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Abstract— We propose the AKRON-Kalman filter for the
problem of inferring sparse dynamic networks from a noisy
undersampled set of measurements. Unlike the Lasso-Kalman
filter, which uses regularization with the l1-norm to find an
approximate sparse solution, the AKRON-Kalman tracker
uses the l1 approximation to find the location of a “sufficient
number” of zero entries that guarantees the existence of the
optimal sparsest solution. This sufficient number of zeros
can be shown to be exactly equal to the dimension of the
kernel of an under-determined system. The AKRON-Kalman
tracker then iteratively refines this solution of the l1 problem
by ensuring that the observed reconstruction error does not
exceed the measurement noise level. The AKRON solution is
sparser, by construction, than the Lasso solution while the
Kalman tracking ensures that all past observations are taken
into account to estimate the network in any given stage. The
AKRON-Kalman tracker is applied to the inference of the
time-varying wing-muscle genetic regulatory network of the
Drosophila Melanogaster (fruit fly) during the embryonic,
larval, pupal and adulthood phases. Unlike all previous
approaches, the proposed AKRON-Kalman was able to
recover all reportedly known interactions in the Flybase
dataset.

Index Terms—Time-varying genomic regulatory networks,
compressive sensing, convex optimization, l1-reconstruction.

I. INTRODUCTION

Understanding the dynamical behavior of living cells from
their complex genomic regulatory networks is a challenge
posed in systems biology. Gene expression data [1] can be
used to infer or reverse-engineer the underlying genomic
network. However, most of the work on reverse-engineering
genomic regulatory networks estimates one single static
network from all available data, which is often collected
during different cellular functions or developmental epochs.
Summarizing expression data corresponding to different cel-
lular stages into one network would be similar to character-
izing a non-stationary signal by its Fourier spectrum. Static
networks cannot reveal any regime-specific or key transient
interactions that lead to biological changes [2].

The main challenge when inferring dynamic or time-
varying genomic networks is the unavailability of multiple
measurements or observations at each time step. Typically,
there are only very few measurements available at each time
step. These under-determined systems can, however, be over-
come by using prior knowledge, such as sparsity. Sparsity is

a desired constraint in many applications, including genomic
regulatory networks, where a gene is typically related to only
a few other genes within the network [2].

In our previous work [3], we addressed the problem of
under-sampled sparse systems by proposing a new energy-
weighted likelihood function that ensures the convergence
of the likelihood function for under-determined systems
with unknown covariance. The approach was coined Small-
sample MUltivariate Regression with Covariance estimation
(SMURC) and was applied to infer the wing-muscle ge-
netic regulatory networks of the Drosophila melanogaster
during the four phases of its development [3]. However, the
estimated networks at every epoch used only the data in
the corresponding epoch. In particular, the larval network
ignored all the measurements in the previous embryonic
phase, and so was the case for the subsequent stages.

In this paper, we use the Kalman filter to track the network
across the different developmental epochs or cellular stages.
In this formulation, the target being tracked is the set of edges
between the genes and the measurements are given by the
genes’ expression data. In particular, the network at every
stage uses all previous measurements, which could result
in an improved estimation accuracy. The idea of Kalman
tracking genomic regulatory networks has been pioneered in
our previous work on Lasso-Kalman filtering [2], which uses
a lasso-regularized Kalman filter to find a sparse solution.
The optimal sparse solution is given by the l0 norm defined
as the number of non-zero elements in the vector, which is
an NP-hard problem.

The novelty of this paper consists in proposing a different
compressive sensing algorithm (than Lasso) to impose the
sparsity constraint on the Kalman solution. Unlike the Lasso
regularization, which uses the l1 norm to approximate the
sparse solution, we propose to use the l1 norm to guess
the location of the zeros in the solution and then solve
for the corresponding sparse problem. From the Kernel
RecONstruction (KRON) technique [4], we know that it is
sufficient to find s correct zero locations, where s is the
dimension of the Kernel of the under-determined system.
Instead of enumerating all possible zero locations, we pro-
pose an Approximate KRON (AKRON) solution, which can
be interpreted as a perturbation of the l1 approximation to
obtain a sparser solution.



We apply the proposed AKRON-Kalman tracker to recover
the time-varying wing-muscle genetic regulatory network of
the Drosophila and compare with state-of-the-art techniques
in dynamic sparse recovery of this network, including the
Lasso-Kalman filter [2], the SMURC paradigm [3], dynamic
Bayesian networks [5] and random graph models [6].

II. THE STATE-SPACE MODEL

Following the works in [2] and [3], we model the network
dynamics using a state space model. The system equation is
given by a random walk model, which results in a smooth
evolution over time. The observation equation is given by a
first-order differential equation. The state space model of the
incoming edges for gene i can be shown to be [2]

ai(k + 1) = ai(k) + wi(k). (1)
yi(k) = Xt(k) ai(k) + vi(k), (2)

where i = 1, · · · , p, p being the number of genes. X(k)
is the gene expression matrix at time k. wi(k) and vi(k)
are the process and observation noise, respectively. These
noise processes are assumed to be zero-mean Gaussian noise
processes with the known covariances Q(k) and R(k), re-
spectively, and uncorrelated to the state vector ai(k). The full
connectivity matrix, A(k), can be recovered by simultaneous
parallel recovery of its rows at

i(k) at every time instant k.

III. THE AKRON-KALMAN FILTER

A. Constrained Kalman filtering

Our constraint space is the set of sparse vectors. We do
not know a priori the degree of sparsity. Using the convex
approximation l1 of the l0 norm, we first start by projecting
the Kalman solution onto the set of ”approximately sparse
vectors by solving the following convex optimization prob-
lem:

â = argmin
a

(1− λ)‖aKF − a‖2 + λ‖a‖1, (3)

where aKF is the Kalman filter estimate and λ is a parameter
that controls the trade-off between sparsity and closeness
to the Kalman solution. When λ = 0, (3) is simply the
unconstrained Kalman estimate. When λ = 1, (3) provides
the approximately sparsest solution (in terms of the l1-norm),
regardless of the Kalman estimate.

B. Perturbation of the l1 approximation

Consider the following l0-optimization problem, which
finds the sparsest solution in a linear under-determined
system

minimize‖x‖0 subject to Φx = y, (4)

where ‖x‖0 denotes the l0-norm of the vector x ∈ Rp, y ∈
Rn and n < p. Compressive sensing theory [7] shows that,
under the Restricted Isometry Property (RIP) condition on
the matrix Φ, the l1-norm solution is equivalent to the l0-
norm solution. However, it is impossible to check if the RIP
condition is satisfied for a given matrix. Despite this strict
condition, l1 has been routinely used to find a sparse solution
in systems of the form (4).

Consider the Kernel of Φ defined as Ker(Φ) = {z :
Φz = 0}. Let the dimension of Ker(Φ) be s. Without loss
of generality, we can assume that Φ is full-rank, i.e., s =
p − n. The system in (4) admits solutions with at least s
zeros [4]. We can exhaustively search all combinations of s
zeros among the p entries to obtain all solutions with at least
s zeros and choose the sparsest one [4]. This enumeration
of s zeros among the p unknowns finds the sparsest l0-norm
solution; but at a high computational cost, as it requires

(
p
s

)
enumerations. Nevertheless, finding s correct zero locations
is sufficient to find the optimal sparsest solution.

We propose to find the locations of s zeros by using the
l1 approximation. The main idea is that if the l1 solution
is ”close enough” to the optimal sparsest solution, then
its s-smallest elements would correspond to zero locations
of the optimal solution. Therefore, we compute the l1-
approximation and set the s smallest entries to zero and
re-solve for the system. This approach can be viewed as a
perturbation of the l1-approximation to bring it closer to the
optimal solution.

Call x∗ the l1-solution whose smallest s entries were set to
zero. Resolving for the full system Φx = y, where x has s
zeros, as located by the l1 approximation, would reconstruct
a sparser solution x that also fits the measurements noise in
y. Alternatively, we propose to find a sparser solution that
satisfies the constraint ‖Φx − y‖ ≤ ε, where ε models the
variance of the noise in the data. We do so by first checking
if the initial solution x∗ satisfies ‖Φx∗ − y‖ ≤ ε. If yes,
then the final solution is given by x∗. If not, we iteratively
set the next smallest element in x∗ to zero until the constraint
is satisfied. Observe that taking into account the noise in the
data may lead to a sparser solution since more entries may
be set to zero as long as the observation error is smaller than
the threshold ε.

C. The AKRON-Kalman filter

The Kalman filter estimate is made sparse by incorpo-
rating the above iterative l1 refinement technique. First, the
Kalman filter estimate is found. Then, the Kalman estimate is
lasso-sparsified using (3). AKRON-Kalman uses this sparse
Kalman estimate as its starting off point. The s = p − n
smallest elements of the l1 projection in (3) are set to zero,
and then the observation error is compared to the noise level
ε. If the error is smaller than the energy of the noise, we
adopt this solution. Otherwise, the next smallest element
is set to zero and the error is recalculated. The detailed
AKRON-Kalman tracker algorithm is described in the below
algorithm.

IV. SIMULATION RESULTS

A. Synthetic data

We first evaluate the performance of the AKRON-Kalman
tracker using 100 randomly generated sparse 11-gene net-
work that evolves over 4 time points. We used 9 observations
per time point. The degree of sparsity was 80%. We com-
puted the true positive (TP), true negative (TN), false positive
(FP), false negative (FN) rates, sensitivity, specificity and



accuracy. All results are shown in Table I. The sensitivity,
specificity and accuracy of the AKRON-Kalman were higher
than the Lasso-Kalman and classical Kalman filters.

Algorithm 1 AKRON-Kalman Tracker
1. Initialization: Initialize the state and estimate vectors to
a0|0 = â and V0|0 = 0.

2. For k = 1, . . . , n, do
•Prediction :

âk|k−1 = ak−1|k−1. (5)

Vk|k−1 = Vk−1|k−1 + Qk. (6)

•Filtering :

Kk = Vk|k−1Xk(Xt
kVk|k−1H

t
k + Rk)−1. (7)

ak|k = ak−1|k−1 + kk(yk −Xt
kak−1|k−1). (8)

Vk|k = (I −KkXt
k)Vk|k−1. (9)

•Projection : Project the estimate onto an approxi-
mate sparse space by solving the convex optimization
problem in (3). Call this solution a∗.

3. Approximate Kernel RecONstruction (AKRON): For
k = 1, . . . , n, do
s = |Ker(Xt)|
Set s smallest entries in a∗ to 0
while ε >‖Xta∗ − y ‖ do

Set the next smallest value in a∗ to zero.
Compute the error ‖Xta∗ − y ‖

end while

B. Application: Time-Varying Genomic Regulatory Networks
of the Drosophila Melanogaster

The application of interest is the inference of the time-
varying wing-muscle genomic network of the Drosophila
Melanogaster (fruit fly). The Drosophila microarray dataset
originally consists of 4028 genes taken over 66 different time
points [1]. The data includes 4 stages of the Drosophila’s
life: embryonic (samples 1 through 30), larval (samples 31
through 40), pupal (samples 41 through 58), and adulthood
(samples 59 through 66). Flybase hosts a list of undirected
gene interactions [8].

In this application, we considered a list of 11 genes that
are responsible for the wing muscle development, which has
been considered by many researchers before [5], [6], [9],
[10]. The embryonic, pupal, and larval stages are under-
sampled to 9 samples in each stage that were used in the
reconstruction of the 11-gene network in each developmental
epoch. All 8 time points were used in the adulthood period.
To summarize, the reconstruction of the connectivity matrix
uses 9 samples in the embryonic, pupal, and larval develop-
mental stages and 8 samples in the adulthood developmental
stage. The 11 gene network was reconstructed throughout

Fig. 1. Reported network from Flybase (considered as ground truth). Gene
listing (Starting from the bottom going clockwise): Actn, up, twi, sls, prm,
Myo61F, Msp300, Mlc1, mhc, gfl.lmd, and eve. Flybase does not specify the
stage or the sign of the connection.

each of the four developmental stages using the AKRON-
Kalman algorithm. The known interactions reported in Fly-
base are depicted in Fig. 1.

The networks reconstruction using the AKRON-Kalman
tracker are shown in Figs. 2a-d. Blue edges represent a
positive influence; Red edges represent negative influence,
and black edges mean that the two genes influence each other
in an opposite way (i.e. one positive and one negative). The
AKRON-Kalman tracker was able to find every connection
reported in Flybase: (eve,twi) appears in all four stages,
(Actn,prm) appears in the embryonic, larval, and pupal
stages, (Actn,sls) appears in the embryonic, larval, and pupal
stages, (Actn,up) appears in all four stages, (up,mhc) appears
in the embryonic, larval, and pupal stages, (up,sls) appears in
the embryonic, larval, and pupal stages and (sls,mhc) appears
in the embryonic and larval stages.

Table 2 lists all previous algorithms that were applied to
this genetic network. Only the AKRON-Kalman, LASSO-
Kalman [2], SMURC [3] and Dynamic Bayesian networks
[5] considered time-varying networks; and, hence, were able
to distinguish the different phases in the network. The
other algorithms (minimum description length [9], random
graph model [10] and nonparametric Bayesian regression
[6]) assumed a stationary network, and hence it is not
clear at which stage the detected connections develop. The
AKRON Kalman-tracker along with the Lasso-Kalman are
the only algorithms able to recover all known interactions
and specify the developmental stage where this interaction
occurs. Although the Lasso-Kalman also finds all reported
interactions, the networks are denser (less sparse) than the
AKRON-Kalman. Other algorithms are not able to detect
nearly as gene interactions that are known to exist in the
Drosophila as the AKRON-Kalman tracker.

V. DISCUSSION AND CONCLUSION

In this paper, we formulated the inference of time-varying
networks as a tracking problem, where the target consists
of the network edges, which rewire, appear and disappear
over time. The main difficulty in estimating time-varying
networks is the lack of a sufficient number of observations
per time step. However, by taking into account the sparsity of
molecular networks (as a prior knowledge), we proposed the
AKRON-Kalman tracker to recover the dynamic connectivity



TABLE I
PERFORMANCE ANALYSIS OF THE AKRON-KALMAN, LASSO-KALMAN AND CLASSICAL KALMAN TRACKERS

TP TN FP FN sensitivity specificity accuracy
AKRON-Kalman Tracker 70.5% 17.3% 11.5% 0.7% 88.1% 98.9% 71.9%
Lasso-Kalman Tracker [2] 28.3% 12.2% 53.3% 5.5% 40.5% 83.0% 18.5%

Kalman Tracker 6.8% 16.7% 75.0% 1.3% 32.1% 82.5% 18.3%

(a) Embryonic (b) Larval (c) Pupal (d) Adult

Fig. 2. From left to right: Gene connectivity networks in the embryonic, larval, pupal and adulthood developmental stages. Red edges suppress a gene;
blue edges excite a gene; black edges denote an excitation from one gene and a suppression from the other; and green edges are the connections reported
in Flybase.

TABLE II
DETECTION OF THE KNOWN GENE INTERACTIONS IN FLYBASE (E: EMBRYONIC, L: LARVAL, P: PULPAL AND A: ADULTHOOD)

(prm,Actn) (sls,mhc) (mhc,up) (sls,Actn) (sls,up) (twi,eve) (up,Actn)
AKRON-Kalman Tracker X (E,L,P) X (E,L) X (E,L,P) X (E,L,P) X (E,L,P) X (E,L,P,A) X (E,L,P,A)

LASSO-Kalman Tracker [2] X (E,L,P) X (E,L) X (E,L,P) X (E,L,P) X (E,L,P) X (E,L,P,A) X (E,L,P,A)
SMURC [3] X (A) X (A) X (L) X (L) X (E) X (P) ×

Minimum description length [9] X X × × × X ×
Random graph model [10] × × X (E,L,P,A) X (P,A) X (E,L,P,A) × ×

Dynamic Bayesian network [5] × X (E,L,P,A) × × × × ×
Nonparametric Bayesian regression [6] × × × × × X (E) ×

of sparse networks. Using compressive sensing theory, the
AKRON-Kalman tracker first computes the unconstrained
Kalman solution, performs an approximate sparsification by
using the l1-norm projection, and then recursively refines
this sparsification by finding the locations of the zero entries,
which ensure that the observation error does not exceed the
noise level in the data. The AKRON-Kalman tracker was
applied to infer the wing muscle gene-regulatory network
of the Drosophila Melanogaster during four developmental
phases of its life cycle, and successfully identified all seven
known interactions reported in Flybase.
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