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1.1

Brief summary

The cell maintains its function via an elaborate network of interconnecting positive

and negative feedback loops of genes, RNA and proteins that send different signals to

a large number of pathways and molecules. These structures are referred to as genetic

regulatory networks, and their dynamics are used to understand the mechanisms and

characteristics of biological cells as well as to search for possible remedy to various

diseases such as cancer. In classical biological experiments, cell function is ascer-

tained based on rough phenotypical and genetic behavior. On the other hand, the use

of dynamical system models allows one to analytically explore biological hypotheses.

Current research in cancer biology indicates that global, systemic molecular interac-

tions are pivotal in understanding cellular dynamics, and in designing intervention

strategies to combat genetic diseases. In particular, most genetic ailments, such as

cancer, are not caused by a single gene, but rather by the interaction of multiple genes.

Global, holistic approaches to the study of biological systems reveal the dynamic na-

ture of cellular networks, which provide an important framework for drug discovery

and design. The massive amounts of information that omics (e.g., genomics, pro-

teomics, metabolomics) high-throughput sequencing technology generate marked a

great leap forward in computational methods for analyzing and interpreting biological

data. However, it remains a major challenge to design optimal intervention strategies

in order to affect the time evolution of gene activity in a desirable manner. One of the

main aims of modern biological research is focused on intervening in biological cell

dynamics in order to alter the gene regulatory network and avoid undesirable cellular

states; e.g., metastasis. The development of effective control approaches for therapeu-

tic intervention within genetic regulatory networks requires new models and powerful

tools for understanding and managing complex networks.

This Chapter is organized as follows. In Section 1.2, we review the main research

streams in inference of genetic regulatory networks. In particular, we discuss the ad-
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vantages and drawbacks of continuous and discrete-time stochastic models of genetic

regulatory networks. In Section 1.3, we present a comprehensive review of the inter-

vention strategies in regulatory networks proposed in the literature. The framework

of optimal perturbation control is introduced in Section 1.4. In this Section, we study

the perturbation control feasibility, optimality and robustness. Section 1.5 is devoted

to simulation results on the control of the Human melanoma genetic regulatory net-

work. Finally, Section 1.6 presents a summary of the main results of the Chapter and

a discussion of future trends and directions in control of genetic regulatory networks.

The ultimate goal is to develop engineering methods designed to intervene in the de-

velopment of living organisms and transition cells from malignant states into benign

forms.

In this Chapter, we consider real variables. We use R to denote the set of real

numbers. Scalars are denoted by lower case letters, e.g., s, t. Vectors in R
n are denoted

by bold letters, numbers, or lower-case Greek letters, e.g., 1,x,πππ, where 1 denotes a

vector all of whose components are equal to one. xt denotes the transpose of the vector

x. The notation x = (y,z) is a shorthand for x is a linear combination of y and z. If the

inner product < x,y >= 0, we write x ⊥ y. Matrices in R
m×n are denoted by capital

letters or upper-case Greek letters, e.g., C,P,Λ. I stands for the identity matrix.

1.2

Gene Regulatory Network Models

Network models of gene interactions serve the dual purpose of identifying organiza-

tional and dynamic parameters of the molecular system as well as making predictions

about the response of the biological system to input signals. In particular, under-

standing the dynamic behavior of gene regulatory networks is essential to advance

our knowledge of disease, develop modern therapeutic methods and identify targets

in the cell needed to reach a desired behavior [1]. Therefore, major work has focused

on building models of gene regulatory networks by inferring functional relationships

among genes from gene expression profiles.

Various studies have shown that genetically identical cells exhibit great diversity

even when they are exposed to the same input signals [2], [3]. The presence of an

intrinsic cellular noise can explain these variations. The assumption of an inherently

random nature of the genetic responses is now commonly admitted. Besides intrinsic

noise, it is well known that acquisition techniques such as high-throughput sequenc-

ing technologies generate measurement noise, which also should be taken into account

as extrinsic noise. The presence of (intrinsic and extrinsic) noise in genetic expres-

sion profiles strongly argue in favor of probabilistic or stochastic methods for system

modeling, analysis, and intervention.

Stochastic models of genetic interactions can be divided into continuous and

discrete-time models. Let us define xi(t,ω) the random expression level of gene
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i at time t. Continuous-time models are described by stochastic differential equa-

tions, which can allow gene regulations to be described in great detail, down to the

level of the biochemical reactions involved in the interactions [4]. The dynamics of

the genetic regulatory network can be described using the gene expression vector

X(t,ω) = (x1(t,ω), · · · , (xN(t,ω)) of the N genes composing the network. Then, the

most general system of stochastic differential equations describing the dynamics of

Xt(ω) = X(t,ω) is

dXt = a(t,ω ,Xt)dt + b(t,ω ,Xt)dFt , (1.1)

where a(t,ω ,Xt) is the drift coefficient, b(t,ω ,Xt) is the diffusion coefficient, and Ft =
F(t,ω) is a properly defined random process [5]. This model has high complexity, is

not solvable analytically, and the estimation of its parameters requires multiple and

reliable time-series data. A poor parameter estimation of such a fine-scale model

may lead to erroneous biological interpretations. Thus, an inaccurate fine-scale model

might have a poor predictive power of the nature of the genetic regulation.

On the other hand, if the goal of modeling is to capture the nature of the regula-

tory dynamics and the states reachable by the biological system, then a discrete-time

model is appropriate. Ivanov and Dougherty constructed a discrete genetic regulatory

network model that has predictive power comparable to that of the stochastic differen-

tial equation model under the assumption of complete knowledge of the parameters of

the fine-scale model [5]. The high predictive power of discrete-time models, combined

with their lower complexity, makes them an attractive alternative to the stochastic dif-

ferential equation model. In addition, biologically meaningful properties, such as the

switch-like behavior of many genes, are naturally preserved by a variety of discrete

models of genomic regulation [6], [7], [8], [9].

The discrete-time, discrete-space Markov chain models have been shown to accu-

rately mimic the dynamical behavior of gene networks [10]. The Markov chain model

encompasses several network class models including the most widely adopted Proba-

bilistic Boolean Networks (PBNs) [7] and Dynamic Bayesian Networks (DBNs) [11].

The PBN is a stochastic extension of the standard Boolean network model [6] that

incorporates probabilistic rule-based dependencies between its nodes, i.e., the genes.

The pioneering work of Friedman et al. [12] introduced the use of Bayesian Networks

(BNs) for discovering and representing statistical dependencies between genes. BNs

belong to the family of probabilistic graphical models, where the nodes are consid-

ered as random variables and the graph represents the joint probability distribution of

all the nodes. The network structure is usually determined using a heuristic search,

such as a greedy-hill climbing approach or a Markov chain Monte-Carlo method . The

algorithm learns the maximum likelihood parameters of each network structure, and

computes a score that measures the overall fit of the model to the data, e.g., the Bayes

information criteria. The network corresponding to the highest score is then selected.

An advantage of Bayesian networks is their straightforward incorporation of prior in-

formation via the application of Bayes rule [13]. Specifically, one can augment an
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incomplete data set with the prior information. Their main drawback, is their inabil-

ity to account for feedback loops, which is a common property in genetic networks.

The acyclicity of the Bayesien network appears as its strong limitation when applied

to genetic regulatory networks. Nevertheless, the classic Bayesian network [12], [14]

and its variants, such as probabilistic relational models [15], module networks [16]

and factor graph networks [17], have been widely used for uncovering the network

structure of genetic interactions. In Dynamic Bayesian Networks (DBNs), the vari-

ables depend on time, and hence time provides naturally the direction of causality.

Therefore, DBNs relax the acyclicity constraint by taking into account the evolution

of expression data over time. DBNs are able to capture several other often used mod-

eling frameworks, such as hidden Markov models (and its variants) and Kalman filter

models, as its special cases. Probabilistic Boolean networks and Dynamic Bayesian

networks are related as Lhdesmkia et al. [18] showed that PBNs and DBNs can repre-

sent the same joint probability distribution over their common variables.

The dynamics of Probabilistic Boolean networks and Dynamic Bayesian networks

can be represented using a Markov chain model. A first-order Markov model is char-

acterized by the following joint probability distribution

p(xxx(1), · · · ,xxx(t)) = p(xxx(1))p(xxx(2)|xxx(1)) · · · p(xxx(t)|xxx(t −1)). (1.2)

Markov chain models have been used to describe regulatory relationships between

genes. A detailed derivation of the transition probabilities of a PBN has been provided

in [19]. A finite state homogeneous Markov chain model has been constructed from

microarray data in [10], where it was found that the constructed model produced state

distributions approximating biological observations and exhibited many properties as-

sociated with biological systems. This suggests that models incorporating rule-based

transitions among states have a capacity to mimic biology. The ability of such mod-

els to enhance our understanding of biological regulation should be harnessed into

educated intervention within the network in order to achieve desirable cellular states.

1.3

Intervention in Gene Regulatory Networks

The ultimate objective of gene regulatory network modeling and analysis is to use the

network to design effective intervention strategies for affecting its dynamics in such

a way as to avoid undesirable cellular states or phenotypes. Determining the optimal

gene regulation control policy by a brute-force approach is computationally intractable

and experimentally infeasible. In the Boolean case, i.e., we focus exclusively on up-

regulating and downregulating target genes, in a small regulatory network such as the

7-gene melanoma regulatory network [20], an extensive search procedure amounts to

downregulate and upregulate the expression level of every gene, every pair of genes,

every triple of genes, etc., thus requiring 37 −1 = 2186 laboratory experiments. It has

been shown in [21] that finding a control strategy leading to a desired global state is
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NP-hard in general. This means that there does not exist a polynomial time algorithm

for the problem. NP-hardness, however, does not suggest that practical algorithms to

solve the problem cannot be derived. In fact, many practical algorithms have been

developed for other NP-hard problems in bioinformatics, including multiple sequence

alignment and protein structure prediction [22]. Therefore, it is essential to develop

efficient control strategies, which forcibly alter the genetic network behavior to a de-

sired state. As futuristic gene therapeutic interventions, various control strategies have

been proposed to alter gene interactions in a desirable way. Even though the devel-

oped interventions remain so far as sheer theoretical investigations, such alterations

may be biologically possible by the introduction of a drug or exposure to certain ra-

diations that alter the extant behavior of the cell. In this context, the synergy between

theoretical investigation and experimental validation is essential to establish an effec-

tive plan that will ultimately lead to the development of novel treatment and clinical

decision-making in genetic research.

Current interventions within genetic regulatory networks focused on the framework

of probabilistic Boolean networks with dynamics modeled by a first-order Markov

chain process. To date, genetic interventions can be grouped into three main ap-

proaches: (i) apply the optimal stochastic control framework [23], developed to con-

trol engineered systems, by introducing exogenous control signals in order to mini-

mize the total cost of the system [21, 21, 24–30] (ii) develop heuristic control policies

based on certain dynamic properties of the network [31] [32]; and (iii) alter the state

transition structure of the network and consequently its long-run behavior. This last

type of intervention is also referred to as structural intervention [33, 34].

1.3.1

Optimal Stochastic Control

The optimal stochastic control has been applied in the framework of probabilistic

Boolean networks. Nevertheless, its extension to any finite quantization carries over

in a fairly obvious way. Consider a probabilistic Boolean network with n genes and

a control vector ut ∈ {0,1}n, where the non-zero entries of ut indicate the genes af-

fected by the control at time t. For instance, if the control targets a single gene gc, the

policy takes the form ugc(t) ∈ {0,1}. If the control at time t is on, ugc(t) = 1, then

the expression state for gene gc is flipped. Otherwise, the control gene gc remains

unchanged. Let us denote by xt the network state vector at time t, i.e., xt is the n×1

vector containing the expressions of the n genes in the network. Assuming the state

vector follows a Markov process, the dynamics of the network can be described by the

control-dependent one-step transition probability pi j(u), where

pi j(u) = P(xt+1 = j|xt = i,ut = u). (1.3)

The goal is to derive a policy ut , t = 0,1, · · · in order to minimize the total cost of the

system.
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A cost function ct(xt ,ut) is defined as the cost of applying the control input ut when

the initial state is xt . In addition, let us write the control input ut as a function of the

current state xt , namely,

ut = µt(xt). (1.4)

In a finite-horizon framework, where the control is applied over the interval t =
0,1, · · · ,M − 1, the optimal control policy is obtained as the solution of the follow-

ing optimization problem [24], [27]

min
µ0,µ1,··· ,µM−1

E
[

M−1

∑
t=0

ct(xt , µt(xt)+ cM(xM)
]

(1.5)

subject to pi j(u) = P(xt+1 = j|xt = i,ut = u), where cM(xM) is the terminal cost

associated with state xM. The dynamic programming solution of (1.5) is given by [23]

and [24], as follows

JM(xM) = cM(xM) (1.6)

Jt(xt) = min
ut

[

ct(xt ,ut)+
2n−1

∑
j=0

pxt , j(ut)Jt+1( j)
]

, (1.7)

t = M−1,M−2, · · · ,1,0.

The finite-horizon control, however, may not change the steady-state distribution of

the Markov chain as the network is left uncontrolled after time M.

The infinite-horizon control problem minimizes the cost function

J(xxx0) = lim
M→∞

E
{

M−1

∑
t=0

αt c̃(xxxt , µt(xxxt),wt)
}

, (1.8)

where the discounting factor α ∈ (0,1) is introduced to guarantee convergence of the

limit as the horizon length goes to infinity. The cost c̃(i,u, j) takes into account the

origin, the control, and the destination, since there is no terminal state that is being

separately penalized as in the finite-horizon case. More specifically, c̃(i,u, j) is the

cost of using u at state i and moving to state j. The expected cost c(i,u) is given by

c(i,u) =
2n−1

∑
j=0

pi j(u)c̃(i,u, j). (1.9)

The infinite horizon control problem finds a stationary control policy u∗ that is inde-

pendent of time and minimizes the objective function in (1.8) for each state x0 in the

network, i.e.,

u∗(x0) = argmin
u

J(x0). (1.10)
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Based on the optimal control theory in [23], it is shown in [26] that an optimal station-

ary policy exists and the optimal cost function J∗ satisfies

J∗(i) = min
u

[

c(i,u)+ α
2n−1

∑
j=0

pi j(u)J∗( j)
]

, for all i. (1.11)

Equation (1.11) is know as the Bellman optimality equation, and J∗ is the unique

solution of this equation within the class of bounded functions. An optimal stationary

policy attains the minimum in the right-hand side of the Bellman optimality equation

for all states in the network.

Constrained formulations of the finite and infinite-horizon control have been studied

in [28], [29], [30], where additional constraints on the applied control are considered in

order to mitigate the possibility of detrimental side effects. For instance, intervention

strategies have been designed to limit drug dosage and bound the number of treatments

[28], [29], [30].

Despite its mathematical formulation, there are major drawbacks to the application

of the optimal stochastic control theory to genetic regulatory networks. First, the

framework requires knowledge of the target genes to be used as control variables as

well as the cost function to be minimized. In biology, however, cost functions of

genetic systems are not readily available or assessable, and there are no obvious input

variables able to operate on the system. Even if target genes are used as input control,

they may not be able to control all genes in the network [35]. Second, the optimal

(finite and infinite-horizon) policy is obtained through an iterative procedure that is

computationally expensive O(23n). In addition to these drawbacks, the finite-horizon

control may not change the long-run behavior of the network as it is applied over a

finite-time window. On the other hand, the infinite-horizon control may affect the

long-run behavior of the genetic network at the expense of applying the control over a

very long period of time. In a clinical setting, this translates to submitting the patient

to a life-long treatment.

1.3.2

Heuristic Control Strategies

In an attempt to alleviate the computational burden of the optimal stochastic control,

reduction techniques have been proposed that either delete genes [36], [37], [38] or

states [39]. Deletion of network components, however, reduces its size at the expense

of information loss. Since the finite and infinite-horizon controls are special cases of

the general framework of Markov Decision Processes (MDP) [40], numerous methods

have been developed to circumvent the combinatorial burden of MDPs including the

factored Markov decision problem (FMDP) framework [41]. The FMDP represents

the state transition probabilities in terms of factored models like dynamic Bayesian

networks and decision trees to represent the required families of conditional probabil-

ity distributions. This factored representation yields an algorithm that solves MDPs
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without generally requiring explicit enumeration of the state space. The mapping of

a genetic regulatory network control problem into an FMDP has been worked out

in [36], [38], [42]. However, factored representations still suffer from the curse of

dimensionality in some cases [41]. Pruning techniques, which reduce the dimension-

ality of the problem, are often used during or after the process of solving the FMDP;

thus leading to approximate solutions [36], [38], [42].

Alternative avenues were found in various heuristic interventions, which also rely

on control inputs to externally guide the time evolution of the network toward more

desirable states [32], [31]. In [32], a greedy stationary control policy using mean first

passage times (MFPT) of the Markov chain was proposed. The MFPT control policy

is based on the intuition that the time to reach undesirable states should be increased

or equivalently the time to reach desirable states should be reduced. Assuming a

single control gene, the algorithm selects the control policy for the control gene in

the following manner. Assume that state x is an undesirable state. The algorithm

compares the MFPTs from state x and flipped state x̃ to all desirable states. The control

is switched on if the difference between the MFPTs of state x and the flipped state x̃

to the set of desirable states is greater than a pre-determined threshold. Otherwise,

no control is applied. Intuitively, the algorithm computes which of the two states

x and x̃ reaches the set of desirable states faster and tunes the control accordingly.

Analogously, if state x is desirable, then the control is switched on if the difference

between the MFPTs of state x and the flipped state x̃ to the set of undesirable states is

greater than the threshold. Although the mean first passage time is closely related to

the steady-state distribution, the MFPT control policy does not directly rely on the shift

of the steady-state distribution. Three different greedy control policies, which use the

shift of stationary mass as criterion, have been proposed in [31]. The first control relies

on the fact that most of the stationary mass is distributed in the attractors and derives a

similar policy as the MFPT algorithm for the basins of attraction structure. The second

policy uses the shift of undesirable stationary mass as the criterion of control. The

algorithm compares the total undesirable stationary mass after applying the control to

a state and its flipped version. If both of them are larger than the original undesirable

stationary mass, then no control is applied. Otherwise, the control is applied to the

state with less undesirable stationary mass. The third policy also uses the steady-state

distribution as the criterion but relies on a sequential algorithm that iteratively chooses

states to control, in order to guarantee that the applied policy will lead to the reduction

of the total undesirable stationary mass.

1.3.3

Structural Intervention Strategies

Structural intervention refers to the manipulation of the underlying rules of the net-

work in order to permanently alter its long-run or steady-state behavior [33]. Whereas

the optimal stochastic control (see Section 1.3.1) and its approximations consist of
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policies that recursively alter control genes to optimize certain objective functions,

structural intervention proposes to alter the dynamics governing the network in order

to shift its steady-state mass to favorable cellular states. The motivation is that these

states may represent different phenotypes, or cellular functional states, such as tumori-

genesis, and the control objective is to decrease the probability that the network will

end up in an undesirable set of states [33]. Shmulevich et al. [33] formulated the prob-

lem of altering the steady-state probabilities of certain states in a probabilistic Boolean

network as an optimization problem, which they solved using genetic algorithms. Be-

sides the fact that genetic algorithms do not always guarantee a global optimum, the

proposed solution does not offer any analytical insights into the optimization problem.

An analytical study of the optimal structural intervention was advanced in [43] to in-

vestigate the impact of function perturbations on the network attractor structure. How-

ever, the proposed algorithms, limited to singleton attractors, were rather cumbersome

as they needed to closely investigate the state changes before and after perturbations.

Based on perturbation theory in Markov chains [44], Qian and Dougherty [34] pre-

sented an analysis of steady-state distributions for structurally perturbed PBNs. The

analysis, however, focuses on rank-one perturbations and the extension of the method

to higher-rank perturbations is iterative and computationally very expensive. Given a

set U of undesired states, the 1-bit change in the regulatory rules of a probabilistic

Boolean network is framed as the following optimization problem [34]

argmin
∆pk

∑
i∈U

πk ∑ j ∆p
j

kz ji

1−∑ j ∆p
j

kz jk

, (1.12)

where ∆pk is the difference vector for the kth rows of the initial and perturbed transi-

tion matrices, πk is the kth entry of the initial steady-state distribution, and {zi j} are the

elements of the fundamental matrix of the initial network. The extension to multiple

changes will be more computationally expensive.

1.4

Optimal Perturbation Control of Gene Regulatory Networks

A general solution to the problem of shifting the steady-state mass of gene regulatory

networks, modeled as Markov chains, has been recently advanced in [45], [46]. The

proposed framework, which can be viewed as a generalization of the work in [34], for-

mulates optimal intervention in general-topology gene regulatory networks as a solu-

tion to an inverse perturbation problem and demonstrates that the solution is (i) unique,

(ii) globally optimum, (iii) non-iterative and (iv) can be solved efficiently using stan-

dard convex optimization methods. The perturbation problem addresses the following

question “Given a network whose dynamics can be described by a Markov chain with

a probability transition matrix P0 and given a desired steady-state distribution πd , can

we find a perturbation matrix C that drives the perturbed chain P0 +C to the desired
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Tab. 1.1 A cartoon illustration of the perturbation control method.

Tab. 1.2 The perturbation control for therapeutic intervention in gene regulatory networks can

be thought of as reshaping the attractor landscape of the network to obtain a unique desired

stationary distribution with the entire state-space as its basin of attraction.

steady-state distribution πd?" In this context, the perturbation can be thought of as

reshaping the attractor landscape of the network in order to have a unique desired sta-

tionary distribution, with the entire state-space as its basin of attraction (see Fig. 1.4

for an illustration).

In the sequel, we will need a formal definition of the steady-state or stationary

distribution of a Markov chain [47].

Definition 1.1 A row probability vector µµµ t = (µ1, · · · , µn) is called a stationary dis-

tribution, or a steady-state distribution, for P0 if µµµ tP0 = µµµ t .

Because P0 is stochastic (i.e., its rows sum up to unity), 1 is an eigenvalue of P0, and,

therefore, P0 has at least one stationary distribution. Assume that one of the steady-
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state distributions of P0 is undesirable, e.g., reflects a disease cellular state. The goal of

the (optimal) perturbation control method is to design a (optimal) perturbation matrix

C that forces the network to converge to the desired steady-state distribution starting

from any initial state. In other words, perturbation control alters the dynamical land-

scape of the network by replacing all initial stationary distributions by a unique desir-

able steady-state distribution. We consider the following linear perturbation model,

P = P0 +C, (1.13)

where C is a zero-row sum perturbation matrix. The zero row-sum condition is neces-

sary to ensure that the perturbed matrix P is stochastic.

A Markov chain is called irreducible if its state space is a single communicating

class, i.e., if every state is reachable from every other state. If P is irreducible, it has

a unique stationary distribution πππ and πππ is strictly positive [47]. If P is irreducible

and aperiodic, it is called ergodic. For an ergodic probability transition matrix P, we

have convergence towards the unique, strictly positive, steady-state distribution, in the

following sense,

lim
n→∞

Pn = 1πππt . (1.14)

Equation (1.14) states that for any initial state distribution µµµ0, we have limn→∞ µµµt
0Pn =

πππ t . That is, the network converges to the stationary distribution πππ from any initial

state distribution or the basin of attraction of πππ is the entire state-space. By abuse of

terminology, we will say that P converges towards the steady-state distribution πππ .

In general, a Markov chain has multiple stationary distributions. Even when a

Markov chain has a unique stationary distribution, it can sometimes fail to converge

to it. For instance, consider the matrix

P0 =





0 1 0

0 0 1

1 0 0



 . (1.15)

P0 has a unique stationary distribution πππ0 = [ 1
3
, 1

3
, 1

3
]t . But P0 does not converge

to 111πππt
0. This is because, even though P0 is irreducible, it is periodic.

The convergence towards the desired steady-state distribution is a crucial issue in

the control of genetic regulatory networks. Given that steady-state distributions of

molecular networks reflect cellular phenotypes, we are not only interested in chang-

ing the dynamical landscape of the molecular network, but must also force the network

to converge to the desired steady-state distribution. A necessary and sufficient condi-

tion for a Markov chain to converge towards its steady-state distribution is given in

terms of the Second Largest Eigenvalue Modulus (SLEM) of its probability transition

matrix. It can be shown that a stochastic matrix P converges towards its steady-state

distribution if and only if SLEM(P) < 1, i.e., 1 is a simple eigenvalue of P and all
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other eigenvalues have magnitude strictly less than 1 [48]. It follows that a pertur-

bation matrix, which forces the network to converge towards the desired steady-state

distribution, must satisfy the following four constraints:

(i) πππt
d(P0 +C) = πππ t

d

(ii) C 1 = 000

(iii) P0 +C ≥ 0

(iv) SLEM(P0 +C) < 1

where the inequality in condition (iii) denotes elementwise inequality, i.e., (P0 +
C)i j ≥ 0, for all i, j. Condition (i) states that πππd is a (not necessarily unique) station-

ary distribution of P0 +C. Condition (iv) establishes that the stationary distribution is

unique and the perturbed matrix converges towards it. Conditions (ii) and (iii) ensure

that the perturbed matrix is a proper probability transition matrix, i.e., it is stochastic

and elementwise non-negative.

Let us denote by F the feasible set of perturbation matrices, i.e., F is the set of

matrices C satisfying conditions (i) through (iv) above,

F = {C ∈ R
n×n : πππt

d(P0 +C) = πππt
d , C1 = 000, P0 +C ≥ 0,

SLEM(P0 +C) < 1}. (1.16)

In what follows, we will first investigate the feasibility problem. Specifically, we show

that the feasible set is not empty; hence there exists at least one perturbation, which

forces the network to settle into the desired steady-state distribution.

1.4.1

Feasibility Problem

We observe that C0 = 111πππt
d −P0 ∈ F . In particular, the feasible set F 6= /0, and there

exists at least one feasible perturbation matrix, which forces the network to converge

to the desired steady-state distribution. A full characterization of the feasible set of

perturbations can be obtained using a non-canonical matrix representation of the four

constraints (i)− (iv) [45]. In particular, it can be shown that there are infinitely many

perturbations, which force the network to converge to the desired steady-state distri-

bution [45]. All such perturbations are plausible intervention strategies, and can be

used to drive the network towards the desired steady-state. Subsequently, we can im-

pose additional criteria, which incorporate prior knowledge or specific biological con-

straints; e.g., the potential adverse effects caused by the intervention strategy. In this

work, we will focus on minimization of the change in the structure of the network and

maximization of the convergence rate towards the desired steady-state distribution.

We will therefore investigate the following criteria for optimal perturbation control:
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• Minimize the overall energy of change between the original and perturbed net-

works.

• Increase the rate of convergence of the network to the desired steady-state dis-

tribution.

1.4.2

Optimal Perturbation Control

1.4.2.1 Minimal-energy perturbation control

We define the “energy" of a dynamic network, modeled by a homogeneous Markov

chain, as the Frobenius norm of its probability transition matrix. The Frobenius norm

of matrix C = {ci j}1≤i, j≤n is defined as ‖C‖2
F = ∑n

i=1 ∑n
j=1 c2

i j = Tr (CTC), where

Tr(X) denotes the trace of matrix X . The minimal energy perturbation control can be

framed as the following optimization problem

Minimal-energy perturbation control

Minimize ‖C‖2
F subject to C ∈ F , (1.17)

where F is the feasible set defined in Eq. (1.16). Since the Frobenius norm is a

strictly convex function, there exists at most one solution to the problem in (1.17). In

general, the optimal solution belongs to the closure, F̄ ⊇ F , of the feasible set F ,

where F̄ is given by

F̄ = {C ∈ R
n×n : πππt

d(P0 +C) = πππt
d , C 1 = 000, P0 +C ≥ 0} (1.18)

Although the feasible set F is neither closed nor convex, its closure, F̄ , is a poly-

hedra, and thus is both closed and convex [46], [49]. Therefore, the optimization

problem in (1.17) admits a unique global solution, C∗
E , on the closure of the feasible

set F̄ .

We now show that C∗
E is also the unique optimal solution of the problem in (1.17)

if C∗
E ∈ F .

Proposition 1.2 [48] Let C∗
E = argminC∈F̄ ‖C‖2

F . Then, C∗
E ∈ F̄ . Moreover, if

C∗
E ∈ F , then it is the unique optimal solution of (1.17).

Two important points can be drawn from Proposition 1.2. First, the existence of

the minimal-energy perturbation is independent of the initial network topology. In

particular, the optimal perturbation control applies to general-topology networks, and

guarantees that the controlled network converges to the desired steady-state distribu-

tion. Second, the existence of the minimal-energy perturbation depends on the specific

values of P0 and πππd . In Section 1.5, we show that, for the same network characterized

by a probability transition matrix P0, the minimal-energy perturbation exists for one

choice of the desired steady-state distribution and does not exist for another.
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When the minimal-energy perturbation does not exist, the optimally perturbed net-

work admits the desired distribution as a steady-state distribution but does not con-

verge to it. Mathematically, we have C∗
E ∈ F̄ but C∗

E /∈ F . In this event, we can

approximate the minimal-energy perturbation arbitrarily closely by considering a se-

quence Cn ∈ F , which converges towards C∗
E ∈ F̄ . The following proposition pro-

vides a construction of such a sequence.

Proposition 1.3 [48] Assume that C∗
E /∈ F , i.e., SLEM(P0 +C∗

E ) = 1. Consider the

family of matrices described by

Cn = (1− εn)C
∗
E + εn(111πππt

d −P0), (1.19)

where 0 < εn ≤ 1 is a sequence converging to zero, i.e., limn→∞ εn = 0. Then, we have

1. Cn ∈ F , ∀n ∈ N.

2. limn→∞ Cn = C∗
E

3. ‖Cn‖F > ‖C∗
E‖F , ∀n ∈ N.

Each perturbation Cn can be used to approximate the optimal limiting perturbation,

in the sense that Cn can be chosen with an energy arbitrarily close to the minimum

energy while guaranteeing that the perturbed network converges towards the desired

steady-state distribution.

1.4.2.2 Fastest-convergence rate perturbation control

A clinically-viable optimality criterion is to select the perturbation that yields the

fastest convergence rate to the desired steady-state distribution. We know that the

convergence rate of homogeneous Markov chains is geometric with parameter given

by the second largest eigenvalue modulus (SLEM) of the probability transition ma-

trix [47]. The smaller the SLEM, the faster the Markov chain converges to its steady-

state distribution. The fastest-convergence rate perturbation control can therefore be

casted as the following optimization problem:

Fastest-convergence rate perturbation control

Minimize SLEM (P0 +C) subject to C ∈ F . (1.20)

For a general (non-symmetric) matrix, about the only characterization of the eigenval-

ues is the fact that they are the roots of the characteristic polynomial. Moreover, the

SLEM function is not convex for non-symmetric matrices, and thus the optimization

problem in (1.20) is not convex on the closure F̄ . The optimal fastest-convergence

rate perturbation can, nonetheless, be found by inspection as the following matrix [46]

C∗
R = 1π t

d −P0. (1.21)
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The optimal SLEM (P0 +C∗
R) = 0. That is, the perturbation C∗

R reaches the desired

steady-state distribution in a “single jump".

The fastest-convergence rate perturbation may, however, result in a large energy

deviation between the original and perturbed networks. Next, we will investigate the

tradeoffs between minimal-energy and fastest-convergence rate criteria.

1.4.3

Tradeoffs between minimal-energy and fastest convergence rate perturbation

control

We denote by P∗
E the minimal-energy perturbed probability transition matrix, i.e.,

P∗
E = C∗

E + P0. We consider the family of matrices parameterized by s, along the

line between P∗
E and the fastest-convergent rate probability transition matrix 1πππt

d ,

P(s) = (1− s)P∗
E + s1πππt

d . (1.22)

Equation (1.22) can be thought of as a continuous transformation of P∗
E into 1πππt

d . The

perturbation matrix C(s) = P(s)−P0 is then given by

C(s) = P∗
E −P0 + s(1πππt

d −P∗
E). (1.23)

In order to establish that the family of perturbations {C(s)}0<s≤1 is feasible, i.e.,

C(s) ∈ F for all 0 < s ≤ 1, we need the following Proposition from [46]

Proposition 1.4 [46] We have

SLEM (P(s)) = (1− s) SLEM (P∗
E). (1.24)

Given Proposition 1.4, it is easy to check that C(s) ∈ F for all 0 < s ≤ 1. When

s = 0, we obtain the minimal-energy perturbation, and when s = 1, we obtain the

perturbation that results in the fastest convergence rate towards the desired steady-

state distribution. When 0 < s < 1, we will show that we have an inherent tradeoff

between minimizing the energy and maximizing the convergence rate.

The Frobenius-norm of C(s) is a convex function of s, which reaches its minimum

at s = 0. Therefore, it must be increasing for 0 ≤ s ≤ 1. Consequently, the norm

of the perturbation matrix, and hence the energy deviation between the original and

perturbed networks, increases as a function of s. On the other hand, it follows from

Proposition (1.4) that, when s increases, the SLEM of the perturbed matrix decreases,

and hence the convergence (towards the desired steady-state distribution) is faster.

Therefore, we have an inherent tradeoff between the energy of the perturbation matrix

and the rate of convergence. The faster the convergence towards the desired steady-

state distribution, the higher the energy deviation between the initial and perturbed

networks.

We would, therefore, like to find the optimal tradeoff perturbation matrix. Specif-

ically, we determine the optimal perturbation matrix, which minimizes the SLEM
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while keeping the energy bounded. Such a constraint can be imposed, for instance,

to minimize the side effects due to the rewiring of the original network. The optimal

tradeoff problem is readily written as the following optimization problem:

Minimize SLEM (P0 +C) subject to ‖C‖F ≤ ε , C ∈ F , (1.25)

where ε ≥ ||C∗
E || is a given threshold on the perturbation energy. We consider the

solution to the optimization problem in (1.25) along the line defined in Eq. (1.22). A

local minimum of the optimization problem in (1.25) might not belong to the family

{P(s)}s∈[0,1]. However, the line search seems a reasonable choice, and presents sev-

eral advantages: (i) it provides a closed-form expression of the SLEM of P(s) for all

0 ≤ s ≤ 1; (ii) Contrary to most eigenvalue problems, which are numerically unsta-

ble, the line search has an explicit formula, and hence is numerically stable; (iii) it

describes a linear behavior of the optimal solution.

From the tradeoff between the convergence rate and the energy of the perturba-

tion, it is straightforward to see that the optimal tradeoff perturbation matrix, on the

line defined by Eq. (1.22), is given by C∗ = C(s∗), where s∗ is the unique solution to

||C(s∗)||F = ‖P∗
E −P0 + s∗(1πππt

d −P∗
E)‖F = ε . However, the optimal tradeoff perturba-

tion matrix requires computing the minimal energy perturbed matrix P∗
E . Moreover, if

the bound on the energy ε < ||C∗
E ||F , then we have no solution for the problem (1.25).

Nevertheless, in some cases, we might want to constrain the energy of the perturba-

tion matrix to be no larger than a “small” specified threshold (i.e., ε < ||C∗
E ||F ). We

will show that, in this case, we might not be able to reach the desired steady-state

distribution. Intuitively, if the energy of the perturbation matrix is too small, then we

might not be able to force the network to transition from one steady-state to another.

In this case, we will quantify how far the perturbed steady-state distribution is from

the desired distribution.

Mathematically, the general energy constrained optimization problem can be for-

mulated as follows

Energy-constrained fastest-convergence rate control :

Minimize SLEM (P0 +C) subject to

‖C‖F ≤ ε , C1 = 0, (P0 +C) ≥ 0, SLEM(P0 +C) < 1, (1.26)

where ε ≥ 0. Observe that the optimization problem in (1.26) is different from the

problem in (1.25) in that the bound ε can be any non-negative number (not necessarily

larger than the minimal energy). Therefore, the perturbed network may not converge

to the desired steady-state distribution. In particular, the perturbation matrix C does

not necessarily belong to the feasible set F . We will look for a solution on the line

between P0 and 1π t
d , i.e., we consider the family

Q(s) = (1− s)P0 + s1π t
d , 0 ≤ s ≤ 1. (1.27)
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The perturbation matrix, CQ, is therefore given by

CQ(s) = Q(s)−P0 = s(1π t
d −P0). (1.28)

In particular, the energy of the perturbation ‖CQ‖F = s‖1π t
d −P0‖F can be made arbi-

trarily small by choosing a small s. On the other hand, we also have

SLEM (Q(s)) = (1− s) SLEM (P0). (1.29)

Therefore, the family {Q(s)}0≤s≤1 provides a perturbation matrix with an arbitrarily

small energy, and an explicit formula for the SLEM of the perturbed network as a

function of the SLEM of the original network. The drawback, however, is that Q(s)
does not necessarily converge to the desired steady-state distribution. The following

proposition quantifies the difference between the steady-state distribution of Q(s) and

the desired distribution πd .

Proposition 1.5 [46] The family of matrices Q(s), given in Eq. (1.27), converges

towards a unique steady-state distribution πd(s) given by

πd(s) = s(1− s)(I− (1− s)Pt
0)

−1Pt
0(πd −π0)+ (1− s)π0 + sπd . (1.30)

That is

πd(s)−πd = (1− s)
(

I− s(I− (1− s)Pt
0)

−1Pt
0

)

(π0 −πd). (1.31)

Furthermore, we have

‖πd(s)−πd‖ ≤ A(P0)(1− s)‖π0−πd‖, 0 ≤ s ≤ 1, (1.32)

where A(P0) = 1 + supk≥1 ‖Pk
0‖2, which is finite because Pk

0 has a limit as k → ∞. If

P0 is symmetric, then we have a simpler upper bound given by

‖πd(s)−πd‖ ≤
2(1− s)

2− s
‖π0 −πd‖, 0 ≤ s ≤ 1. (1.33)

From Proposition 1.5, it is clear that when s → 1, πd(s) → πd . If the energy of the

perturbation is constrained to be too small to force the network out of its undesirable

steady-state distribution and into a desirable one, Proposition 1.5 provides an estimate

of the distance between the perturbed steady-state distribution and the desired one.

1.4.4

Robustness of Optimal Perturbation Control

The perturbation control framework assumes knowledge of the probability transition

matrix of the dynamical system modeled as a Markov chain process. In practice, the

probability transition matrix is estimated from the data [10]. Thus, errors made during

data extraction, feature selection, and network inference will propagate and impact
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the actual success of the designed control. An efficient intervention approach must

possess some degree of “robustness" or insensitivity to data and estimation errors.

In this chapter, we show that the minimal-energy perturbation control is robust to

errors in the probability transition matrix, in the sense that the estimation error of

the minimal-energy perturbation is bounded by the estimation error of the probability

transition matrix.

We assume that the estimated probability transition matrix P̂0 is given by

P̂0 = P0 + δP0, (1.34)

where δP0 is a zero-row sum matrix representing noisy measurements, missed data

and estimation errors in P0. The minimal-energy perturbation control can therefore be

written as

Ĉ∗
E = C∗

E + δC∗
E , (1.35)

where C∗
E is the minimal-energy perturbation and δC∗

E is a zero-row sum matrix en-

closing the errors propagated to the perturbation control. The following proposition

demonstrates that the norm of the error in the minimal-energy perturbation is bounded

by the norm of the error in P0.

Proposition 1.6 [50] We have

‖δC∗
E‖F ≤ ‖δP0‖F . (1.36)

The norm of the error in the minimal-energy perturbation matrix is bounded by

the norm of the error in the estimated probability transition matrix of the dynamical

system. In particular, the optimal perturbation control is robust to data and inference

errors.

1.5

Human Melanoma Gene Regulatory Network

The Markov probability transition matrix, describing the dynamics of the network at

the state level, is related to the actual gene network by observing that the probability

law describing the genes’ dynamics can be obtained as the marginal distribution of the

state transition probabilities:

Pr(gi = xi|g1 · · · ,gm) = ∑
x̃i

Pr(g1 = x1, · · · ,gm = xm|g1 · · · ,gm), (1.37)

where x̃i denotes the set of all x j’s except xi; i.e., x̃i = {x1, · · · ,xi−1,xi+1, · · · ,xm}.

In order to capture the dynamics of the gene network, a “wiring rule" is considered

in [10] such that the expression level of each gene at the next time step is predicted

by the expression levels of the genes at the current time step. Consequently, if the
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Tab. 1.3 A diagram of the melanoma gene regulatory network [10]. Thicker lines or closer

genes are used to convey a stronger relationship between the genes. The notion of stronger

relation between genes is used convey a higher probability of influence on their gene ex-

pression levels. For instance, WNT5A and pirin have a strong relationship to each other as

illustrated by their proximity in the diagram and the thickness of the lines connecting between

them.

probability transition matrix P0 is perturbed linearly with a zero-row sum matrix C =
{εi, j}1≤i, j≤n, then the conditional probability of each gene Pr(gi = xi|g1, · · · ,gm) is

perturbed linearly by ∑ j∈J εh j, where h is the index of the state vector [g1, · · · ,gm] and

J is an interval isomorphic to {1,2, · · · , n
l
}. Thus, “small” perturbations εi j ≪ 1 of

the probability transition matrix that satisfy the zero-row sum condition ∑n
j=1 εh j = 0,

lead to “small” perturbations of the genes’ dynamics.

We consider the Human melanoma (skin cancer) gene regulatory network [20]. The

abundance of mRNA for the gene WNT5A was found to be highly discriminating be-

tween cells with properties typically associated with high versus low metastatic com-

petence. Furthermore, it was found that an intervention that blocked the Wnt5a protein

from activating its receptor, the use of an antibody that binds the Wnt5a protein, could

substantially reduce Wnt5A’s ability to induce a metastatic phenotype [20], [27], [34].

This suggests a control strategy that reduces WNT5A’s action in affecting biological

regulation.

A seven-gene probabilistic Boolean network model of the melanoma network con-

taining the genes WNT5A, pirin, S100P, RET1, MART1, HADHB, and STC2 was

derived from microarray expression data in [51]. It is known that microarray experi-

ments are quite noisy [52], [53], [54]. However, we showed that the proposed optimal

perturbation control is robust to data errors. The Human melanoma Boolean network

consists of 27 = 128 states ranging from 00 · · ·0 to 11 · · ·1, where the states are or-

dered as WNT5A, pirin, S100P, RET1, MART1, HADHB, and STC2, with WNT5A

and STC2 denoted by the most significant bit (MSB) and least significant bit (LSB),

respectively.
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Tab. 1.4 (a) The probability transition matrix, P0, of the melanoma gene regulatory network;

(b) The initial steady-state distribution πππ0 (blue) and two different desired steady-state distri-

butions, πππ1
d (green) and πππ2

d (red), which correspond to a downregulation of the gene WNT5A;

(c) The optimal perturbed matrix P∗
1 corresponding to the steady-state distribution πππ1

d (green).

P∗
1 converges to πππ1

d ; (d) The optimal perturbed matrix P∗
2 corresponding to the steady-state

distribution πππ2
d (red). P∗

2 does not converge to πππ2
d .

Because the aim is to downregulate the WNT5A gene, the states from 64 to 127,

which correspond to WNT5A upregulated, should have near zero steady-state mass.

In our simulations, we consider two different desired steady-state distributions πππ1
d

and πππ2
d , shown in Fig. 1.4(b). The first distribution, πππ1

d , assigns probability 10−4 to

the states having WNT5A upregulated and a uniform mass equal to 0.015525 to the

other states. The second distribution, πππ2
d , also assigns a uniform mass of 10−4 to the

undesirable states but assigns random probabilities to the other states such that the

total probability mass is equal to 1. The first and second steady-state distributions

are plotted in green and red, respectively, in Fig. 1.4(b). The corresponding optimal

perturbed transition matrices, P∗
1 and P∗

2 , are depicted in Figs. 1.4(c) and 1.4(d), re-

spectively. The original transition matrix, P0, is shown in Fig. 1.4(a). The matrix plots

are obtained using the function MatrixPlot in MATHEMATICA. They provide a vi-
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Tab. 1.5 SLEM (P0 +Cn) versus εn (blue), and ‖Cn‖F versus εn (red), where Cn is given by Eq.

(1.19).

sual representation of the values of elements in the matrix. The color of entries varies

from white to red corresponding to the values of the entries in the range of 0 to 1. We

have SLEM(P∗
1 ) < 1 and SLEM(P∗

2 ) = 1. Therefore, the optimal perturbed network

with probability transition matrix P∗
1 converges towards the desired stationary distri-

bution πππ1
d , whereas there exists no optimal perturbation, which forces the network to

converge towards πππ2
d . However, from Proposition 1.3, we can design perturbation ma-

trices with energies arbitrarily close to the minimal-energy while forcing the network

to converge towards the desired steady-state distribution.

We now consider the desired steady-state distribution πππ2
d , which corresponds to

SLEM(P0 +C∗) = 1 and hence an optimally perturbed matrix P∗
2 which admits the

desired steady-state distribution as a stationary distribution but does not converge to

it. Proposition 1.3 states that the corresponding sequence of perturbation matrices Cn,

given by Eq. (1.19), correspond to perturbed matrices, which converge towards πππ2
d .

In Fig. 1.5, we plotted SLEM(P0 +Cn) and ‖Cn‖F versus εn. Observe that the SLEM

is a decreasing function, whereas the Frobenius norm increases with εn. In particular,

given a δ > 0, there exists εn > 0 such that ‖Cn −C∗‖ < δ , and Cn ∈ F . Therefore,

Cn can be considered as suboptimal solutions to the perturbation control problem in

(1.17).

1.6

Perspective

We presented a comprehensive framework for optimal perturbation control of general-

topology networks. The aim of perturbation control is to linearly perturb the network

in such a way that it will drive the network away from an undesirable steady-state

distribution and into a desirable one. We proved that there are infinitely many per-
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turbations, which can serve as control strategies and achieve the aim of perturbation

control. We defined the optimal perturbation as the minimum Frobenius-norm per-

turbation that minimizes the energy between the probability transition matrices of the

initial and perturbed networks. We demonstrated that there exists at most one solution

to the optimal perturbation control problem. The existence of an optimal perturbation

control depends both on the initial network dynamics as well as the desired steady-

state distribution. In the event that an optimal perturbation control does not exist,

we constructed a family of suboptimal perturbations, which approximate the optimal

limiting distribution arbitrarily closely. Moreover, we investigated the robustness of

optimal perturbation control to errors in the initial probability transition matrix, and

showed that the proposed perturbation control method is robust to data and inference

errors in the probability transition matrix of the initial network. Finally, we applied

the proposed optimal perturbation control to the Human melanoma gene regulatory

network, where the desired steady-state distribution corresponds to down-regulation

of the WNT5A gene. The aim of perturbation in this case is to force the network

away from its initial steady-state distribution associated with melanoma and into a

benign state corresponding to a normal cell. Steady-state distributions of gene regu-

latory networks have been associated with phenotypes such as cell proliferation and

apoptosis. In conclusion, it is important to emphasize that the proposed perturbation

control framework can be used to perturb any system whose dynamics are modeled

by a homogeneous Markov chain in order to reach a desired steady-state distribution.
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