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ABSTRACT 
 
This paper presents a technique that can be used to fuse 
data from multiple sensors that are employed in 
nondestructive evaluation (NDE) applications, specifically 
for the in-line inspection of gas transmission pipelines.  A 
radial basis function artificial neural network is used to 
perform geometric transformations on data obtained from 
multiple sources.  The technique allows the user to define 
the redundant and complementary information present in 
the data sets.  The efficacy of the algorithm is 
demonstrated using experimental images obtained from 
the NDE of a test specimen suite using magnetic flux 
leakage (MFL), ultrasonic (UT) and thermal imaging 
methods. The results presented in this paper indicate that 
neural network based geometric transformation algorithms 
show considerable promise in multi-sensor data fusion 
applications. 
Keywords – Image processing, pattern recognition, 
industrial monitoring, inverse problems 
 

1. INTRODUCTION 
 
Nondestructive evaluation (NDE) plays a vital role in the 
operation and maintenance of large infrastructure such as 
gas transmission pipelines, nuclear power plants, aircraft, 
bridges and highways, etc.  As this infrastructure 
continues to age it is essential that the inspection 
techniques reliably and accurately predict the integrity of 
these systems [1].  No single NDE method is capable of 
inspecting everything and extracting all required 
information – a combination of methods must be used and 
the resulting data fused to extract relevant information.  
Moreover, newer systems that are developed are often 
made of composite materials that include metals and 
dielectrics.  One interrogation modality cannot be used to 
inspect such components for reliability – multiple tests are 
always needed. The accurate interpretation of inspection 

data obtained from multiple methods requires the 
development of multi-sensor data fusion algorithms. The 
most common interpretation result expected from an NDE 
procedure is information about the location, size and 
shape of structural defects in the component. 
 A variety of techniques have been explored for fusing 
NDE data from multiple sources. NDE image data from 
homogeneous and heterogeneous sources have been fused 
both in spatial and spectral domains. An example of 
homogeneous data fusion is a technique developed to 
combine multi-frequency eddy current images of the same 
test specimen [2].  The authors used discrete cosine 
transforms to fuse the two images in the transform 
domain. An example of heterogeneous data fusion is a 
technique to combine an eddy current image and an 
infrared thermal image of the same test specimen [3]. The 
authors used a total of six pixel-level data fusion 
techniques: maximum amplitude, integration, averaging, 
weighted averaging, Bayesian analysis and Dempster-
Shafer theory.  Ultrasonic and eddy-current NDE images 
have been combined using Bayesian analysis [4]; linear 
minimum mean square error (LMMSE) filter [5] and 
image morphological techniques [6]. 
 The efficacy of the various data fusion algorithms have 
typically been demonstrated by showing that the fused 
image contains features that cannot be discerned in the 
original NDE images that are input to the algorithm. 
There have not been sufficient attempts to define 
quantitative measures for this purpose. In this paper, we 
attempt to address the measurement of the effectiveness of 
a data fusion technique by explicitly defining the 
information expected as a result of the fusion process. 
 

2. APPROACH 
 

When NDE images that are obtained from different 
inspection methods are fused, the fused image can be 
assumed to contain two main types of information that are 



related to the characteristics of the test object: redundant 
and complementary information.  Redundant information 
is the information related to the defect that is common 
among different inspection methods and can be used to 
increase the reliability of the defect characterization result. 
Complementary information is the defect related 
information that is unique to each inspection method and 
can be used to improve the accuracy of defect 
characterization.  Figure 1 pictorially depicts the 
redundant and complementary information in the data 
fusion process. 
 

 
Figure 1:  Pictorial depiction of redundant and 

complementary information in data fusion. 

 The data fusion technique described in this paper 
employs geometric transformations for extracting 
redundant and complementary information between pairs 
of NDE inspection images. Geometric transformations are 
typically used in image processing for correcting the 
effects of spatial distortion in images [7]. In this paper, 
radial basis function artificial neural networks are 
employed for performing geometric transformations [8].  
The neural networks serve two purposes – they are 
universal approximators; and the ability to train them 
allows for the explicit definition of redundant and 
complementary information among multiple data sets. 
 Let ( )111 , crx  and ( )212 ,crx  be two different NDE 
images that are the results of the inspection of the same 
object using two different inspection modalities.  The 
variable r  represents the redundant information features 
and is the same for both images.  Likewise, the variables 

1c  and 2c  represent the complementary information 
features for each image. A function that extracts the 
redundant defect related information, ( )rh1 , between 

( )111 , crx  and ( )212 ,crx  can be defined as: 

                        ( ) ( ){ } ( )rhcrxcrxf 12211 ,,, =                           (1) 

If two arbitrary functions 1g  and 2g  are defined, ( )rh1  can 
be obtained using the following equation: 

                            ( ) ( ) ( )22111 xgxgrh =◊                              (2) 

where ◊  represents a homomorphic operator.  For this 
case, the homomorphic operator was chosen to be the 
addition operator, +.  Therefore, Equation (2) becomes: 
               ( ) ( ) ( )22111 xgxgrh =+                           (3) 

 In order to use the technique defined by Equation (3), 
the three arbitrary functions ( )rh1 , 1g  and 2g  must be 
determined.  The function ( )rh1  is chosen depending on 
the needs of the user.  The function 2g  is defined as a 
conditioning function and is an application-dependant 
function that may be used to condition the data to better 
suit the application.  An example of this is if the data 
values within 2x  have spread over a wide range, 2g  may 
be chosen to be a logarithmic function.  If h  and 2g  are 
specified, a universal approximation technique may be 
used to determine the function that maps 1g  to the rest of 
the expression in Equation (4). 
           ( ) ( ) ( )rhxgxg 12211 −=                            (4) 

Ideally, a radial basis function will produce the best 
function approximation of 1g  given the proper training 
data.  If the conditioning function 2g  is assumed to be an 
identity function, Equation (4) can be simplified to: 
                              ( ) ( )rhxxg 1211 −=                                 (5) 

where 1x  is the training input of the RBF and the 
expression ( )rhx 12 −  is the training output.   
 After the RBF neural network has been trained with an 
appropriate training data set, the network is ready to 
receive the testing data set.  The testing procedure is 
described as: 
                                 ( ) ( )1121 xgxrh −=                            (6) 

The RBF neural network is fed the testing 1x  data as in 
the training sequence.  However, the output of the 
network ( )rhx 12 −  is inverted and 2x is subtracted from 
the inverted output.  Therefore, the redundant data is 
effectively extracted resulting in ( )rh1  as the final output. 

The complementary information extraction technique 
follows a mathematical process that is almost identical to 
the redundant data extraction technique. Equation (1) 
becomes: 
           ( ) ( ){ } ( )2122211 ,,,, cchcrxcrxf =                     (7) 

where ( )rh1  has been replaced with ( )212 ,cch .  Also, the 
RBF neural network whose output is denoted as 1g  is 
different for the complementary data extraction technique 
since the network has been trained with complementary, 
not redundant, data.   
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3. IMPLEMENTATION RESULTS 
 
A suite of test specimens was fabricated to mimic defects 
arising from pitting corrosion that occurs in underground 
gas transmission pipelines. The specimens were subjected 
to three kinds of NDE: ultrasonic testing (UT), magnetic 
flux leakage (MFL) and thermal imaging. Defect 
signature images resulting from inspecting these 
specimens are combined in pairs using the data fusion 
algorithm described in this paper. The definitions of 
redundant and complementary information can be made 
by comparing the NDE signature for each of the 
inspection methods with the actual defect characteristics, 
which are known, for the specimen suite. Figure 2 
illustrates this definition process. Complementary 
information in two NDE images are defined as those 
distinct pixels in each of the NDE signatures that are 
present in the defect region, but are not shared between 
them. Redundant information in two NDE images are 
defined as those common pixels that are present in both 
NDE signatures and are also present in the defect region. 
 

 
 

Figure 2:  NDE image signatures used to define redundant 
and complementary information. 

 
Typical test data results for the various pairs of NDE 
image combinations can be seen in Figures 3 - 5. These 
results are obtained using those input images that are not 
seen by the data fusion algorithm during the training 
process.  The results show the inputs, outputs, and desired 
outputs in three rows respectively.  It can be seen that the 
technique provides a close match to the desired 
complementary and redundant information. 
 

4. CONCLUSIONS 
 
The data fusion techniques presented in this paper operate 
by extracting redundant and complementary information 
present in multiples sets of observations, specifically, 
NDE interrogations of defects in a test specimen suite.  
The data fusion algorithm is sufficiently general, in that it 

does not specify what features in the NDE signatures are 
redundant or complementary – that opportunity is left to 
the user of the algorithm. In order to extract such 
information it is essential that the artificial neural network 
that lies at the heart of the data fusion algorithm be trained 
with a sufficient diversity NDE signatures that is 
indicative off all typical anomalies encountered in the 
practice of in-line inspection of gas transmission 
pipelines.   
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Figure 3: MFL & UT data fusion. 
 

x1, Thermal Data

IN
P

U
TS

:

x2, UT Data

Redundant

O
U

TP
U

TS
:

Complementary

D
E

S
IR

E
D

 O
U

TP
U

T:

 
 

Figure 4: Thermal & UT data fusion. 
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Figure 5: Thermal & MFL data fusion. 
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