NJUMC - 2006 - Answers to Team 2, 3 and Individual 4, 8
2. a. Consider the function $f: A \rightarrow O=\{$ positive odd integers $<2006\}$ defined by $f(a)=b$, where $a=2^{s} b$ and b is odd. There are 1003 odd integers in O, so by the pigeonhole principal there must exist a_{1} and a_{2} such that $f\left(a_{1}\right)=f\left(a_{2}\right)$, so a_{1} divides a_{2} or vice versa.
b. No element of $C=\{a: 1004 \leq a \leq 2006\}$ is a multiple of another.
3. The answer is 0 . If $f(x)=\sqrt[7]{1-x^{5}}$ then $\sqrt[5]{1-x^{7}}=f^{-1}(x)$. Both graphs start at $(0,1)$ and decrease to end at $(0,1)$ and intersect at a point (A, A) (How would you find the numerical value of this point?) The region that is between the graphs is symmetric about the line $y=x$. Any portion of this region that is above $c<x<d<A$ and for which $f(x)>f^{-1}(x)$ for all $c<x<d$ will be reflected, via reflection in the line $y=x$, into a region of equal area for which $f(x)<f^{-1}(x)$, and vice versa. (Actually, $f(x)>f^{-1}(x)$ for $x<A$. How could your find this out without a calculator?)

NJUMC - 2006 - Solutions to Individual 4, 8
4. Well, $p^{2}-1=(p+1)(p-1)$, so one of these factors is divisible by 3 , since p is not. And $p=4 k-1$ or $4 k-3$ so one of these factors is divisible by 4 . The other is divisible by 2..
8. The limit exists because the sequence is decreasing and bounded below. Denoting the desired number by $N, \ln N=-\ln 3\left(\frac{1}{5}+\frac{2}{5^{2}}+\frac{3}{5^{3}}+\cdots\right)=-\ln 3 \sum_{k=1}^{\infty} \frac{k}{5^{k}}$. Let $f(x)=\sum_{k=1}^{\infty}(x / 5)^{k}$. Then $f^{\prime}(x)=\sum_{k=1}^{\infty} \frac{k x^{k-1}}{5^{k}}$. Both are convergent power series for $|x|<5$, with $f(x)$ a geometric series converging to $(x / 5) \frac{1}{1-x / 5}$.
Then $f^{\prime}(x)=\frac{1}{5} \frac{1}{(1-x / 5)}+\frac{x}{5}(-1) \frac{1}{(1-x / 5)^{2}}\left(-\frac{1}{5}\right)$. Therefore
$\ln N=(-\ln 3) f^{\prime}(1)=(-\ln 3)\left((1 / 5)(5 / 4)+_(1 / 25)(25 / 16)\right)=-\ln 3 \cdot 5 / 16$
So $N=(1 / 3)^{5 / 16}$

