Individual: 1. The decimal representation is $0.\overline{142857}$. 2006 modulo the period of 6 is is 2. So the 2006th digit is 4.

2. Let $1 \le n \le 1000$ and $n = x^2 - y^2 = (x - y)(x + y)$. Since x - y, x + y are both odd or both even, n is the difference of two squares if and only if n can be factored as the product of two integers with the same parity. The only n that cannot be factored in this manner are integers of the form 2k, where k is odd. Since $1 \le k \le 500$, there are 250 such k. Hence there are $1000 - 250 = \boxed{750}$ integers n with the requested property.

3. There are 10 equiprobable ways to choose 3 people from a group of 5 people. 3 of these involve choosing both women. So the probability is 3/10.

4. Detailed proof $24 = 2 \times 3 \times 4$.

5. Let x and y be the respective two-digit and three-digit number. We are given the equation 1000x + y = 9xy. Now y(9x - 1) = 1000x, so x divides y(9x - 1). Since x and 9x - 1 have no factors in common, x divides y. Writing y = xk, the equation becomes 1000 = k(9x - 1). Hence k and 9x - 1 are factors of 1000. Since x is a two-digit number, $98 \le 9x - 1 \le 999$, and 9x - 1 must then equal 100, 125, 200, 250, 500. Hence 9x - 1 = 125, x = 14, k = 8, and y = 112. Then $x + y = \lceil 126 \rceil$.

6. Assume that the statement is false. Let n be the smallest natural number such that L_n and L_{n+2} have a nontrivial factor s. Since $L_2 = 2+7 = 9$, n > 0. $L_{n+2} = L_n + L_{n+1}$ implies that s divides L_{n+1} . $L_{n+1} = L_{n-1} + L_n$ implies that s divides L_{n-1} . This contradicts the minimality of n.

7. Let S be the set of all positive integers n such that the equation 7a + 11b = n does not have a solution with nonnegative integers a, b. We are looking for the largest element of S. Let r be the remainder of n when divided by 7. If r = 0, then n = 7a, so n is not an element of S. If r = 1, then $1, 8, 15 \in S$. Now 22 = 2(11), so every other element n with r = 2 is not in S as 22 + 7a = 7a + 11(2). Similarly, if r = 2, then $2, 9, 16, 23, 30, 37 \in S$, but 44 + 7a = 7a + 11(4), so no 37 is the largest element of S with r = 2. When r = 3, the largest $n \in S$ is 59; when r = 4, the largest $n \in S$ is 4; when r = 5, the largest $n \in S$ is 26; and when r = 6, the largest $n \in S$ is 48. Hence the largest element in S is 59.

8. $(1/3)^{5/16}$

 $\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i$

9. Factor 10^5 into primes, $10^5 = 2^5 \cdot 5^5$. Hence 10^5 has 36 distinct positive divisors, each of the form

$$2^i \cdot 5^j \qquad 0 \le i, j \le 5$$

Fix an *i*, we get divisors $2^{i}5^{0}$, $2^{i}5^{1}$, $2^{i}5^{2}$, $2^{i}5^{3}$, $2^{i}5^{4}$, $2^{i}5^{5}$. The product of the 6 divisors above is $2^{6i}5^{15}$. Let i = 0, 1, ..., 5, we get

$$N = 2^{6 \times 15} \cdot 5^{6 \times 15} = 10^{90} \quad \Rightarrow \quad \log(N) = \log(10^{90}) = 90$$

10. From f(f(x)) = x for $x \neq -d/c$, one can deduce that f is one-to-one as f(a) = f(b) implies a = f(f(a)) = f(f(b)) = b. Inspection suggests that

f sends $\mathbf{R} - \{-d/c\}$ to $\mathbf{R} - \{a/c\}$ as $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = a/c$. By examination, the equation f(x) = a/c has either no solution or infinitely many solutions. As f is one-to-one, a/c cannot be in the range. Let y = a/c.

We now show that y = -d/c. Assume that $y \neq -d/c$. Then y is in the domain of f and z = f(y) is defined. If $z \neq -d/c$, then f(z) = f(f(y)) = yand y would be in the range of f, which gives a contradiction. If z = -d/c, then the expression f(f(y)) is not defined, contradicting the hypothesis in the problem. Hence y = -d/c and a/c = -d/c.

From f(19) = 19, one obtains the equation $19^2c + 19(d - a) = b$. From f(97) = 97, one obtains $97^2c + 97(d-a) = b$. Equating these, one obtains a/c - d/c = 116. Since a/c = -d/c, we have y = a/c = 58.

11. Note that $x^2 + y^2 - 2xy = (x-y)^2 \ge 0$, and $x^2 + y^2 + 2xy = (x+y)^2 \ge 0$. Thus $\frac{1}{2}(x^2 + y^2) \ge xy \ge \frac{-1}{2}(x^2 + y^2)$.

$$\begin{aligned} &\frac{a}{2}(x^2 + y^2) \ge axy \ge (\frac{-a}{2})(x^2 + y^2) \quad if \quad a \ge 0\\ &(\frac{-a}{2})(x^2 + y^2) \ge axy \ge \frac{a}{2}(x^2 + y^2) \quad if \quad a < 0 \end{aligned}$$

For any solution (x, y) of $1 = 2x^2 + axy + 2y^2 = 2(x^2 + y^2) + axy$, we have

$$1 \ge 2(x^2 + y^2) - (\frac{a}{2})(x^2 + y^2) = (\frac{4-a}{2})(x^2 + y^2) \quad \text{if} \quad a \ge 0$$

$$1 \ge 2(x^2 + y^2) + (\frac{a}{2})(x^2 + y^2) = (\frac{4+a}{2})(x^2 + y^2) \quad \text{if} \quad a < 0$$

In the first case, in order for $x^2 + y^2 \le 1$, $4 \ge a \ge 2$. Similarly, when a < 0, we need $-2 \le a < 0$ (so that $x^2 + y^2 \le 1$). Thus the minimum value of a is |-2|.

12. Rewriting the limit we get $\lim_{x\to\infty} \frac{\int_0^\infty e^{t^2} dt}{e^{x^2}/x}$. By l'Hopital's rule this is equal to $\lim_{x\to\infty} \frac{e^{x^2}}{(2x^2e^{x^2}-e^{x^2})/x^2}$. Simplifying we get $\lim_{x\to\infty} \frac{x^2}{2x^2-1} = \left|\frac{1}{2}\right|$.

Team:

1. The angle $\angle A_n A_1 A_2$ has measure 180 - 360/n degrees. Hence the angle $\angle A_n A_1 B$ will have measure 120 + 360/n degrees. If A_n, A_1, B are three consecutive vertices of a regular *m*-gon, then 120 + 360/n = 180 - 360/m for some *m*. Then mn - 6n - 6m = 0. Adding 36 to both sides, (m - 6)(n - 6) = 36 and n - 6 is a divisor of 36. The largest possible value for *n* is 42, with a corresponding value of m = 7.

2. Detailed proof.

3. 0

4. According to the assumption, write $\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = 2A \cdot \begin{pmatrix} a_n \\ b_n \end{pmatrix}$ where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ Thus $\begin{pmatrix} a_{n+3} \\ b_{n+3} \end{pmatrix} = 2A \cdot \begin{pmatrix} a_{n+2} \\ b_{n+2} \end{pmatrix} = 4A^2 \cdot \begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = 8A^3 \cdot \begin{pmatrix} a_n \\ b_n \end{pmatrix} = \begin{pmatrix} 8 & 24 \\ 0 & 8 \end{pmatrix} \cdot \begin{pmatrix} a_n \\ b_n \end{pmatrix}$

Therefore

$$x = 8, y = 24, z = 0, w = 8$$

5. Consider the point $P = (n, \sqrt{n^2 + 1})$ on the curve $y^2 - x^2 = 1$. The vertical line x = n and y = x intersect at the point Q = (n, n). By similarity $\triangle ONQ \sim \triangle PMQ$, we have

$$\frac{d_n}{n} = \frac{\sqrt{1+n^2}-n}{\sqrt{2n}} \quad \Rightarrow \quad d_n = \frac{(\sqrt{1+n^2}-n)(\sqrt{1+n^2}+n)}{\sqrt{2}(\sqrt{1+n^2}+n)}$$
Hence $n \cdot d_n = \frac{n}{\sqrt{2}(\sqrt{1+n^2}+n)} = \frac{1}{\sqrt{2}(\sqrt{\frac{1}{n^2}+1}+1)}$
So, $\lim_{n \to \infty} n d_n = \lim_{n \to \infty} \frac{1}{\sqrt{2}(\sqrt{\frac{1}{n^2}+1}+1)} = \frac{1}{2\sqrt{2}} = \boxed{\frac{\sqrt{2}}{4}}$

6. Let $\alpha_n = (2 + \sqrt{3})^n$ and $\beta_n = (2 - \sqrt{3})^n$. By Binomial Theorem (or by Mathematical Induction), $\alpha + \beta \in \mathbb{N}$. Since $0 < \beta_n < 1$, we have

$$\lfloor \alpha_n \rfloor = \alpha_n + \beta_n - 1,$$

therefore

$$\alpha_n - \lfloor \alpha_n \rfloor = 1 - \beta_n.$$

Since $\lim_{n\to\infty} \beta_n = 0$,

$$\lim_{n \to \infty} \left(\alpha_n - \lfloor \alpha_n \rfloor \right) = \lim_{n \to \infty} (1 - \beta_n) = 1.$$