70 (5) 93.11±0.38 (4) 87.21±0.80 (4) 89.25±0.51 (4) 4.6 
Learn++.NIE(wrm) 96.08±0.16 (7) 80.46±0.70 (6) 93.09±0.39 (5) 87.20±0.80 (5) 89.21±0.51 (5) 5.6 
Learn++.CDS 96.81±0.15 (3) 84.15±0.65 (3) 96.15±0.31 (3) 91.77±0.71 (2) 92.22±0.46 (3) 2.8 
SERA 92.73±0.32 (8) 62.67±1.66 (8) 80.96±1.10 (8) 66.57±2.17 (8) 75.73±1.45 (8) 8.0 
UCB 96.42±0.16 (5) 82.57±0.69 (4) 98.18±0.19 (1) 92.74±0.65 (1) 92.48±0.42 (2) 2.6 
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Finally, this dataset identifies a specific weakness of the SERA algorithm, which performs particularly poorly with 

the worst rank in every measure. A unique feature of this dataset is that the mean as well as the covariance of the classes 

remain unchanged despite the drift, and they are equal for all classes. Yet, SERA’s selection of minority class instances de-

pends on a (Mahalonobis-based) similarity measure, which remains unchanged despite the drift. All Learn++ algorithms, as 

well as UCB, are immune to this problem, as they are not based on a distance metric. 

6.4.5 Electricity Pricing Dataset
Fig. 16 and 17 present the results on the electricity pricing dataset, a particularly challenging problem once it has been 

converted to an imbalanced learning problem. This can be seen from Table 6, showing low overall figures in F-measure, 

recall and OPM for all algorithms tested. A few additional observations: first, observe that UCB has the best overall per-

formance measure, followed by Learn++.NIE. However, Learn++.NIE (fm) and (gm) implementations have the highest mean 

rankings. Furthermore, as in previous datasets, UCB’s strong recall performance comes at the cost of very poor RCA.   

6.4.6 NOAA Weather Prediction
Fig. 18 and 19 present the results on the NOAA weather dataset. The mean values of all figures of merits used in the eval-

uation are tabulated in Table  7. Unlike previous datasets, Table  7 does not indicate any variation in Learn++.NSE or SEA 

results because the generated base classifier (CART algorithm) is identical for each trial when we generate a classifier on 

any fixed batch of data. As in previous datasets, however, we do observe better rankings for Learn++.NIE algorithms. The 

differences between the Learn++.NIE implementations were not statistically significant, whereas the improvement of any of 

the Learn++.NIE implementations over any of the other algorithms were all significant, and often by wide margins. 

Table 6. Electricity pricing dataset performance and ranking summary
RCA F-measure AUC Recall OPM Average Rank 

Learn++.NSE 90.75±0.86 (2) 15.40±3.05 (7) 59.66±2.04 (7) 16.87±3.31 (7) 45.67±2.32 (7) 6.0 
SEA 92.15±0.60 (1) 9.37±2.15 (8) 58.48±1.55 (8) 10.53±2.19 (8) 42.63±1.62 (8) 6.6 
Learn++.NIE(fm) 82.60±1.80 (6) 20.79±2.55 (3) 72.45±2.15 (1) 38.72±4.93 (3) 53.64±2.86 (3) 3.2 
Learn++.NIE(gm) 83.60±1.30 (5) 22.29±2.64 (1) 70.70±2.34 (2) 38.37±4.68 (4) 53.74±2.74 (2) 2.8 
Learn++.NIE(wrm) 84.70±1.15 (4) 21.88±2.61 (2) 69.54±2.23 (4) 35.61±4.28 (5) 52.93±2.57 (4) 3.8 
Learn++.CDS 88.48±1.12 (3) 18.09±3.05 (6) 60.58±2.27 (6) 22.91±4.07 (6) 47.52±2.63 (6) 5.4 
SERA 76.42±1.70 (7) 19.91±2.06 (4) 62.42±2.22 (5) 46.46±4.70 (2) 51.30±2.67 (5) 4.6 
UCB 68.23±1.72 (8) 18.68±1.75 (5) 69.74±2.34 (3) 58.87±4.47 (1) 53.88±2.57 (1) 3.6 

 
Table 7. NOAA weather prediction dataset performance and ranking summary 

RCA F-measure AUC Recall OPM Average Rank 
Learn++.NSE 73.35±0.00 (4) 51.27±0.00 (5) 72.08±0.00 (6) 49.38±0.00 (6) 61.52±0.00 (5) 5.2 
SEA 75.81±0.00 (1) 50.43±0.00 (6) 73.37±0.00 (4) 42.86±0.00 (8) 60.62±0.00 (6) 5.0 
Learn++.NIE(fm) 70.54±1.08 (7) 59.19±1.31 (3) 77.84±0.79 (1) 72.48±2.19 (1) 70.01±1.34 (2) 2.8 
Learn++.NIE(gm) 73.53±0.80 (3) 60.78±1.12 (2) 76.83±0.69 (2) 69.27±1.84 (2) 70.10±1.11 (1) 2.0 
Learn++.NIE(wrm) 74.07±0.74 (2) 60.94±1.04 (1) 76.42±0.66 (3) 68.04±1.71 (3) 69.87±1.04 (3) 2.4 
Learn++.CDS 73.05±0.93 (5) 52.89±1.74 (4) 72.91±1.03 (5) 53.75±2.69 (5) 63.15±1.60 (4) 4.6 
SERA 65.17±1.83 (8) 48.38±2.30 (7) 63.54±1.48 (8) 58.49±4.16 (4) 58.90±2.44 (7) 6.8 
UCB 70.82±1.43 (6) 46.40±3.18 (8) 71.07±1.57 (7) 45.54±4.77 (7) 58.46±2.74 (8) 7.2 
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The only exception to this was again with the raw classification accuracy, where SEA performed the best, which, naturally, 

is merely due to its majority class performance. Of course, SEA cannot accommodate imbalanced data, so its performances 

on all other metrics were – as expected – very poor. On the other hand, the three Learn++.NIE implementations shared the 

top three spots in F-measure, AUC, recall, and OPM as well as mean rank. We also notice that both UCB and SERA per-

form rather poorly across all figures of merit on this dataset.  

6.5 Summary of Results 
Table 8 provides a summary of overall performance measure (OPM) ranks of each algorithm evaluated on all datasets

along with the mean OPM rank averaged over all experiments. This table shows that Learn++.NIE (fm), Learn++.CDS and 

Learn++.NIE (gm) occupy the top three spots in OPM as well as the mean rank, respectively. This table appears to indicate 

that these Learn++ algorithms outperform others. The table does not tell however, whether we can claim – with statistical 

significance – that any of the algorithms is actually better than the others.   
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When different algorithms provide varying performances on different datasets, one way to rigorously assess and 

compare the algorithms is Friedman’s test [64], which provides a rank based statistical significance test. This test, a non-

parametric alternative to repeated measures ANOVA, tests whether there is a statistical difference among the ranks of dif-

ferent algorithms. The test, when run over all algorithms, shows that the null hypothesis for each measure – that the rank-

ings of the algorithms are equivalent – is rejected, indicating that at least one algorithm is better than the others on each 

metric. Again, following the test description in [64], we compute a z-score as a test statistic for pair wise comparison of 

algorithm  vs. algorithm  ( , where  is the average rank of algorithm  on measure ,  is the number of algo-

rithms under test and  is the number of datasets used.  

  (22) 

Since Table 8 lists Learn++.NIE (fm) and Learn++.CDS as the top ranking algorithms, we compare each of these two al-

gorithms to all others on all measures – based on the  pair wise Friedman test – to determine whether the performance 

increase – if any – is significant. The results are provided in Table 9. Significance is indicated by • for Learn++.NIE (fm) and 

by  for Learn++.CDS. We also apply the Bonferroni-Dunn correction to account for multiple comparisons of a group of 

algorithms to a control classifier (e.g., either Learn++.NIE(fm) or Learn++.CDS). We separate the Bonferroni-Dunn test into 

two groups, namely concept drift algorithms (baseline vs. SEA /Learn++.NSE) and concept drift /class imbalance algo-

rithms (baseline vs. Learn++.NIE /CDS /SERA /UCB). We note that without this conservative correction, the results showed 

more significant differences in favor of Learn++.NIE and / or Learn++.CDS even in the boxes that do not currently show sig-

nificance. We observe that Learn++.NIE (fm) and Learn++.CDS are both significantly better than Learn++.NSE and SEA on 

AUC, recall and OPM, but we cannot not claim significance on RCA. This is not surprising, as Learn++.NSE and SEA are 

designed for concept drift problems, and they perform very well on such problems, where their RCA performance is pri-

marily due to their accuracy on the majority class. Of course, we note that raw classification accuracy, alone, is never a 

good figure of merit on an imbalanced dataset. One or both of Learn++.NIE(fm) and Learn++.CDS also outperform SERA on 

all measures except F-measure. Learn++.CDS significantly outperforms UCB in raw classification accuracy as well as F-

measure (which itself is a combined measure of recall and precision), whereas Learn++.NIE(fm) significantly outperforms 

UCB on F-measure only. We emphasize that both Learn++.NIE(fm) and Learn++.CDS do outperform UCB on other 

measures, when averaged over all datasets, but there is not sufficient evidence to determine the improvement is statistical-

ly significant. Learn++.NIE(fm) and UCB tie in terms of mean rank for recall across all datasets. Learn++.NIE(fm) has the 

lowest (i.e., best) mean rank in AUC compared to UCB; however, there is not sufficient evidence to claim significance.  
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It is important to remember that in an imbalanced data environment, we seek a classifier that provides the best overall 

balance in classification accuracy, recall, precision and AUC. While no algorithm has absolute superiority on all others on 

all figures of merit, we see that Learn++.NIE (fm) and Learn++.CDS outperform other algorithms far more often and with 

significance then their competitors when tested on a variety of synthetic and real world datasets that cover a broad spec-

trum of nonstationary environments. 

7 DISCUSSION & CONCLUSIONS
In this paper, we discuss learning concept drift from imbalanced data. While each of these two areas has been well re-

searched, the joint problem – despite its growing prevalence in real world – is mostly underexplored. We reviewed the 

relevant literature, and in particular, the UCB and SERA algorithms as the seminal approaches proposed for the joint prob-

lem, discussing their strength and weaknesses. We propose two ensemble based approaches that can learn in a wide spec-

trum of concept drift scenarios that feature heavy class imbalance, while avoiding the primary bottleneck of the existing 

approaches, namely, accumulating minority data and using partial old data. The proposed approaches, Learn++.NIE and 

Learn++.CDS, are truly incremental approaches that do not require access to previous data, and they do not accumulate 

minority data to balance the class cardinalities. Instead, Learn++.CDS uses SMOTE to rebalance the classes, whereas 

Learn++.NIE uses sub-ensembles with bagging, along with alternate error metrics to learn from imbalanced data. Both al-

gorithms have the ability to learn new knowledge and preserve prior knowledge about the environment, which is particu-

larly useful for recurring concepts as we observed with the spiral dataset.  

Specifically, Learn++.CDS is a natural integration of the two algorithms, Learn++.NSE [7] and SMOTE [46], previously 

established approaches for concept drift and imbalanced data problems, respectively. This straightforward combination is 

Table 8. Summary of OPM ranks of all the algorithms on all datasets
Gauss Checker Spiral Hyperplane Elec NOAA Average Final Rank 

Learn++.NSE 7 3 5 6 7 5 5.50 6 
SEA 8 8 7 7 8 6 7.33 8 
Learn++.NIE(fm) 2 2 2 1 3 2 2.00 1 
Learn++.NIE(gm) 4 6 3 4 2 1 3.33 3 
Learn++.NIE(wrm) 5 7 4 5 4 3 4.67 5 
Learn++.CDS 3 1 1 3 6 4 3.00 2 
SERA 6 5 8 8 5 7 6.50 7 
UCB 1 4 6 2 1 8 3.67 4 

Table 9. Hypothesis testing comparing Learn++.NIE (fm) [•] and Learn++.CDS [ ] to other algorithms used during the 
presentation of results (only significant improvement is marked)

 Learn++.NSE SEA SERA UCB 
RCA   
F-measure •  •  
AUC •  •  •  
Recall •  •  • 
OPM •  •  •  
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very robust when analyzed on several synthetic and real-world datasets. The idea behind this approach was to use 

SMOTE to rebalance the classes using synthetic minority class data, followed by using Learn++.NSE on rebalanced data.  

Learn++.NIE, however, uses a different strategy that is based on two pillars: 1) use bagging based sub-ensembles to re-

duce class imbalance (without generating synthetic data, and without accumulating minority data); and 2) use different 

measures that focus on both class-specific performances to weigh classifiers. We have shown that using measures other 

than a class independent error, such as the weighted recall, F-measure, or geometric mean of the individual class perfor-

mances, can be very effective in tracking concept drift, boost the performance on minority class, all the while avoid cata-

strophic performance drop in majority class classification. The classifier weighting measures presented in this paper were 

selected to reward classifiers in the ensemble that perform well on all classes rather than an error measure that may be bi-

ased towards a majority class or do not examine the error on a minority class.  

We compared the proposed approaches to other algorithms, UCB and SERA, both specifically designed for class im-

balance and concept drift. Both algorithms retain and accumulate all (as in UCB) or part (as in SERA) of the minority class 

data at each time stamp. During the experimentation process, we kept all algorithm parameters constant in order to main-

tain a fair comparison (also using the free parameter values as suggested by their authors in the respective original work).  

The performance gains of Learn++ algorithms over others do come at a cost, however: computational complexity. In 

particular Learn++.NIE, the best overall performing algorithm, is also the computationally most expensive one. This is not 

surprising, since Learn++.NIE generates an ensemble of ensembles, due to the sub-ensemble created at each time step. For 

UCB and SERA algorithms, the bottleneck is with accumulating the minority data, which need to be stored for training 

future classifiers. Learn++ algorithms do not store old data, as they are truly incremental algorithms; however, building 

sub-ensembles at each time stamp is computationally more expensive than accumulating minority data. Furthermore, 

UCB and SERA maintain a fixed ensemble size, whereas Learn++ algorithms do not force a fixed ensemble size.  If fixed 

ensemble size is desired, pruning methods can be implemented as discussed by Elwell & Polikar for Learn++.NSE in [39]. 

As a result, when comparing the algorithms with respect to their computational complexities, we observed that UCB is the 

fastest, followed by SEA and SERA, and then by Learn++.NSE,  Learn++.CDS, and finally Learn++.NIE.  

We should note that the complexity added for all Learn++ algorithms, as well as those of others, is linear in the number 

of classifiers, and since a fixed number of classifiers are generated per dataset (the subensemble size for Learn++.NIE, and 1 

for all others) , it is also linear in the number of data batches. However, the actual complexity of each algorithm, of course, 

depends on the mechanism used to rebalance the data as well as the complexity of the base classifier used. Figure 20 

shows the timing diagrams of two experiments: the one with the largest number of classifiers (spiral dataset, ~300 time 
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steps) as well as that of real-world weather dataset (~150 time steps). The diagrams for all experiments were very similar. 

The vertical axis is the total training time (rebalancing, training the new classifier, computing the weights and evaluating 

the classifiers) for each of the algorithm at each time step (hence for each added classifier). With the exception of minor 

variations (due to underlying rebalancing mechanism, and /or the base classifier), all algorithm’s evaluation time increases 

in a linear fashion. Even for the spiral dataset, where we had the largest number of classifiers, the time it took to train the 

final classifier and evaluate all ~300 classifiers was about 1.2 seconds on a very modestly configured laptop with AMD 

Phenom II X6 processor with 8Gb of memory running Ubuntu Linux 11.10. We should add, of course, the computational 

complexity described here is the worst case and most conservative scenario for the Learn++ algorithms: if we were to limit 

and fix the ensemble size (as it is done with SEA, SERA and UCB), Learn++ algorithms would dramatically reduce their 

computational complexities, and become quite competitive with others.  

 

Figure 20. Timing diagrams for spiral and weather datasets

A reasonable question that now needs to be answered is which algorithm to use and when. In an imbalanced data 

concept drift scenario, we have several criteria and constraints that are sometimes conflicting in their nature: of course, we 

want good classification accuracy in general, but we also want to be able to recall the minority class data, maintain good 

performance on majority data, and maintain a healthy AUC. We observed, when averaged across multiple datasets and 

figures of merits, Learn++ based approaches typically provided a better-balanced performance, most with statistical signifi-

cance. Based on our observations on several datasets and figures of merit, we reach the following set of guidelines: 

Learn++.NSE: Use Learn++.NSE when there is concept drift in the data and the classes are relatively balanced. If 

classes are imbalanced, Learn++.NSE may still obtain a relatively good classification accuracy – a potentially mis-

leading result – as that will be based on its majority class performance. The recall of minority class will suffer. 

UCB: This algorithm, came fourth in our overall ranking, is most suitable if the minority class does not drift, and it 

is the minority class recall that is the most important figure of merit. UCB generally provided the best minority re-

call performance, though at the cost of classification accuracy of the majority class. On the other hand, this is com-
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putationally the fastest algorithm, making it most suitable for applications where new data are continuously gen-

erated in very rapid succession. 

SERA: Also suited for problems where minority data do not drift, with overall performance better than that of 

UCB. SERA is not as prone to drifting minority class as much as UCB. Both UCB and SERA are not strictly incre-

mental, hence are better suited if previously seen data can be retained and used in the future. 

Learn++.CDS: Use Learn++.CDS if both minority and majority concepts are drifting, classes contain imbalance and 

memory and computational complexity considerations are critical. Learn++.CDS has a smaller memory require-

ment than Learn++.NIE, as it does not need to generate sub-ensembles. Both Learn++ algorithms satisfy strict in-

cremental learning criteria and do not need access to any prior data. 

Learn++.NIE: Learn++.NIE is the better overall algorithm, if both minority and majority concepts are drifting and a 

strong balanced performance is needed on both minority and majority classes. Learn++.NIE uses a weight that re-

flects the performance on weighted recall measure (wrm), F-measure, or G-mean. The F-measure weighting 

scheme typically provided the best results on a broad array of learning scenarios. Also, while Learn++.NIE with 

wrm came third in overall ranking, it has the distinct feature to control performance for class specific recall 

through its  parameter (see [60]). Learn++.NIE is computationally the most expensive, though it appears that it is 

still quite fast – using standard computational power typically available today – to accommodate just about most 

streaming applications. Both Learn++.CDS and Learn++.NIE can be made much faster by fixing ensemble size. 

While this effort demonstrated the empirical proof-of-concept of the Learn++.CDS and Learn++.NIE algorithms, we 

would like to explore whether any theoretical performance guarantees can be offered by these algorithms. The infinitely 

many variations of nonstationary environments that one can encounter make such an analysis a difficult proposition. 

However, formal statistical analyses of these algorithms, at least on certain nonstationary environments – such as Gaussian 

distribution drifts – are within the scope of our current and future work.  
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