
Individual 
 
1. 2( ) xf x ke=  
 
2. 1 (since ) 34 1mod≡ 9
 
3. Letting a, b, c be the respective class quiz per hour grading rates for the three graduate 
students, we have: . We will find the answer to this 
problem without divulging the individual rates of the graduate students, as that might 
cause some embarrassment, and is in fact not allowed by the agreement with the graduate 
student union. So adding all three equations gives 2(

1/ 2,  1/ 3,  1/ 4a b b c a c+ = + = + =

) 13/12a b c+ + = , and so 
 class quizzes per hour. So working together they will take  

hours, assuming that three does not imply chaos. 
13/ 24a b c+ + = 24 /13

 
5. Assume  is prime.  Then since 3 does not divide 55 2 1k⋅ + 2k⋅ , and 3 does not divide 

, 3 must divide so that 3 divides 5 2 1k⋅ + 15 2 2 2(5 2 1)k k−⋅ + = ⋅ + 15 2 1 3k−⋅ + > . 
 
7.  First the other letters (M, I, I, I, P, P, I) can be arranged in 

distinguishable ways. Now we choose 4 of the 8 spaces adjacent to these 
letters to place the S’s.  The answer is 105
7!/ 4!2! 105=

(8,4) 105 8!/ 4!4! 105 70 7350C× = × = × = . 
   
8.  Let I denote the value of this integral. Let / 2 .u xπ= −  Then  and the 
integral becomes 

du dx= −

0

/ 2

cos( / 2 ) ( )
sin( / 2 ) cos( / 2 )

u du
u uπ

π
π π

−
− =

− + −∫
/ 2

0

sin( )
cos( ) sin( )

u du
u u

π

+∫ =I. 

Adding the two integrals gives 2 I =
/ 2

0
1dx

π
/ 2π=∫ , so I= / 4π . 

 
11.       We hope that this series is periodic. Now 3 2u ϕ−= , 

2

2
1

4 1

1 1 2
(2 ) 2 2

u 2ϕ ϕ
ϕ ϕ ϕ

−
− −

= = =
⋅

= (by the identity given), 

25 1

1 1
(2 ) 2 22

u ϕ ϕ ϕ ϕ ϕ− −
= =

⋅
1

= (by the identity given), 6
1 1

(1/ 2) 2
u ϕ ϕ= = , 

7
1 2

1 (1/ 2)
u ϕ=

⋅
= . The sequence is periodic with period 5. So . (The 

same periodicity results for any two positive initial values.) 

2007 2 2u u= =

 
  
 
 
 



Team 
 
1. The invariant here is the three pounds of anhydrous cucumber matter (ACM). The 
three pounds of ACM is 2% of 150 pounds. 
 
2. The longest pole is the minimum of the length of a segment containing , 
where A is a point on the outer wall of the 20 feet wide corridor, P is the point of 
intersection of the inside walls of the two corridors, and B is a point on the outside wall 
of the 10 feet wide corridor. Let 

,  ,  A P B

θ  be the acute angle that such a segment makes with the 
outer wall of the 20 feet wide corridor. Using similar triangles, the length of this segment 

is 20 10( )
sin cos

l θ
θ θ

= + . Solving 2 2

20cos 10sin( ) 0
sin cos

l θ θθ
θ θ

′ = − = , we find that 

. Thus the longest pole is 1/ 3arctan 2θ =
1/ 3

1/ 3 2 / 3 2 / 3

20 10(arctan 2 ) 41.619
2 / 1 2 1/ 1 2

l = + ≈
+ +

 feet. 

 
3. a. Notice that for  , so  

, and so the limit is the sum of the geometric series 

with ratio –1/2 and first term 1. Hence the answer is 

1n ≥ 1 1( )n n n nx x x x+ −= + − / 2

2 31 1/ 2,  1 1/ 2 1/ 4,  etc.x x= − = − +
1 2 / 3

1 ( 1/ 2)
=

− −
. 

b. Here , , etc. and so the answer is the sum of the 

geometric series with ratio –1/2 and first term 1/2, i.e., 

2 0 1/ 2x = + 3 0 1/ 2 1/ 4x = + −
1/ 2 1/ 3

1 ( 1/ 2)
=

− −
. Why must the 

sum of the answers to parts a and b add to 1? 
 
c. Solution one: The sequence in this part is a ×(sequence of part b) + b (sequence of 
part a). Hence the answer here is 

×
/3 2 /3a b+ . 

Solution two: The sequence here is 
 so the limit is 

    

2,  ,  ( ) / 2,  ( ) / 2 ( ) / 2 ,a b b a b b a b a b+ − + − − −
( )(1/ 2 /(1 ( 1/ 2)) ( ) /3.b a b b a b+ − − − = + −
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Solutions for Problem-Solving Competition: Individual

4. Becausea,b, c,d ≥ 1 anda+b+ c+d = 10, we know each positive integerd will determine
the suma+ b+ c for the rest 3. Hence the number of positive solutions (denoted asp.i.s) for
a+ b+ c+ d = 10 can be found by summing up all the numbers of positive integer solutions
for a+ b+ c = k 3 ≤ k ≤ 9, k ∈ Z. We claim that the number ofp.i.s. for a+ b+ c = k
with eachk ≥ 3 will be C(k − 1,2). Therefore, the number ofp.i.s. for a+ b+ c+ d = 10
will be 84 = C(9,3) = C(2,2)+C(3,2)+C(4,2)+ ... +C(8, 2) = C(9, 3) =

Proof of the claim:

Let k ≥ 3 anda+ b+ c = k. The number of thep.i.sfor this equation will be

p.i.s(a+ b = 2)+ p.i.s.(a+ b = 3)+ p.i.s(a+ b = 4)+ ... + p.i.s(a+ b = k− 1)

= 1+ 2+ 3+ 4+ ... + (k− 2) = [1+(k−2)]·(k−2)
2 = C(k− 1,2)

6. (a) Letk ∈ N. Then

k ≡ 0 or 1 (mod2)⇒ k2 ≡ k⇒ k2 ≡ k⇒ k2 − k ≡ 0 ⇒ k2 − k is even

(b) Letk2 − k = 2p f or some p≥ 0. Then

4(k2−k)+1 = 8p+1⇒ 4k2−4k+1 = 8(p+1)−7⇒ (2k−1)2 = 8n−7 ≥ 0, n = p+1 ≥ 1

Taking square roots, 2k− 1 =
√

8n− 7⇒ k = 1+
√

8n−7
2 n ≥ 1

9. Since
∑9

n=1
n
k =

1
k ·
∑9

n=1 n = 45
k , it follows

∑9
n=1

n
k =

45
k ∈ N ⇒ k|45. The number

45= 32 · 5 has 6 positive integer divisors:{1,3,5,9,15,45}. Hence

k ∈ {1,3,5,9,15,45}

12. Define the (square of) distance functionD(x) = x2 + [ f (x)]2 between two points (x, f (x))
ando = (0,0). The distance function is differentiable andD′(x) = 2x + 2 f (x) · f ′(x). The
fact thatop is minimum implies D′(a) = 0. Therefore 2a + 2 f (a) · f ′(a) = 0 and Hence
a+ f (a) · f ′(a) = 0



Solutions for Problem-Solving Competition: Group

4. The linear system can also be written in the matrix formAX = B. Apply row reductions on
the augment matrix we get:

 k 1 1 1
1 k 1 k
1 1 k k2

⇒
 1 1 k k2

0 k− 1 1− k2 k− k2

0 1− k 1− k2 1− k3

⇒
 1 0 k+ 1 k2 + k+ 1

0 1 −1 −k− 1
0 0 −k− 2 −k2 − 2k− 2


Notice that ifk = 1,the system becomes one equationx+ y+ z= 1 and hence has infinitely
many solutions; so we may assumek−1 , 0. For the last matrix to have no solution,k = −2
( det(A) = k3 − 3k+ 2 = (k− 1)2 · (k− 2) = 0, thenA is NOT invertible.)



IP10. Solution:

(a) Apply, e.g., the [absolute] ratio test:

lim
n→∞

∣
∣
∣
∣

(−1)n(2(n + 1) + 2)
(2(n + 1) + 3)!

∣
∣
∣
∣
÷

∣
∣
∣
∣

(−1)n(2n + 2)
(2n + 3)!

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

2n + 4
2n + 2

∣
∣
∣
∣
·
∣
∣
∣
∣

(2n + 3)!
(2n + 5)!

∣
∣
∣
∣

= lim
n→∞

2n + 4
2n + 2

· 1
(2n + 4)(2n + 5)

= lim
n→∞

1
(2n + 2)(2n + 5)

= 0 < 1, so the series converges [absolutely].

(b) For all x, sin x =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
(converging uniformly on [0, 1]),

so x sin x =
∞∑

n=0

(−1)n x2n+2

(2n + 1)!
;

therefore
∫ x

0

x sin x dx =
∞∑

n=0

(−1)n x2n+3

(2n + 1)!(2n + 3)
.

Setting x = 1, we obtain
∫ 1

0

x sin x dx =
∞∑

n=0

(−1)n

(2n + 1)!(2n + 3)
=

∞∑

n=0

(−1)n(2n + 2)
(2n + 3)!

.

Computing this integral by parts (u = x, dv = sin x dx), we obtain the desired value:
∫ 1

0

x sin x dx = [−x cos x + sin x]10 = − cos 1 + sin 1 = sin 1 − cos 1.

1



TP5. Solution:

(a) The partitions are: 5 [E,DO]
4 + 1 [O,NDO]
3 + 2 [O,NDO]
3 + 1 + 1 [E,NDO]
2 + 2 + 1 [E,NDO]
2 + 1 + 1 + 1 [O,NDO]
1 + 1 + 1 + 1 + 1 [E,NDO]

DO NDO

Even 1 3

Odd 0 3

(b) The entry in the lower-left must be zero: any “DO” partition consists solely of distinct odd
numbers, thus it has no even numbers, so it contains an even number of even numbers.

(c) The NDO partitions are equally split between even and odd – i.e., the two rightmost entries
are equal.

To justify this, we can pair each Even NDO partition with an Odd NDO partition (and
vice-versa), as follows. An NDO partition, by definition, does not consist of distinct odd
numbers, so it must be the case that a number is repeated or an even number appears (or
both). We will construct each NDO partition’s twin by either (1) combining an equal pair
of summands [P + P → 2P ] or (2) splitting an even summand [E → E

2 + E
2 ]; note that

these operations either increment or decrement the count of even numbers appearing, and
thus interchange Odd and Even permutations. On each NDO partition, we perform the
operation that results in (or starts with, respectively) the largest number, or operation (2)
in case of a tie.

We can easily check that this operation is an involution. If P is a partition to which we
applied (1), then the resulting partition will have a (unique) new even summand strictly
larger than any other even summand and at least as large as any pair of equal summands, so
reapplying the operation will split that summand to return us to P . Conversely, if P was a
partition to which we applied (2), then the splitting will produce a pair of equal summands
with sum at least as large as any other pair of equal summands and strictly larger than
any even number appearing, so we will rejoin that pair and return to P . In summary, this
operation pairs each Odd NDO partition with an Even NDO partition and vice-versa, so
the counts of such partitions must be equal.
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TP6. Solution:

(a) Take, e.g.,
∞∑

n=1

an = 1 +
1
2

+ 1 +
1
4

+ 1 +
1
8

+ 1 +
1
16

+ · · ·

and
∞∑

n=1

bn =
1
2

+ 1 +
1
4

+ 1 +
1
8

+ 1 +
1
16

+ 1 + · · ·
These series clearly both diverge (their terms to not approach zero), but the termwise
minimum is:

1
2

+
1
2

+
1
4

+
1
4

+
1
8

+
1
8

+
1
16

+
1
16

+ · · · = 1 +
1
2

+
1
4

+
1
8

+ · · · = 2

[The 0 + 1 + 0 + 1 + 0 + · · · version would be technically not quite correct, as the terms are
not positive.]

(b) Yes; we can construct terms for a pair
∑

an,
∑

bn of divergent nonincreasing positive series
whose termwise minimum converges to, e.g., 1, iteratively as follows:

Let the first term of
∑

an be 1.
∑

an now has n1 = 1 more term defined than does
∑

bn.

Now let the first term of
∑

bn be 1
2 , so that the minimum of the two terms so far adds to

1
2 , and add another 1

2 so that we obtain a sum of 1 for the terms of
∑

bn thus far defined.
∑

bn now has n2 = 1 more term defined than does
∑

an.

Back to
∑

an, let the next term be 1
4 , so that the termwise minimum so far adds up to

1
2 + 1

4 , then add 3 more of the same value, so that the total of the new terms in
∑

an adds
to 1.

∑
an now has n3 = 3 more terms defined than does

∑
bn.

Proceed, in general taking the next nk terms of the shorter series equal to 1
2knk

(adding to
1
2k in the termwise minimum) and continue the series for nk+1 = 2knk − nk more terms of
the same value, so that in sum they add to 1 in the relevant series.

We then have both series
∑

an and
∑

bn diverging as 1 + 1 + 1 + · · · and the termwise sum
converging as 1

2 + 1
4 + 1

8 + · · · to 1.
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