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Abstract—Localization of the brain neural generators that
create Electroencephalographs (EEGs) has been an important
problem in clinical, research and technological applications re-
lated to the brain. The active regions in the brain are modeled
as equivalent current dipoles, and the positions and moments
of these dipoles or brain sources are estimated. So far, the brain
dipoles are assumed to be fixed or time-invariant. However, recent
neurological studies are showing that brain sources are not static
but vary (in terms of location and moment) depending on various
internal and external stimuli. This paper presents a shift in the
current paradigm of brain source localization by considering
dynamic sources in the brain. We formulate the brain source
estimation problem from EEG measurements as a (nonlinear)
state-space model. We use the Particle Filter (PF), essentially
a sequential Monte Carlo method, to track the trajectory of
the moving dipoles in the brain. We further address the “curse
of dimensionality,” issue of the PF by taking advantage of the
structure of the EEG state-space model, and marginalizing out
the linearly evolving states. A Kalman Filter is used to optimally
estimate the linear elements, whereas the PF is used to track only
the non-linear components. This technique reduces the dimension
of the problem; thus exponentially reducing the computational
cost. Our simulation results show that, where the PF fails, the
Marginalized PF is able to successfully track two dipoles in the
brain with only 500 particles.

Keywords—Bayesian estimation, EEG inverse problem, Spatial-
temporal brain source localization, Particle filtering, Kalman Fil-
tering.

I. INTRODUCTION

We formulate the brain source localization problem as a
(nonlinear) state-space model, where the positions and mo-
ments of the neural generators constitute the unknown or
hidden state and the EEG measurements are the observations of
the system. In a Bayesian context, inference of the hidden state
given a realization of the observations relies upon the posterior
density function (pdf) [1]. For systems with linear dynamics
and Gaussian noise, the posterior distribution is Gaussian
whose mean and covariance can be computed using the
Kalman filter. For systems with non-linear dynamics, a Monte
Carlo method, called the Particle Filter (PF) has emerged,
which uses the concept of Sequential Importance Sampling
(SIS) to estimate the posterior pdf using a finite number of

weighted samples. In particular, the PF does not make any
assumptions about the pdfs or the linearity of the system
model. The power of the PF, however, comes at a computa-
tional cost. In particular, the number of particles needed for the
estimation increases super-exponentially with the dimension of
the state [2]. This problem is commonly known as the “curse of
dimensionality”, and makes it unreasonable to use the Particle
filter for tracking problems in high dimensional spaces. In the
context of EEG source localization, the dimension of the state
space is six times the number of dipoles, causing the tracking
of even two dipoles (12-dimensional problem) to be inaccurate
unless a very large number of particles are used. To deal with
the high-dimensionality issue, we propose to marginalize out
the states in the system that are linear with respect to the
measurements [3]. This allows the linear states in the state-
space model to be estimated optimally using the Kalman Filter,
whereas the non-linear states are estimated using the PF. By
decreasing the dimensionality of the state, less particles can
be used, allowing a decrease in computation time. Simulation
results show that even a two dipole model cannot be localized
using the traditional PF, but can be tracked accurately using
the marginalized PF.

II. EEG SOURCE LOCALIZATION MODEL

Given M equivalent active dipoles in the brain, the mea-
sured multichannel EEG signal zk from nz sensors at time k
can be modeled as follows:

zk =
M∑

m=1

Lm(dk(m))sk(m) + ek, (1)

where M is the total number of dipoles, dk(m) is a 3×1 spatial
position vector in the brain of dipole m at discrete time k. Each
dipole m is defined as dk(m) = [xk(m), yk(m), zk(m)]t.
Lm(dk(m)) is the nz × 3-dimensional lead-field matrix for
the mth dipole. sk(m) is a 3 × 1-dimensional moment of
the mth dipole at time k. ek is a zero-mean white Gaussian
noise with covariance Rk. Most notably, the components of
the leadfield matrix Lm are non-linear functions of the dipole
locations, electrodes’ positions and head position [4]. The
EEG measurement equation described in (1) can be written



concisely as
zk = Lk(dk)sk + ek. (2)

The hidden state (to be estimated) is given by the dipole
positions and moments: xk = [dt

k, s
t
k]

t.

It is important to note that the measurements zk are linear
with respect to the dipole moments sk and non-linear with
respect to the dipole spatial positions dk. This model allows us
to consider marginalization of the linear states to be estimated
by the Kalman filter, thus reducing the dimensionality of the
state estimated by the PF. We further assume a random walk
model for the state transition dynamics. A random walk model
does not assume any a priori knowledge about the source
locations and moments. The EEG source localization state-
space model is then given by{

xk = xk−1 + vk,
zk = L(dk)sk + ek,

(3)

where vk is the state noise at time k, assumed to be zero-
mean, white Gaussian process. The goal is to use the model
in (3) to estimate, at every time instant, the dipole locations
dk and moments sk given the EEG measurements zk.

III. THE PARTICLE FILTER

Consider the following discrete-time state-space model
defined by possibly nonlinear state and measurement equations

xk = fk(xk−1) + vk,

yk = hk(xk) + ek, (4)

where xk ∈ Rnx and yk ∈ Rny represent, respectively, the
hidden state and the measurement vectors. The functions fk
and hk are known, possibly non-linear, mappings; and vk and
ek are realizations of the zero-mean process and measurement
noise with known probability density functions (PDFs) gk and
rk, respectively. We wish to estimate the state of the system
xk at every time step k, given the history of measurements
Y k = {y1,y2, ...,yk}.

In the Bayesian framework, the optimal state estimate
is given by the mean of the posterior density p(xk|Y k).
Using Bayes rule, the posterior distribution, at time k, can be
computed sequentially from the following two-step prediction-
update formula:

p(xk|Y k−1) =

∫
gk(xk|xk−1)p(xk−1|Y k−1)dxk−1 (5)

p(xk|Y k) =
rk(yk|xk)p(xk|Y k−1)∫
rk(yk|xk)p(xk|Y k−1)dxk

. (6)

Unfortunately, except for the linear case, these equations are
only a conceptual solution, due to the intractability of the
integrals defined. The PF is a Monte Carlo method that
represents the posterior pdf, at time k, using a set of N

particles {x(i)
k }Ni=1 and their associated weights {w(i)

k }Ni=1:

p(xk|Y k) ≈
N∑
i=1

w
(i)
k δ(xk − x

(i)
k ), (7)

where δ(.) is the Dirac delta function and N is the number
of particles. The conditional mean estimate at time k is then
given by

x̂k = E[xk|Y k] ≈
N∑
i=1

w
(i)
k x

(i)
k . (8)

A known pdf, called the importance distribution or proposal
distribution, q(xk|xk−1,yk), is used to sample the particles:
x
(i)
k ∼ q(xk|x(i)

k−1,yk). To make up for the difference between
the importance distribution and the posterior density, the
weight of each particle x

(i)
k is computed as

w
(i)
k = w

(i)
k−1

rk(yk|x
(i)
k )gk(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1,yk)

. (9)

The weights are then normalized. A common choice for the
importance distribution is the prior, i.e., q(xk|xk−1,yk) =
gk(xk|xk−1). The price to be paid for the flexibility and
numerical power of the PF is computational. This computa-
tional cost is especially prohibitive in higher dimensional state
spaces, where the number of particles needed increases super-
exponentially with the dimension of the state [2].

IV. THE MARGINALIZED PARTICLE FILTER

The main idea of the marginalized PF (MPF) is to partition
the state vector as xk = [(xl

k)
t, (xn

k )
t]t, where xl

k denotes the
state variable partition with conditionally linear dynamics and
xn
k denotes the state variable partition with non-linear dynam-

ics. Let us consider the following marginalization model:
xn
k = fk(x

n
k−1) + vn

k ,
xl
k = Ak(x

n
k−1)x

l
k−1 + vl

k,
yk = hk(x

n
k ) +Ck(x

n
k )x

l
k + ek,

(10)

where fk and hk are non-linear functions, whereas Ak(x
n
k−1)

is conditionally linear on xl
k−1 and Ck(x

n
k ) is conditionally

linear on xl
k. The system and measurement noise are assumed

to be white Gaussian processes distributed according to ek ∼
N(0,Rk), vk =

[
vl
k

vn
k

]
∼ N(0,Qk),Qk =

[
Ql

k 0
0 Qn

k

]
.

The posterior pdf of the state xk can then be found as
p(xl

k,X
n,k|Y k), where Xn,k = {xn

0 ,x
n
1 , ...,x

n
k} and the

marginal of which is p(xl
k,x

n
k |Y

k). By marginalizing out the
conditionally linear states xl

k using Bayes’ theorem, we have

p(xl
k,X

n,k|Y k) = p(xl
k|X

n,k,Y k)p(Xn,k|Y k). (11)

The distribution p(xl
k|X

n,k,Y k) is analytically tractable be-
cause it is conditioned on the non-linear states Xn,k and,
therefore, can be found optimally using the Kalman Filter [3].
The distribution p(Xn,k|Y k) depends only on the nonlinear
states and can be estimated using the PF.

Since the pdf p(xl
k|X

n,k,Y k) is conditioned on the non-
linear states Xn,k, we have Ak(x

n
k−1) and Ck(x

n
k ) as fixed

constant matrices, thus allowing for a statistically optimal
estimate of the linear state. The Kalman Filter algorithm to
compute the optimal estimate of xl

k given the non-linear states
is outlined below.



Given the initial conditions xl
0|0 and P 0|0, compute the

prediction equations

xl
k|k−1 = Ak(x

n
k−1)x

l
k−1

P k|k−1 = Ak(x
n
k−1)P k|k−1Ak(x

n
k−1)

T +Ql
k

(12)

and the update equations

Sk = Ck(x
n
k )P k|k−1Ck(x

n
k )

T +Rk

Kk = P k|k−1Ck(x
n
k )

TS−1
k

xl
k|k = xl

k|k−1 +Kk

(
yk − hk(x

n
k )−Ck(x

n
k )x

l
k|k−1

)
P k|k = P k|k−1 −KkCk(x

n
k )P k|k−1

(13)

The optimal estimate of xl
k is then given by xl

k|k.

The second conditional probability in Eq. (11),
p(Xn,k|Y k), can be expressed as

p(Xn,k|Y k) ∝ p(yk|X
n,k,Y k−1)p(xn

k |X
n,k−1,Y k−1)

p(Xn,k−1|Y k−1)
(14)

We use the distribution p(xn
k |X

n,k−1,Y k−1) as the
importance density. We have p(xn

k |X
n,k−1,Y k−1) =

N (fk(x
n
k−1),Q

n
k ), where N (x,C) denotes the normal dis-

tribution with mean x and covariance matrix C. The weights
of the particles are calculated as

w̃
(i)
k = w

(i)
k−1p(yk|X

n,k,Y k−1), (15)

where

p(yk|X
n,k,Y k−1) = N

(
hk(x

n
k ) +Ck(x

n
k )x

l
k|k−1,Sk

)
.

The optimal state estimate at time k is then given by

x̂k =

[
xl
k|k,

N∑
i=1

w
(i)
k x

n,(i)
k

]t

. (16)

The Marginalized PF algorithm is summarized below.

Algorithm 1: Marginalized PF algorithm
for i = 1, 2, ..., N do

Initialize particles x
n,(i)
0|−1 ∼ pxn

0
(xn

0 ) and set

{xl,(i)
0|−1,P

(i)
0|−1} = {x̄

l
0, P̄

l
0}

for k = 1, 2, ... do
for i = 1, 2, ..., N do

Evaluate the weights w̃
(i)
k using Eq. (15).

Normalize the weights wk ← wk∑N
i=1 w̃

(i)
k

.

for i = 1, 2, ..., N do
Update x̂l

k|k using Eq. (13).
Update P k|k using Eq. (13).
Calculate the mean estimate x̂k using Eq. (16).
Sample x̂

n,(i)
k ∼ p(xn

k |X
n,k−1,Y k−1).

Update x̂l
k+1|k using Equation (12).

Update P k+1|k using Equation (12).

A resampling step may be introduced after normalizing the
weights to avoid degeneracy of the PF [1].

V. RESULTS AND DISCUSSION

A. Simulation Results on Synthetic Data

In our experiments, we considered two moving dipoles
generating the observed EEG measurements. We compared
the performance of the “traditional” Particle Filter algorithm,
where both the linear and nonlinear components of the state
are estimated using the PF, with the proposed Marginalized
PF. The moments are assumed to be sinusoidal waveforms
with varying amplitudes and frequencies. We performed 100
Monte Carlo simulations and computed the Mean Squared
Error (MSE) of the true state xk versus the estimated state.

The simulation was repeated for 100 Monte Carlo runs
using 500 particles. The average MSE is shown in Figure 1.
Not only does the PF produce a larger MSE, but in 12D it fails
to track the state. The Marginalized PF is able to track the state
because it is only using the PF to estimate the non-linear part
and uses the Kalman filter to estimate the linear part. For the
EEG localization model presented in this paper, half of the
states are linear, allowing the Marginalized PF to calculate the
same result using a reduced 6D state space model.

B. Application to Real EEG Data

In this section, we apply the proposed Marginalized PF
algorithm to real EEG data recorded from twelve female
subjects (20-28 years old). The experimental setup was de-
signed by Santos et al. [5] for their study on subject attention
and perception. The subjects were exposed to a sequence of
images of different facial expressions (neutral, fearful and
disgusted) superimposed on houses. The participants task was
to determine, on each trial, if the current house or face is the
same as the one presented on the previous trial. Each trial lasts
1600 ms (400 samples with sampling rate 250 Hz) comprising
a pre-stimulus interval of 148 ms (37 samples) and post-
stimulus onset interval of 1452 ms. EEG signals were recorded
from 16 channels (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1,
O2; F7, F8, Fz, Cz, Pz, Oz) and two Electrooculogram (EOG)
channels (horizontal and vertical EOG) located according to
the 10/20 International system. Since the primary brain task
in this experiment is perception of visual stimulus, the neural
activity is supposed to happen in the visual cortex. Therefore,
the Marginalized PF algorithm is expected to estimate the
strongest dipoles that may have originated the registered VEPs
in the occipital brain zone which corresponds to the visual
cortex.

We considered the estimation of two sources for each
patient. We used 1000 particles in the Marginalized PF for
the real data. It is very interesting to observe that the dipole
coordinates are located in the zone of the primary visual cortex
as shown in Fig. 2. In this sense, the proposed approach seems
to be coherent in tracking the brain sources over time. Another
noteworthy observation is the fact that the 3D locations of the
dipoles does not vary significantly over time or between trials.
This is due to the fact that the EEG experimental setup was
designed to study attention and perception. We postulate that in
order to observe significant or abrupt changes in brain source
locations, we need to design an experiment, where two or more
areas of the brain (e.g., visual and motor) are invoked. We also
observed that there is no significant variability between the
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(b) Second dipole

Fig. 1: Mean Squared Error of Tracking the position (top) and moment (bottom) of the first dipole (left figure) and second dipole
(left figure). The Marginalized PF tracking is in blue and and the classical PF tracking is in red.

(a) Subject 1 (b) Subject 2

Fig. 2: Axial view of primary visual cortex zone. The arrows point the estimated source locations.

subjects in the locations of the brain dipoles. However, there
was a notable variability in the moments between the subjects.

VI. CONCLUSION

This paper considered, for the first time, moving dipoles
estimation, which would contribute to a physiologically more
plausible brain technologies such as source-based BCI. Non-
linear tracking algorithms, notably the Particle Filter (PF),
are emerging as promising solutions in the localization of
equivalent current dipole models from EEG measurements.
However, the numerical nature of particle filters, which consti-
tutes their strength for multidimensional numerical integration,
becomes their major weakness in high-dimensional state-space
models. In this paper, we proposed to handle the curse of
dimensionality problem in the PF by taking advantage of
the linear substructures in the EEG state space model. The
moments were “Marginalized” out and computed optimally
using the Kalman filter. The remaining non-linear positions
were then estimated numerically using the classical Particle
Filter. We showed that the Marginalized Particle Filter was able
to successfully track two dipoles with no a priori knowledge
of their positions or moments using only 500 particles. The
classic PF failed in tracking this same system, due to the
high-dimensionality of the problem and the small number of
particles used.
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