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Abstract: Based on the AMBER polarizable model (ff02), we have reoptimized the parameters related to the
main-chain (�, �) torsion angles by fitting to the Boltzmann-weighted average quantum mechanical (QM) energies of
the important regions (i.e., �, PII, �R, and �L regions). Following the naming convention of the AMBER force field
series, this release will be called ff02pol.rl The force field has been assessed both by energetic comparison against the
QM data and by the replica exchange molecular dynamics simulations of short alanine peptides in water. For
Ace-Ala-Nme, the simulated populations in the �, PII and �R regions were approximately 30, 43, and 26%, respectively.
For Ace-(Ala)7-Nme, the populations in these three regions were approximately 24, 49, and 26%. Both were in
qualitative agreement with the NMR and CD experimental conclusions. In comparison with the previous force field,
ff02pol.rl demonstrated good balance among these three important regions. The optimized torsion parameters, together
with those in ff02, allow us to carry out simulations on proteins and peptides with the consideration of polarization.

© 2006 Wiley Periodicals, Inc. J Comput Chem 27: 781–790, 2006
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Introduction

In the last 2 decades, various molecular mechanics force fields
have been developed based on ab initio quantum mechanical (QM)
calculations and empirical experimental data. They successfully
extended the ability of ab initio QM study and allowed studies of
systems that are far beyond the capability of QM calculations.
There are presently several types of molecular mechanics force
fields. Among them, some have targeted the large audience of
organic chemistry. Examples of these force fields include the work
of Allinger’s group1–4 and others who have been making efforts to
achieve increasingly elaborate and accurate force fields for study-
ing organic-related compounds. These force fields have found their
ways in such applications as ligand binding. Another class of force
fields is designed to study biological macromolecules such as
proteins and DNAs. Some of the renowned physics-based force
fields in this category include AMBER,5–9 CHARMM,10–12

OPLS,13–16 and GROMOS.17–19 Detailed accounts of the evolu-
tion and advances of these force fields have been reviewed recent-
ly.20,21 With the growing computer power, simulations beyond
nanoseconds have become increasingly routine. The constant up-
dates in the force fields have also made them increasingly sophis-
ticated. Together, physics-based molecular mechanics modeling
has become an indispensable component of the theoretical tools to
explore biomolecular structure and dynamics and biological pro-
cesses.22–26
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Despite many successful examples,22–26 molecular modeling is
still far from reaching the accuracy and reliability demanded by the
increasingly sophisticated applications. Among many contributing
factors, the additive (fixed) partial charge model imposes serious
limitations to the ability of molecular mechanics. One of the
limitations is its inability to model varying solvation environment.
However, the dynamic nature of biological molecules and the
inherent heterogeneous environment in biological systems dictate
the constantly changing solvation environment. For example, in
the process of protein folding, a hydrophobic side chain may have
strong preference to be buried inside the protein core in the native
state. Yet, the same side chain may be partially exposed to water
at the nonnative states. The substantial dielectric difference be-
tween the two states needs to be accounted for in the simulation.
Therefore, development of the polarizable protein force field has
also been the pursuit of many groups, including work of Berne–
Friesner groups27–29 and their attempt to implement their fluctu-
ating charge model in the OPLS-AA force field,30,31 work of
Brooks–Mackerell–Roux groups32–34 on the CHARMM force
field, and work of the Ponder group20,35,36 on their AMOEBA
force field.

In the conventional models, the electrostatic interactions are
modeled by fixed atomic charges. The average polarization effect
due to the presence of surrounding can be modeled by increasing
the atomic charges. Thus, the typical partial charges in the molec-
ular mechanics force fields are about 10% larger than the gas-
phase charges (e.g., the Cornell et al.9 charge set). Recently, in the
development of the AMBER ff03 force field, Duan et al.37 applied
a continuum solvent model to calculate the electrostatic potentials
in organic solvent for the derivation of partial charges. Despite
these improvements in the fixed point charge models, in compar-
ison, polarizable models have the advantage to be able to model
the varying solvation environment with a unified treatment of the
electrostatic interaction because the polarizable model can mimick
the spontaneous polarization.

Studies on small systems with polarizable models appeared
very early. Some of the pioneering studies38,39 that have helped to
lay the ground work for the development of polarizable model
included those of Kollman and his coworkers.40 It was found that
the polarizable force field can provide good representation in both
the gas phase and the condensed phase.

In AMBER family force fields, development of the nonadditive
polarizable force field was the late Peter Kollman’s long-standing
interest.41–44 The first comprehensive implementation of a full-
fledged polarizable force field for proteins (AMBER ff02) was
released by late Kollman and Cieplak40 in 2002, as part of the
AMBER 7.0 simulation package.45 Unfortunately, Kollman did
not see a practical application before his untimely death. Because
of the interruption, the ability of ff02 to model proteins and
peptides has never been carefully examined, and its behavior
remains largely unknown. Nevertheless, it has been shown that the
inclusion of polarization improves the agreement of hydrogen
bonding free energy of NMA–water with the ab initio value.40

Therefore, it is clear that inclusion of polarization improves the
accuracy of electrostatic representation. What remains untested
and unoptimized is its accuracy to represent the important peptide
conformations.

In this work, we first examined the AMBER ff02 polarizable
force field using alanine dipeptide in water as the model system. A
30.0-ns MD simulation was performed at 300 K on an alanine
dipeptide in a truncated octahedral box filled of 450 polarizable
POL343 water molecules. Figure 1 shows the conformational dis-
tribution. In comparison to the Ramachandran plot derived from
high-resolution known proteins structures there were obvious dis-
crepancies.46 Notably, the dominant area from the ff02 simulation
was around (� � �150°, � � 0°), which is not a highly populated
area on the experimental Ramachandran plot. Instead, experiments
have concluded that polyproline-like (PII) is the dominant confor-
mation of short peptides in aqueous solution. Obviously, the force
field needs to be optimized before it can be applied.

The disagreement, however, is not surprising. Ideally, one may
expect that the inclusion of the polarization effect in the conven-
tional force fields would improve the accuracy, including the
balance between the important conformations. However, the ap-
proximations in the model building and parameterization make
some of the empirical parameters nontransferable. In particular,
the torsion parameters account for both the backbone rotation
energy and errors due to other factors (e.g., truncation of higher
order terms). Therefore, backbone torsion parameters have been
developed typically at the final step based on the QM energies. In
the ff02 implementation, although the partial charges were refitted
under the new polarizable model and a new energy term (polar-
ization energy) was added, other parameters, including van der
Waals, bond, bond angle, and torsions, were taken from the
parm99 parameter set that was optimized for the Cornell et al
charges.9 Strictly, it would be better to reoptimerize all parameters
in the new model. However, the bond stretching, angle bending,
and torsion rotation (except for the backbone torsion) only play
minor roles in determining protein structures. At this stage, we
elect to focus on the most crucial backbone torsion parameters as
the first step of optimization. In this work (referred as ff02pol.rl
hereafter), we adopt all parameters in ff02 except for the backbone
torsion parameters.

Gnanakaran and Garcia47,48 have recently showed how the
AMBER949 can be improved by just disabling the backbone
torsion energy. They47 found that the MD simulations of alanine-
rich peptides with the modified AMBER94 can reproduce exper-
imental results better.

The AMBER Polarizable Model

There are currently three major approaches to account for the
polarization effect in protein force fields. The first is the induced

Figure 1. (�, �) conformation distribution of Ace-Ala-Nme in POL3
water, simulated by ff02 for 30 ns. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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dipole model, which is based on the conventional model with
polarization energy terms. In this approach,38,39 each atom is
modeled as a monopole and an inducible dipole. The polarization
effect is mimicked by the dipole–monopole interactions between
permanent charges and inducible dipoles and the dipole–dipole
interactions between the induced dipoles. In the fluctuating charge
model, polarization is modeled by the variable charges. In this
approach,27–29 each atom is assigned a chemical potential that
determines the charge flow. Results30–33 of this approach in
CHARMM and OPLS-AA force fields have been reported. The
third approach34 is based on the Drude oscillator,49 in which each
real atom is attached to a fictitious particle whose position is
determined by its electrostatic environment.

The AMBER polarizable force field ff02 utilizes the first ap-
proach, which considers the induced dipoles. The total energy in
ff02 is the minimalist (eq. 1) augmented by the polarization energy
(eq. 2).
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Like the permanent charges, the induced dipoles also generate
electrostatic field. The charges fitted by conventional RESP are
thus no longer applicable. Cieplak and Kollman40 have developed
an iterative procedure to fit the charges. In this procedure, the point
charges are first fitted to the difference between the QM electro-
static potential field and that generated by the induced dipoles [i.e..
ESP(QM)-ESP(induced)]. The fitted charges were then used to
calculate the electrostatic fields due to the permanent charges,
which also induces the dipoles is and due to the induced dipole.
Such procedure was iterated until the convergence of total dipole
moment reach 0.001 Deybe. The induced dipole of an atom due to
other point charges was computed within the framework of AM-
BER used to calculate the electrostatic interactions. The 1–2 and
1–3 interactions were excluded, and the 1–4 interaction was in-
cluded. In the polarizable force field (e.g., ff02), the charges were

fitted against gas phase electrostatic potentials for its ability to take
into account the polarizable effect averagely. In ff02, the charges
were fitted at B3LYP/cc-pVTZ//HF/6-31G*. This is contrast to the
condensed phase charges obtained in either Cornell et al.9 or Duan
et al.37 force fields.

Parameter Optimization Procedure

As a convention, alanine dipeptide (Ace-Ala-Nme) (Fig. 2) was
chosen to model the backbone torsions (�C–N–C�–C, �, and
�N–C�–C–N, �) of proteins. It merits mentioning that Sakae and
Okamoto50–52 have optimized AMBER, CHARMM, and OPLS
force fields based on the known protein structures. Because the
partial charges of Ace and Nme groups given in ff02 were fitted by
a combined procedure over all dipeptides, Ace-X-Nme (X � 20
amino acids), the charges given in ff02 are different from the
values fitted over the single model compound (Ace-Ala-Nme). The
charge difference can contaminate the torsion parameters. There-
fore, using the same approach as described in ref. 40, the atomic
charges of alanine dipeptide were refitted. In the charge fitting,
four important conformations with fixed standard (�, �) angles,
that is, � (�119°,113°), �anti(�139°, 135°), �(�57°,�47°), and
PII(�79°,150°), were used. On the other hand, to keep consistency
with ff02 charges to some extent, the atomic charges of alanine
moiety (ONHOCHCH3OCOO) in the model were restrained to
the values in ff02. The resulting atomic charges are compared with
the original ff02 values in Figure 2, which shows the appreciable
difference in the atomic charges of Ace and Nme groups.

The gas phase (�, �) energy map53 of alanine dipeptide was
used for torsion parameter fitting. The map, shown in Figure 3A,
was computed at the MP2/cc-pVTZ//MP2/6-31G** level with a
20° increment in � and � directions from �180–180°, respec-
tively (324 grid points in total) and then interpolated by cubic
spline to a finer map with 10° � 10° grid (1296 grid points in
total). The interpolated map was used for the torsion parameter
fitting.

The fitting was to minimize the weighted error function defined
in eq. (5).



2 � �
i

�i�Ei
amb � Ei

ab�2 (5)

Figure 2. Alanine dipeptide model; the values are atomic charges
(top) given by ff02 and refitted (bottom) as described in the text.
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where i is the index of grid points, �i � exp(�Ei
ab/kBT) is the

Boltzmann weighting factor, Ei
amb and Ei

ab are the AMBER and
the ab initio torsion energies, respectively, excluding other terms.
The temperature was set empirically to 450 K. The relatively high
temperature was necessary because it gave a balanced coverage to
the high- and low-energy areas. For example, the helix region of
dipeptide is energetically high but important in determining pro-
tein structures. Attention should be paid to this region in fitting.

Force field development relies on quantitative comparisons
with high-quality experimental and theoretical data. In the torsion
parameter refinement, however, the typical practice is to refine
against high level QM data. In the case of peptide main chain
torsion parameters, the adjustment has been guided usually by
comparing the relative energies of stable conformations of alanine
dipeptide (Ace-Ala-Nme) with the corresponding QM values. A
recent study by Mackerell et al.54 indicated that such approach
might be inadequate. By implementing the CMAP (grid-based
energy correction map) approach in CHARMM, Mackerell et al.54

were able to recover the QM map almost exactly. Yet, further
adjustment was still necessary to obtain a reasonable conforma-
tional distribution in alanine dipeptide simulation. The main cause
of the problem is the difference in the environment; the ab initio
QM data was computed in the gas phase and the force field was

developed to simulate systems in condensed phases. The energetic
landscape can be significantly altered due to the change in solvent
environment. For example, the lowest conformers (C7eq) in the gas
phase is not crucial in aqueous solution, and some of the crucial
conformers (e.g., �-helix) in aqueous solution are unstable in the
gas phase.53 Therefore, empirical adjustments on target energy
map are needed.

Moreover, the dynamic behavior of a flexible molecule is
poorly represented by the individual stable conformers of fixed
geometry. Yet, a conformational ensemble, which is determined by
the overall terrain of the energy landscape, can provide better
information because it includes the important regions (rather than
points). Because it is rather difficult to mimic the entire energy
map in the fitting, we chose to focus our attention on the important
regions that correspond to the heavily populated areas on the
experimental Ramachandran map. The focused regions included
the �-sheet region (�, �140° �; � � �100° and 120° � � �
150°), poly proline region (PII, �80° �� � �50° and 130° �
� � 160°), right-handed �-helix region (�R, �80° � � � �40°
and �60° � � � �30°), and left-handed �-helix region (�L, 40°
� � � 80° and 30° � � � 60°). The Boltzmann-weighted
average energies (simply called the average energy hereafter) at
300 K over the grid points in the four selected regions are 2.36,

Figure 3. Comparison of (�, �) energy maps of alanine dipeptide computed at various levels. (A) MP2/cc-pVTZ/MP2/6-31G**; (B) ff02pol.rl;
(C) ff02; (D) parameters fitted without energy adjustment.
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2.53, 3.94, and 5.05 kcal/mol, respectively, and the relative aver-
age energies were, respectively, 0.0, 0.17, 1.58, and 2.69 kcal/mol.

In this work, the parameters of four torsion angles (�C–N–C�–
C(�), �N–C�–C–N(�), �C–N–C�–C�, and �C�–C�–N–C) related
to backbone N–C� and C�–C bonds were optimized. The energy of
each torsion angle is mimicked by up to the thrid Fourier term. The
fitting took two stages. At the first stage, all parameters of the four
angles were optimized simultaneously. At the second stage, the
parameters for �C–N–C�–C� and �C�–C�–N–C were fixed and the
parameters for �C–N–C�–C(�), �N–C�–C–N(�) were tuned, in
comparison to the ab initio energies of the aforementioned four
important regions.

Simulation Protocol

The optimized force field was tested by performing simulations on
alanine peptides (Ace-Ala-Nme, Ace-(Ala)7-Nme) in water. The
replica exchange method55 was applied to enhance the sampling to
obtain reliable information about the force field. Using our AM-
BER7-based45 version implemented recently,56 the replica ex-
change simulations were carried out.

For alanine dipeptide, a set of 28 replica molecular dynamics
simulations was performed at the temperatures ranging from 295
to 470 K. Alanine dipeptide was placed in a truncated octahedral
water box containing 381 POL343 water molecules. After relax-
ation by energy minimization, the system was initially equilibrated
under NPT (constant particle, pressure, and temperature) condition
at 300 K for 100.0 ps, during which the system density reached 1.0
g/cm3. The prepared system was then equilibrated under NVT
(constant particle, volume, and temperature) at the respective rep-
lica temperatures for 100.0 ps. Each replica was run for 8.0 ns.

The same procedure was followed to prepare Ace-(Ala)7-Nme
for the replica simulations except that the truncated octahedron
box for Ace-(Ala)7-Nme contains 827 POL343 water molecules. A
set of 32 replica exchange molecular dynamics simulations was
performed at the temperatures ranging from 295 to 495K. Each
replica was run for 8.0 ns. The replica exchange was attempted and
the data was collected every 1.0 ps. It was observed that every
replica traversed through all temperatures by many times during
the MD simulations. In the following discussion the last 6.0 ns data
were considered as production and the first 2.0 ns was ignored. The
errors were estimated based on calculations of 1.0-ns windows.

Results and Discussion

Optimized Torsion Parameters

The optimized parameters for the four torsion angles are listed in
Table 1. The average energies of PII and �R regions relative to the
�-region were 0.17 and 1.57 kcal/mol (Table 2), respectively,
which are close to the ab initio target values (0.17 and 1.58
kcal/mol). However, the relative energy of �L region is 5.36
kcal/mol, which is notably higher than the target value (2.69
kcal/mol). Given that the �L region is located on the right-hand
side of the Ramachandran map, which is rarely present in protein
structures, we feel the discrepancy is acceptable, certainly not as
potentially deleterious as differences in the other three regions.
Nevertheless, attempts were made to adjust the energy map to
achieve agreement with the target values for all areas, but it was
found that the relative average energy of the �L region was not
sensitive to the adjustment after the optimal parameters were
obtained to achieve the target values for PII, �R, and �-regions.
This was probably an indication of the difficulty to use Fourier
terms to mimic the whole energy map. In comparison, the ff02
average energies of PII, �R, and �L regions relative to �-region, are
1.54, 0.17, and 0.86 kcal/mol, respectively, which are notably
different from the ab initio values, 0.17, 1.58, and 2.69 kcal/mol,
respectively. As we will show later, this amount of energy differ-
ence causes significantly different conformation distribution of
alanine dipeptide in aqueous solution.

Table 2 also includes the relative average energies computed by
a set of torsion parameters (not shown in Table 1 and labeled as
ff02-try in Table 2), which were fitted to the energy map without
any adjustment. With respect to the ab initio values, the average

Table 1. Optimized Torsion Parameters for �C–N–C�–C, �N–C�–C–N, �C–N–C�–C�, and �C–�C�–N–C.

Periodicity A Phase Periodicity A Phase

C–N–C�–C(�) 1 0.692 0.0 C–N–C�–C� 1 0.403 0.0
2 0.498 180.0 2 0.692 180.0
3 0.702 180.0 3 0.385 0.0

N–C�–C–N(
) 1 0.898 180.0 C�–C�–N–C 1 1.241 180.0
2 0.965 180.0 2 0.195 0.0
3 0.048 180.0 3 0.681 180.0

Table 2. Boltzmann-Weighted Average Energies (in kcal/mol) of PII, �R,
and �L regions relative to the � region.

�
region

PII

region
�R

region
�L

region

aAb initio 0.0 0.17 1.58 2.69
Ff02 0.0 1.54 0.17 0.86
ff02pol.rl 0.0 0.17 1.57 5.36
ff02pol-try 0.0 1.13 2.83 6.81

aAt MP2/cc-pVTZ//MP2/6-31G**
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energies of PII, �R, and �L regions relative to the �- region
produced by this set of parameters are 1.13, 2.83, and 6.81 kcal/
mol, respectively. Because of their structural relevance, these are
regions where our effort of fitting was focused upon. To obtain
accurate fitting in these areas, because of inclusion of other regions
in the fitting, adjustment was needed. The parameters in Table 1
were fitted to an adjusted energy map in which the ab initio
energies of �, PII, �R, and �L regions were scaled by factors of 1.2,
0.54, 0.51, and 0.7, respectively. It should be emphasized that,
although the ab initio energies in these regions were scaled sig-
nificantly during the fitting, the final relative average energies were
close to the ab initio values. Therefore, the energy adjustment
improves the agreement with the ab initio map in these important
conformational regions. The approach of Boltzmann-weighted av-
erage ab initio energies of the focused regions is similar to the one
used in the development of CHARMM param19 force field.57

The energy maps computed by ff02pol.rl (B) and ff02 (C) are
compared with the ab initio map in Figure 3A. Overall, the main
features of ab initio map were well preserved on the refined map.
There are also notable differences. For example, both ab initio (A)
and ff02pol.rl (B) maps have C7eq and C5 minima in the lower
energy region (the third quadrant), but the flat area on (A) disap-
peared on (B). In contrast, the ff02 energy map (C) was notably
different from (A). The differences are also reflected by the rela-
tive average energies in Table 2, which explains the conforma-
tional distribution of alanine dipeptide in water (Fig. 1). Figure 3D
was computed by ff02pol-try. Although there was no major dif-
ference between (B) and (D), quantitative comparison (Table 2)
and careful inspection indicate that the average energies in PII and
�R regions are overestimated with respect to the �-region.

In our fitting process, the parameters were optimized based on
the average energies of �, PII, �R, and �L without paying attention
to the relative energies of the individual conformers of the model
compound. Thus, it would be interesting to assess the difference
between the ff02pol.rl and ab initio relative energies of the indi-
vidual conformers. Table 3 compares the relative energies of
important conformers of alanine dipeptide at various levels. In
ff02pol.rl, C5 is 1.39 kcal/mol higher in energy than C7eq, which
is quite close to the ab initio energies of 1.47 kcal/mol at MP2/

cc-pVTZ//MP2/6-31G** and 1.01 kcal/mol at LMP2/cc-pVTZ//
MP2/6-31G*. The �-helix conformer with fixed standard (�, �)
angles58 is 4.63 kcal/mol higher than C7eq in ff02pol.rl, in good
agreement with 4.50 and 4.82 kcal/mol at the two ab initio levels,
respectively. Note that the standard (�, �) angles in ref. 58 is
slightly different from the values we used (see Table 3). The
energies of other three conformers (�, �anti, and PII) relative to
C7eq, 2.65, 1.74, and 2.27 kcal/mol, are also in agreement with the
MP2/cc-pVTZ//MP2/6-31G** values, 2.72, 2.12, and 2.91 kcal/
mol, respectively. As expected, the relative energies of C7ax and
left-handed helix are not reproduced by the current ff02pol.rl well.
The ff02pol.rl values are also in reasonable agreement with the ab
initio values. Because of the reasons stated above, the ff02 values,
0.0(C7eq), 2.15(C5), 6.42(�R), 5.84(�), 3.77(�anti), 5.40(PII),
2.02(C7ax), and 7.43 kcal/mol (�L) are significantly different from
the corresponding MP2/cc-pVTZ//MP2/6-31G* values, 0.0, 1.47,
4.82, 2.72, 2.12, 2.91, 2.50, and 5.03 kcal/mol, respectively.

The Behavior of ff02pol.rl in Simulations of Short Peptides

In the past, QM energetic data has been almost the exclusive
source for force field parameterization and calibration. An example
was the work of Beachy et al59 who assessed various force fields
by comparing to the ab initio relative energies of tetrapeptide
(Ace-(Ala)3-Nme) conformers. In comparison to the energies of
alanne dipeptides, tetrapeptide can help to assess the strength of
peptide hydrogen bond, which is crucial to model proteins and
peptides. However, the ultimate goal of a force field is to simulate
proteins or peptides in physiological environments. Although the
energetic comparisons do give valuable insight about a force field,
their role for testing force fields is diminishing because of the
exquisite accuracy required in force field parameters that is beyond
the capability of any existing ab initio methods. Furthermore,
studies53 have revealed significant difference between the energy
maps of alanine dipeptide in the gas phase and that in water. Even
for the polarizable model, because of the approximations, the good
agreement with the ab initio gas phase data does not guarantee a
satisfactory force field for protein simulations. Instead, force fields
should be judged based on realistic simulations.

Table 3. Relative Energies (in kcal/mol) of Important Conformers Computed by Empirical Force Fields,
Together with the Values Predicted at Various Ab Initio Levels.

C7eq C5 a�R-helix a�-sheet a�anti-sheet aPII C7ax �L-helix

ff02pol.rl 0.0 1.39 4.63 2.65 1.74 2.27 1.08 8.32
ff02 0.0 2.15 6.42 5.84 3.77 5.40 2.02 7.43
ff02pol-try 0.0 1.00 5.23 1.88 1.21 3.15 1.49 8.93
bAb initio 0.0 1.47 4.82 2.72 2.12 2.91 2.50 5.03
cAb initio 0.0 1.01 e4.50 2.20 5.19
dAb initio 0.0 0.91 e4.27 2.06 4.96

aThe four conformers are not minima, their (� 
) are fixed at (�57°, �47°), (�119°, 113°), (�139°, 135°), and (�79°,
150°), respectively.
bMP2/cc-pVTZ//MP2/6-31G**.
cLMP2/cc-pVQZ(�g)//MP2/6-31G*.
dLMP2/cc-pVQZ(�g)//MP2/6-311��G**.
eFrom ref. 58, the � and 
 torsion angels were fixed at (�60°, �45°).
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Alternatively, similarity between experimental Ramachandran
plot obtained from high-resolution protein structures and the con-
formational distribution of alanine dipeptide sampled in MD sim-
ulations has also been used to assess force fields.37,60,61 Hu et al.60

assessed earlier versions of AMBER, CHARMM, GROMOS, and
OPLS force fields by comparing the conformational distribution
maps sampled by these force fields with their QM/MM simulation
results and experimental Ramachandran plot.61 They found that all
of the early version force fields bias to some conformers and
disfavor others. Indeed, such comparisons are valuable for the
assessment of force fields. However, a major problem concerning
this type of comparison is the absence of some key interactions
(e.g., backbone hydrogen bonding) in the model compounds (ala-
nine dipeptide). Because of their vital roles in secondary structures
such as �-helix and �-sheet, the lack of main-chain backbone
hydrogen bonds in alanine dipeptide model makes it rather difficult
to assess the reliability of such comparisons. Thus, simple extrap-
olation of the results as treating the data as some sort of gold
standard can be potentially misleading.

Protein simulations have also been applied to assess force
fields. Although they have the advantage of being close to the
environment to which the force fields are applied to, the limitation
of sampling is a serious concern,62 which may prevent a full
exposure of the problem in the examined force field. For example,
most old force fields were able to maintain experimental protein
structures within limited short simulations, ranging from 100 ps in
early days to a few ns recently. Yet, problems were soon found
when testing on other better designed systems. Several nanosec-
onds of simulation for a system with ten thousand atoms are far
from convergent sampling. It is rather difficult to obtain reliable
information about the behavior of a force field from such short
simulations.

With the advancement of experimental methods such as NMR
and CD,63,64 two-dimensional infrared spectroscopy (2D-IR)65,66

and polarized-Raman (PR)/FTIR,67 increasing number of short
peptides63–67 in aqueous has been characterized (see below for
more details), which offers us another way to examine force fields.

Guanakaran and Garica48 have recently examined their modified
AMBER force field (AMBER94/MOD, in which the energy con-
tribution from backbone torsions is set to zero). Mu et al.68

assessed AMBER, CHARM, GROMOS, and OPLS force fields by
comparing the simulation results of alanine tripeptide with the
experimental measurements.69 Recently, Pande and coworkers70

also examined a series of variants of Cornell et al force field.
In the development of the AMBER ff03 force field, Duan et

al.37 proposed a method to use short peptide (Ace-(Ala)4-Nme)
simulation data for force field calibration. One important advan-
tage of short peptides is their ability to model important intramo-
lecular interactions including main-chain backbone hydrogen
bonds. Also advantageous is their marginal stability. In fact, short
peptides are typically disordered in solution and they have the
ability to sample all relevant conformations within a relatively
short time. The small peptides allow reliable sampling, which can
unveil the dynamics completely, and allow quantitative assessment
of the force field. In this study, we will extend the method and
apply replica exchange MD simulations on alanine peptides (Ace-
Ala-Nme and Ace-(Ala)7-Nme) in water to examine the ff02pol.rl
force field.

Figure 4A shows the conformational distribution of Ace-Ala-
Nme in water at 300 K obtained from the replica exchange sim-
ulations using ff02pol.rl. The significant difference between Figure
4A and Figure 1 is quite evident, which is not surprising, given the
significantly different energy maps (Fig. 3C and D) and the relative
energies (Table 3) between ff02pol.rl and the original ff02. The
population percentages in the �, PII, and �R regions are 30 � 3%,
43 � 5%, and 26 � 4%, respectively. Note that the regions defined
here (shown in Fig. 4A) for counting conformations are slightly
different from those for calculating average energy (see above).
There have been no reliable experimental data about the popula-
tions of various conformers in aqueous solution. However, based
on NMR and CD measurement,46 it was concluded that the PII-like
conformers dominate for alanine dipeptide in aqueous solution and
helix conformers are secondarily important. The population per-
centages simulated by ff02pol.rl are in agreement with this qual-

Figure 4. Conformation distribution maps (A) and the distribution changes with temperatures (B) of Ace-Ala-Nme, simulated by ff02pol.rl. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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itative experimental observation assessment. The quantitative data
of alanine tripeptide -(Ala)3- have been reported but are inconclu-
sive. Based on the 2D-IR measurement and theoretical simulation,
Woutersen et al.69 deduced that the tripeptide in aqueous has
approximately 80% PII-like and 20% helix conformers. However,
Schweiter–Stenner67 found that their PR/FTIR measurement can
be explained by a single extended �-like structure located at
(�123°, 173°) or by simultaneous coexistence of both PII and �,
which implies the existence of additional � conformers. The most
recent CD experiment carried out by Gokce et al.71 further con-
firmed the PII dominance, which is attributed to the coupling of a
peptide bond N-terminal to the chiral �-carbon. Considering the
uncertainty in the experiments, we conclude that the ff02pol.rl
gives reasonable description to the dynamic behavior of the short
peptide. Figure 4B shows the changes of distribution fractions of
the three important conformations at different temperatures. Over-
all, as the temperature increases, the most populated conformation
at the low temperature, PII, decreases, � and � conformations tend
to increase. The net effect is leading a leveled distribution at high
temperature, as dictated by favorable entropy toward disorder.

Conformational distributions of alanine dipeptide, sampled by
AMBER94, CHARM27, and OPLS-AA force fields, have been
reported elsewhere.60 Table 4 lists the populations in the regions as
given in ref. 60. These results20 for AMBER 94, CHARM27, and
OPLS-AA were obtained by 288 separate umbrella MD simula-
tions, which were then stitched together with a 2D weighted
histogram procedure. Although this method is different from our
replica exchange simulation, it is reasonable to assume both meth-
ods sample the system extensively and the results in Table 4 are
comparable. In ff02pol.rl, the � conformer was 26%, which was
less than 57 and 46% of AMBER94 and CHARMM27, respec-
tively, more than 14% of OPLS-AA, and close to the QM/MM
value60 of 27%. Like CHARMM27, the ff02pol.rl underrepresents
the bridging area; the 1% population is compared with 3% by
CHARMM27, 6% by AMBER94, 10% by OPLS-AA, and 16% by
QM/MM. The population in the �-region is 71%, which is close to
the OPLS-AA value (70%), and compared with the values (48, 29,
and 49%, respectively) predicted by QM/MM, AMBER 94, and
CHARMM27, respectively.

The (Ala)7 peptide, which is too short to form an �-helix, has
served as an experimental model for testing the common features
of denatured proteins as structureless random coils. The NMR and

CD experiments63,64 have concluded that, at 2°C, PII-like confor-
mations are the dominant species. In addition to the availability of
the experimental data, we chose it as the model to examine the
force field because it has several important advantages. First,
unlike dipeptide, it is possible for the (Ala)7 peptide to form
intramolecular hydrogen bonds. This makes it possible to assess
the competition between the intramolecular and intermolecular
hydrogen bonds and to let us discern whether a force field biases
to a helix or a �-sheet more clearly. For example, the simulation by
the “helix-friendly” AMBER94 shows that the full helix is the
major conformer for the peptide. Second, it allows us to minimize
the terminal effects from blocking groups by excluding the first
and last � and � angles in conformational statistics. This is a
potentially important technical issue in force field refinement be-
cause in alanine dipeptide the Ace- and Nme- groups are together
counted heavily, and their significance is artificially elevated to the
level comparable to the -Ala- residue. In most studies of proteins
and peptides, however, they are rarely present. Therefore, caution
must be taken when assessing force fields based on dipeptide
results. Extrapolation of the results can be potentially misleading
and should be avoided. Finally, the peptide is small and structure-
less, as we stated earlier. Therefore, there are few energy traps and
reliable sampling is much easier. Evidently, extensive conforma-
tional sampling of all relevant areas is the basis for quantitative
comparison.

The conformational distribution of the (Ala)7 peptide, sampled
by ff02pol.rl, is shown in Figure 5A. After removing the first and
last � and � angles, the conformational populations in the �, PII,
and �-helix regions as defined in Figure 4A are 24 � 3%, 49 �
3%, and 26 � 4%, respectively, which is in agreement with the
experimental conclusion that PII-like is the dominant conform-
ers.63,64 In comparison with alanine dipeptide, the distribution of
the � conformer decreases, that of the PII conformers increases,
and that of the helix conformer remains nearly unchanged. Figure
5B shows changes of the distributions of three important confor-
mations with temperature. In comparison with alanine dipeptide,
as the temperature increases, the PII conformations drop more
rapidly and the �-helix form increases more obviously at low
temperature (T 	 337 K) and then remains unchanged at medium
temperatures. Similar to the trends observed in the dipeptide, here
the overall trend is toward a leveled distribution at high tempera-
ture, driven by conformational entropy. Regardless of which one is
the most populated conformation at low temperature, high temper-
ature always tends to reduce the most populated conformations to
maximize the entropy of a system.

Reaching a balance between helix and extended conformations
has been a great challenge in the force filed parameterization.
Recent experiments63 and analyses72 on known protein structures
show that the PII conformations also play role in protein folding,
which further complicates the issue and requires a balance among
three important conformations, namely �-sheet, PII, and �-helix
regions. Obviously, the balance is crucial for studying protein
folding. For instances, a bias of 0.5 kcal/mol/residue can be accu-
mulated to 5.0 kcal/mol for a peptide with 10 resides. This amount
of energetic bias is large enough to turn a �-sheet peptide to an
�-helix in simulation or vice versa. However, experience and
simulation study68 on dipeptides and tripeptides showed that the
available force fields always prefer some conformers while disfa-

Table 4. Population of Alanine Dipeptide Sampled by QM/MM and the
Empirical Force Field.

a� aBridge a�

DFT QM/MM 27 16 48
AMBER94 57 6 29
CHARMM27 46 3 49
OPLS-AA 14 10 70
ff02pol.rl 26 1 71

aRegions are defined in ref. 60, Alpha: �180° 	 � 	 0° and �120° 	 
 	
30°; Bridge: �180° 	 � 	 0° and 30° 	 
 	 90°, and Beta: �180° 	 � 	
0° and 90° 	 
 	 180°//�180° 	 � 	 0° and �180° 	 � 	 0° and �120°
	 
 	 �180°.
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vor others. The AMBER 94 favors helices, whereas AMBER 96
prefers extended structures. The CHARMM 22 force field has a
strong preference for helix conformations. OPLS-AA does not
separate PII and �-structures. GROMOS96 favors � conformers.
The comparisons with the previous force fields (see Table 4) and
the simulation results on Ace-(Ala)7-Nme clearly indicate that the
ff02pol.rl has a better balance among the three important confor-
mational regions. However, as we gained the knowledge from
previous force fields, a better understanding can be obtained only
when it is applied to the various systems. Therefore, more tests on
its ability to represent helix peptides (e.g., AK16) and �-sheets
(e.g., the �-hairpin of G protein) are in progress.

The reasonable conformational distributions of the tested pep-
tides, sampled by ff02pol.rl, do not necessarily implicate that we
can improve a force field by fitting to increasingly accurate ab
initio potential energy. We also compared the energies with the
LMP2/cc-pVTZ(-Q)//MP2/6-31G* energy map (courtesy of A.
MacKerell). In comparison to MP2, the LMP2 method has less
BSSE (basis set superposition error) effect, and the LMP2 energy
map should be more accurate than the currently used MP2 map. At
LMP2 level, the relative average energies of PII, �R, and �L to �
regions are 0.49, 1.85, and 3.80kcal/mol, compared with 0.17,
1.58, and 2.69 kcal/mol at the MP2/cc-pVTZ//MP2/6-31G* level,
respectively. If the LMP2 average energies were used for torsion
parameterization, the resulting force field, with respect to the
ff02pol.rl, will lead a population decrease in the PII region and an
increase in the � region. The helical population will also decrease
relative to �-sheet conformations. However, the simulation on
alanine dipeptide indicates that ff02pol.rl underrepresents PII and
overrepresents � regions slightly. Therefore, we did not change the
target map to LMP2 map.

In summary, based on the AMBER polarizable model ff02, we
have reoptimized the backbone parameters. We used the Boltz-
mann-weighted average energies of the important regions of ala-
nine dipeptide as a criterion to adjust the energy map. The resulting
force field (ff02pol.rl) was further assessed by simulations of
alanine peptides (Ace-Ala-Nme and Ace-(Ala)7-Nme). The con-

formation distributions for both peptides are in agreement with the
experimental observation. In comparison to previous force fields,
ff02pol.rl has good conformational balance among three important
population regions (�, PII, and �). Although polarizable protein
force fields are still under development, the clear advantages in
their ability to model spontaneous polarization in varying environ-
ments have them potentially attractive platforms for modeling
protein dynamics, particularly when large-scale conformational
change takes place. With the optimized torsion parameters, to-
gether with those in ff02, AMBER ff05pol is ready for realistic
MD simulations on proteins and peptides.
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