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Abstract
Brain tumor segmentation refers to the process of pixel-level delineation

of brain tumor structures in medical images, including Magnetic Resonance
Imaging (MRI). Brain segmentation is required for radiotherapy treatment
planning and can improve tumor surveillance. Automatic segmentation of
brain tumors is a challenging problem due to the complex topology of
anatomical structures, noise from image acquisition, heterogeneity of sig-
nals and spatial/structural variations of tumors. Machine Learning (ML)
techniques, including Deep Artificial Neural Networks (DNNs), have shown
significant improvement in classification and segmentation tasks. This chap-
ter provides a comprehensive review of supervised learning models and ar-
chitectures for image segmentation. A particular emphasis will be placed on
U-Net and U-Net with Inception and dilated Inception modules for brain
tumor segmentation. The performance of the proposed models is evaluated
using the multi-modal BRAin Tumor Segmentation (BRATS) benchmark
dataset. Furthermore, we present a new Bayesian deep learning framework,
called extended Variational Density Propagation (exVDP), for quantifying
uncertainty in the decision of DNNs. In particular, exVDP provides a pixel-
level uncertainty map associated with the network’s segmentation output.
Finally, we present clinical retrospective studies in tumor surveillance using
MRI data from patients with glioma and show the advantages accrued from
these methods.
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1 Introduction

The task of brain tumor segmentation, presented in this chapter, is the
confluence of multiple techniques usually employed in diverse fields of sci-
ence such as Digital Image Processing (DIP), Computer Vision (CV), and
Machine Learning (ML). ML algorithms, specifically Deep Artificial Neural
Networks (DNNs), have achieved state-of-the-art accuracy in CV related
tasks, including image segmentation. DNNs are built using large stacks of
individual artificial neurons, each of which performs mathematical opera-
tions of multiplication, summation, and non-linear operations. One of the
key reasons for the success of DNNs is the ability to learn useful features
automatically from the data as opposite to manual selection by expert
humans [1]. Various architectures of DNNs employed for brain tumor seg-
mentation have been discussed along with a case study of one of those
architectures in detail. We discuss a new technique for quantifying uncer-
tainty in the output decision of DNNs. We also present different techniques
for tumor surveillance.

The rest of the chapter is organized as follows: In section 2, we touch
upon the relevant theoretical background of the techniques involved in solv-
ing the tumor segmentation problem. We discuss image segmentation in
general and medical image segmentation, particularly, and the concept of
surveillance in the medical sphere. Section 3 demonstrates brain tumor
segmentation through DNNs. Section 4 presents the particularly suited In-
ception modules in Deep Learning (DL) for brain tumor segmentation. Sec-
tion 5 explains the concept of uncertainty estimation in the decision made
by DNNs. Finally in Section 6, we discuss tumor surveillance techniques
supported by a case study followed by conclusion in Section 7.

2 Theoretical background of the problem

The task of brain tumor segmentation using DNNs inherently involves var-
ious tasks. Therefore, it is imperative to imbibe some basic theoretical
background about these concepts, which leads up to the task-at-hand.

2.1 Image Segmentation

A picture is worth a thousand words. This is because a picture contains
far more information in a few pixels that the human brain can process
simultaneously as compared to the numerous words that can express the
same amount of information sequentially. Thus, understanding the image
and extracting useful information from it bears the central role in the fields
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of DIP and CV. Classification task, in particular, assigns a label or class to
an input image. However, image classification does not provide pixel-level
information, such as the location of objects in an image, objects’ shapes
and boundaries, information about which pixel belongs to which object,
etc. For this purpose, images are segmented by assigning a specific label to
pixels with similar characteristics in an image. Segmentation is a technique
frequently used in DIP and CV fields for extracting useful information from
images [2]. It is the process of partitioning an image into segments (having
sets of pixels) representing various objects in the image. The purpose is to
modify the representation of an image into a more elaborate format, which
is easy to understand anatomically and helpful in extracting meaningful
information for analysis. In usual practice, this process is used to locate
objects of interest and draw boundaries/shapes conforming to these objects
in an image(s). Image segmentation has contributed to many spheres of
human life, ranging from the film-making industry to the field of medicine
[3]. For example, the green screens used in Marvel [4] movies employed
segmentation to extract the foreground objects and place them on different
backgrounds depicting dangerous real-life scenes, Fig. 1(a). An example of
medical image segmentation includes the identification of multiple organs
in the abdomen and thorax, as shown in Fig. 1(b,c). Various techniques
are used for classical image segmentation, e.g., region-based [5](threshold
segmentation, regional growth segmentation), edge-detection [6](Sobel opera-
tor, Laplacian operator), clustering-based [6](K-means), and weak-supervised
learning [7] methods in CNN. Further details on classical image segmen-
tation techniques are beyond the scope of this chapter, so we will confine
ourselves to medical image segmentation, in general, with particular focus
on brain tumor [8] segmentation.

Fig. 1 : Use of Image Segmentation in (a) Marvel movies [9], (b) Medical imaging:
Segmentation of representative organs in thorax and abdomen from CT images [10]
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2.2 Brain Tumor Segmentation

Brain tumors [8] are masses or growths of abnormal cells in the brain,
categorized into primary and secondary or metastatic types. Primary brain
tumors originate from brain cells, whereas secondary tumors metastasize
into the brain from other organs [11]. The most common type of pri-
mary brain tumors are gliomas [12], which arise from brain glial cells, and
can be of Low-Grade (LGG) or High-Grade (HGG) sub-types. HGGs are
aggressively-growing and infiltrative malignant brain tumors, which usu-
ally require surgery or radiotherapy and have poor survival prognosis with
the highest mortality rate and prevalence [13]. Magnetic Resonance Imag-
ing (MRI) is a crucial diagnostic tool for brain tumor analysis, monitor-
ing and surgery planning. Several complimentary 3D MRI modalities such
as T1, T1 with gadolinium-enhancing Contrast (T1C), T2-weighted (T2),
and FLuid-Attenuated Inversion Recovery (FLAIR) are acquired to empha-
size different tissue properties and areas of tumor spread. For example,
in T1C MRI modality, the contrast agent (e.g., gadolinium) emphasizes
hyper-active tumor sub-regions.

Brain tumor segmentation [14] is the technique of labeling tumor pix-
els in an MRI to distinguish them from normal brain tissues and artifacts.
These MRI scans are the representation of the internal structure or function
of the brain’s anatomic region in the form of an array of picture elements
called pixels or voxels. It is a discrete representation resulting from a sam-
pling/reconstruction process that maps numerical values to positions of the
space. The number of pixels used to describe the field-of-view of an acqui-
sition modality is an expression of the detail with which the anatomy or
function can be depicted. Depiction of the numerical value of pixel depends
on the imaging modality, acquisition protocol, reconstruction, and post-
processing. MRI scans come in various file formats and standards but the
six commonly used are: Analyze [15], Neuroimaging Informatics Technology
Initiative (NIfTI) [16], Minc [17], PAR/REC format used by Philips MRI
scanners [18], Nearly Raw Raster Data (NRRD) [19], and Digital imaging
and communications in medicine (Dicom) [20]. A comparison of character-
istics of these formats is shown in Fig. 2. In clinical practice, the process
of separating the tumor pixels from normal brain tissues provides useful
information about existence, growth, diagnosis, surveillance and treatment
planning. The process of manual delineation requires anatomical knowledge
by specially trained persons, whereas such manual practices are expensive,
time-consuming, and are prone to errors due to human limitations. The pro-
cess of automated segmentation of brain tumors from 3D images facilitates
in overcoming these shortcomings [21].
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Fig. 2 : Summary of medical imaging file formats

2.3 Tumor Surveillance

National Cancer Institute (NCI), part of the U.S. National Institutes of
Health (NIH), defines tumor surveillance as closely watching a patient’s con-
dition but not treating it unless there are changes in test results. Surveillance
is also used to find early signs that a disease has come back. It may also be
used for a person who has an increased risk of a disease, such as cancer [22].
The process of surveillance regularly involves (scheduled) medical tests and
examinations to track the growth of the tumor. The term has also been
used in the realm of public health, wherein collective information of a dis-
ease, such as cancer, is recorded in a group of people belonging to a specific
category (ethnic, age, gender, regional, etc.) Active surveillance is extremely
beneficial, especially for patients with low-risk cancer diagnoses. Apart from
the routine biopsy, active surveillance is almost surgically noninvasive. It
helps in the delay of more invasive treatments such as surgical removal of
a tumor, sparing the patients from burdensome side effects and potential
complications for as long as possible. Moreover, by deferring the invasive
treatment to the point when the disease worsens, active surveillance en-
ables cancer patients to maintain a quality of life. A case in point is the
exceptionally beneficial surveillance of low-risk prostate cancer in men. The
reason for this success is that almost 50% of prostate cancer diagnoses are
categorized as low-risk with less possibility of spread, and few cases may
never require advanced forms of treatment. Such cases do not immediately
need to be aggressively treated in the absence of worsened disease while the
specialists keep records of the tumor’s growth over time. Surveillance allows
the specialists to monitor the disease right from the onset, thus leveraging
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them the liberty to analyze the effects and progress of disease and deter-
mine the next course of action [23]. A study by Harvard researchers found
that the aggressiveness of prostate cancer at diagnosis appears to remain
stable over time for most men. If patients had chosen active surveillance,
then this could make them feel more confident in their decision about treat-
ment [24]. Early detection of the tumor through surveillance could assist
both the patients and the specialists in taking more considered decisions
about treatment.

2.4 Deep Learning Segmentation Task

Computer Vision (CV) is the field of computer science that aims to repli-
cate (to some extent) the complex nature of the human vision system into
modern-day computers and machines. It endeavors to enable machines to
visually gaining a high-level understanding of objects in the imagery in its
quest to mimic the humans. A chronological insight in some of the most
active topics of research in computer vision can be found in [25]. Most
attractive topics in today’s CV tasks include object classification (i.e., cat-
egorizing objects in an image), localization (i.e., spatially locating objects
in an image), detection/ recognition and segmentation (i.e., identifying the
category of each pixel in an image) as shown in Fig. 3.

Fig. 3 : Important Computer Vision tasks.

The commonly used classical image segmentation techniques, described
in section 1.1 above have been replaced by their more efficient counterparts
in ML because of the former’s inherently rigid algorithms and the need
for human intervention. Image segmentation is the fundamental component
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of DL, which is part of a broader family of ML. Compared with other
DL algorithms, CNNs have proven to be the more efficient selection for
segmentation tasks from imagery. Image segmentation using CNN involves
feeding the CNN with the desired image as an input and getting the labels
of each pixel, i.e., labeled image as an output. Instead of processing the
complete image at once, CNN deals with a fraction of image conforming
to its filter, convolving and ultimately mapping over the entire image. To
learn more on CNNs, a concise explanation supported by a visualization
can be referred to at [26, 27].

2.5 Motivation

A large population suffers from fatalities caused by cancer, and brain tu-
mors are one of the leading causes of death for cancer patients, especially
children and adolescents. Brain tumors account for one in every 100 can-
cers diagnosed annually in the United States [28]. In 2019, the American
Cancer Society reported that 23,820 new brain cancer cases were discovered
in the United States [29]. One of the most frequent primary brain tumors
is glioma [30], which affects the glial cells of the brain as well as the sur-
rounding tissues. The HGG or GlioBlastoMa (GBM) is the most common
and aggressive type with a median survival rate of one to two years [31].
Although neurosurgery may be the only therapy for many brain tumors
[32], other treatment methods such as radiotherapy and chemotherapy are
also used to destroy the tumor cells that cannot be physically resected
or to slow their growth. Before the treatment through chemotherapy, ra-
diotherapy, or brain surgeries, there is a need for medical practitioners to
confirm the boundaries and regions of the brain tumor and determine where
exactly it is located and the exact affected area. Moreover, all of these inva-
sive treatments face challenging practice conditions because of the structure
and nature of the brain. These conditions make it very difficult to distin-
guish the tumor tissue from normal brain parenchyma for neurosurgeons
based on visual inspection alone [33].

Moreover, such manual-visual practices usually involve a group of clin-
ical experts to define the location and the type of the tumor accurately.
This lesion localization process is laborious, and its quality depends on the
physicians’ experience, skills, slice-by-slice decisions, and the results may
still not be universally accepted among the clinicians. Treatment protocols
for high-grade pediatric brain tumors and general low-grade tumors recom-
mend regular follow-up imaging for up to 10 years. For these longitudinal
studies, a comparison of the current MRI with all prior imaging takes a
very long time, which is practically infeasible. Automated computer-based
segmentation methods present a excellent solution to the challenges men-
tioned above by saving physician’s time and providing reliable and accurate
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results while reducing the diagnosis efforts of surgeons on a single patient
[34]. Brain tumor segmentation is motivated by assessing tumor growth,
treatment responses, computer-based surgery, treatment of radiation ther-
apy, and developing tumor growth models. Thus, the computer-assisted di-
agnostic system is meaningful in medical treatments to reduce the workload
of doctors and to get accurate results.

2.6 Challenges

Segmentation of gliomas in pre-operative MRI scans — conventionally
done by expert board-certified neuro-radiologists and other physicians —
provides quantitative morphological characterization and measurement of
glioma sub-regions. The quantitative analysis task is challenging due to the
high variance in appearance and shape, ambiguous boundaries and imag-
ing artifacts. Although computer-aided techniques have the advantage of
fast speed, consistency in accuracy and immunity to fatigue [35], automatic
segmentation of brain tumors in multi-modal MRI scans is still one of the
most difficult tasks in medical image analysis and applications. Automatic
segmentation involves dealing with a complicated and massive amount of
data, artifacts due to patient’s motion, limited acquisition time, and soft
tissue boundaries that are usually not well defined. Moreover, many classes
of tumors have a variety of irregular shapes, sizes, and image intensities,
especially the surrounding structures of tumors. Numerous attempts have
been made in developing ML algorithms for segmenting normal and ab-
normal brain tissues using MRI images, which will be covered in detail in
section 2. However, feature selection to enable automation is challenging
and requires a combination of computer engineering and medical exper-
tise. Thus, developing fully-automated brain tumor segmentation remains
a challenging task, and a large part of the research community is currently
involved in overcoming these challenges in bringing state-of-the-art ideas in
this field into reality.

3 Brain Tumor Segmentation Using Deep Artificial
Neural Networks

The task of segmenting brain tumor in MRI images has been adopted in
DNNs from the image segmentation task in CV. This section focuses on
these techniques imported in DL from CV and also gives an overview of
the various DL architectures employed on brain MRI datasets.
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3.1 Image Segmentation in Computer Vision Realm

Image segmentation is the task of finding groups/ clusters of pixels that
belong to the same category. It divides an input image into segments to
simplify image analysis. These segments represent objects or parts of ob-
jects and comprise sets of pixels belonging to each part. Practically, the
segmentation sorts pixels into larger components, eliminating the need to
consider individual pixels as units of observation. In statistics, this prob-
lem is known as cluster analysis and is a widely studied area with many
different algorithms [36, 37, 38, 39]. In CV, image segmentation is one of
the oldest and most extensively used problems dates back to the 1970s
[40, 41, 42, 43, 44, 45]. Some of the most extensively known techniques de-
veloped for image segmentation are: (a) active contours [46]; (b) level sets
[47]; (c) region splitting and graph-based merging [48]; (d) mean shift (mode
finding) [49]; (e) normalized cuts (splitting based on pixel similarity met-
rics, as depicted in Fig. 4. The segmentation process itself has two forms,
namely; semantic, and instance segmentation. The former classifies all the
pixels of an image into meaningful or semantically interpretable classes of
objects and is usually referred to as dense prediction. The latter identifies
each instance of each object in an image and differs from semantic seg-
mentation in that it does not categorize every pixel. For example, in Fig.
3, semantic segmentation classified all cars, while instance segmentation
identifies each one individually. Various metrics are used for performance
evaluation of image segmentation including pixel accuracy Pacc, mean ac-
curacy Macc, Intersection-over-Union (IoU) MIU , frequency weighted IoU
FIU and Dice coefficient [50]. Let nij indicate the number of pixels of class
i predicted to belong to class j, where there are ncl different classes, and let
ti =

∑
j nij indicates the number of pixels of class i, then the performance

evaluation terms mentioned above are defined by:

Pacc =

∑
i nii∑
i ti

, (1)

Macc =
1

ncl

∑
i

nii
ti

, (2)

MIU =
1

ncl

∑
i

nii
ti +

∑
j nji − nii

, (3)

FIU =
1∑
k tk

∑
i

tinii
ti +

∑
j nji − nii

, (4)

Dice Similarity Coefficient (DSC) has also been extensively used for
evaluating segmentation algorithms in medical imaging applications [51].
DSC between a predicted binary image P and ground truth binary image
G, both of size N x M is given by:
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DSC(P ,G) = 2

∑N−1
i=0

∑M−1
j=0 PijGij∑N−1

i=0

∑M−1
j=0 Pij +

∑N−1
i=0

∑M−1
j=0 Gij

, (5)

where i and j represent pixel indices for the height N and width M . The
range of DSC is [0, 1], and a higher value of DSC corresponds to a better
match between the predicted image P and the ground truth image G.

The application of image segmentation techniques in the medical imag-
ing field opened a new frontier of knowledge with advances in the areas
of diabetic retinopathy detection, skin cancer classification, brain tumor
segmentation and many more. In this chapter, we will restrict ourselves to
brain tumor segmentation only and look at the various techniques employed
in Artificial Neural Networks (ANNs) for brain tumor segmentation.

Fig. 4 : Few image segmentation techniques in computer vision: (a) active contours
[46]; (b) level sets [47]; (c) region splitting and graph-based merging [48]; (d) mean
shift (mode finding) [49]; (e) normalized cuts (splitting based on pixel similarity
metrics) [52].

3.2 Deep Artificial Neural Networks and Image
Segmentation

DNNs have achieved significant milestones in the CV field. DNNs have
multiple layers between the input and output layers. The basic element
of ANN, i.e., artificial neuron, has multiple inputs that are weighted and
summed up, followed by a transfer function or activation function. Then the
neuron outputs a scalar value. An example of ANN is illustrated in Fig. 5
[53]. Inspired by biological processes, ANNs use shared-weight architecture
where the connectivity pattern between neurons mimics the organization of
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the brain visual cortex [54, 55]. ANNs imitate the concept of receptive fields
where individual cortical neurons respond to stimuli only in a restricted
field of view. Because of their shared-weight architecture and translation
invariance characteristics, ANNs are shift or space-invariant. Due to the
linear operations followed by the non-linear activations, ANNs are capable
of extracting higher-level representative features [56] and can compute any
function [57].

Fig. 5 : (a) artificial neuron model, (b) ANN model.

3.3 DL-based Image Segmentation Architectures

Most prominent DL architectures used by the CV community include Con-
volutional Neural Networks(CNNs), Recurrent Neural Networks (RNNs) and
Long Short Term Memory (LSTM), encoder-decoders, and Generative Ad-
versarial Networks (GANs) [58, 59, 60, 61]. With our focus on CNNs, let
us discuss the three important DL-based image segmentation architectures.

3.3.1 Convolutional Neural Networks

Waibel et al. introduced Convolutional Neural Networks (CNN) that had
weights shared among temporal receptive fields, and it had back-propagation
training for phoneme recognition [62]. LeCun et al. developed a CNN archi-
tecture for document recognition as shown in Fig. 6a [58]. The three basic
components/ layers of a CNN are: 1) convolutional layer, having a kernel
(or filter) of weights convolved with the input image to extract features;
2) nonlinear layer having an element-wise activation function applied to
feature maps; and 3) pooling layer, which reduces spatial resolution and
replaces appropriate neighborhood of a feature map with some statistical
information (mean, max, etc.) [63]. Deep CNNs have performed extremely
well on a wide variety of medical imaging tasks, including diabetic retinopa-
thy detection [64], skin cancer classification [65], and brain tumor segmen-
tation [66, 67, 68, 69, 70]. Some of the most well-known CNN architectures
include AlexNet [71], VGGNet [72], ResNet [73], GoogLeNet [74] which use
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Inception modules architecture (explained in detail in section 3), MobileNet
[75], and DenseNet [76].

3.3.2 Fully Convolutional Networks

Fully Convolutional Networks (FCNs), proposed by Long et al., use convo-
lutional layers to process varying input sizes [50]. It was one of the first DL
models for semantic segmentation. As shown in Fig. 6b, the final output
layer of FCN has a large receptive field and corresponds to the height and
width of the image, while the number of channels corresponds to the num-
ber of classes. The convolutional layers classify every pixel to determine
the context of the image, including the location of objects. FCNs have
been applied to a variety of segmentation problems, such as brain tumor
segmentation [68], instance-aware semantic segmentation [77], skin lesion
segmentation [78], and iris segmentation [79].

Fig. 6 : Basic architecture of (a) CNN, (b) FCN.

3.3.3 Encoder-Decoder Based Models

Encoder-decoder models are inspired by the FCNs, and the most well-
known architecture of these models are U-Net and V-Net [80, 81]. U-Net
was proposed for segmenting biological microscopy images, and it used the
data augmentation technique to learn from the available annotated images
more effectively. The U-Net architecture consists of two parts; a contracting
or down-sampling path to capture the context, and a symmetric expanding
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or up-sampling path for localization of the captured context. The contract-
ing path has FCN-like architecture that extracts features with 3 × 3 con-
volutions while increasing the number of feature maps and reducing their
dimensions. Contrarily, the expanding path carries out deconvolutions by
reducing the number of feature maps while increasing their dimensions. The
feature maps from the contracting path are concatenated to the expanding
path to maintain the integrity of pattern information. Finally, a segmen-
tation map is generated from feature maps by 1× 1 convolution operation
that categorizes each pixel of the input image. U-Net was trained on 30
transmitted light microscopy images, and it won the International Sympo-
sium on Biomedical Imaging (ISBI) cell tracking challenge in 2015 by a
large margin. V-Net [81] is another well-known FCN-based model proposed
for 3D medical image segmentation. It introduced a new objective func-
tion based on the Dice coefficient, which enabled the model to deal with
strong class imbalance between the number of voxels in the foreground and
the background. V-Net was trained end-to-end on MRI volumes depicting
prostate, and it learned to predict segmentation for the whole volume at
once.

3.3.4 Other Deep Learning Models used in Image Segmentation

In addition to the models described in previous sections, there are many
families of DL architectures that are very popular for medical image seg-
mentation. For example, convolutional graphical models (incorporating con-
cepts of Conditional Random Fields (CRFs) and Markov Random Field
(MRFs)), Multi-scale pyramid network models (Feature Pyramid Network
(FPN)) [82], Pyramid Scene Parsing Network (PSPN) [83], Regional CNN
(R-CNN) like Fast R-CNN, Faster R-CNN, and Mask-RCNN, dilated
or atrous convolution (DeepLab Family [84]), RNN-based models (ReNet
[85], ReSeg [86]), Data-Associated RNNs (DA-RNNs) [87]), and attention-
based models (OCNet [88], Expectation-Maximization Attention Network
(EMANet) [89], Criss-Cross attention Network (CCNet) [90]). Minaee et
al. has presented an elaborate review reference of all of these models [63].

3.4 Brain Tumor Segmentation Task Challenge

In this section, we discuss the brain tumor segmentation task in the realm
of DL. Internationally held challenges on medical imaging analysis have
become the standard for validation of the proposed methods. Brain Tumor
Segmentation (BraTS) Challenge [91] is one such challenge that is held in
conjunction with Medical Imaging Computing and Computer-Assisted Inter-
vention (MICCAI) conference [92]. The first challenge workshop was held
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in 2012, followed by yearly benchmarks held with MICCAI conferences.
BraTS challenge evaluates state-of-the-art segmentation methods of brain
tumors in MRI scans. It has a publicly available dataset (with accompa-
nying expert delineations), which is used for benchmarking the submitted
contenders for segmenting multi-institutional pre-operative MRI (mpMRI)
scans having intrinsically heterogeneous (in appearance, shape, and histol-
ogy) brain tumors, namely gliomas. In addition, this challenge also encom-
passes the survival prediction of the patient and evaluates the algorithmic
uncertainty in tumor segmentation. The challenge evaluates segmentation
of tumor sub-regions of Enhancing Tumor (ET), Tumor Core (TC), and
Whole Tumor (WT) as shown in Fig. 7. ET are regions of hyper-intensity
in T1C when compared to T1, and TC is the bulk of the tumor, that is
typically resected. The TC involves ET and the necrotic (fluid-filled) and
the non-enhancing (solid) parts of the tumor. WT is the complete extent
of the disease, as it is comprised of the TC and the peritumoral EDema
(ED), depicted by FLAIR. The dataset for the 2018 challenge consisted
of a total of 542 patients, with 285 for training, 66 for validation, and
191 for testing scans having 210 High-Grade Glioma (HGG) and 75 Low-
Grade Glioma (LGG) patients with annotations approved from experienced
neuro-radiologists through a hierarchical majority vote. The data consists
of clinically-acquired 3T multi-contrast MR scans from around 19 institu-
tions, with ground truth labels by expert board-certified neuro-radiologists
in NIfTI files (.nii.gz). Dice coefficient and Hausdorff distance (95%) have
been used as evaluation schemes. Apart from these, Sensitivity and Speci-
ficity are also used as metrics. An assessment of state-of-the-art ML meth-
ods used for brain tumor segmentation under the BraTS challenge from the
period 2012-2018 has been compiled by Bakas et al. [93].

Fig. 7 : Image patches with annotated tumor (glioma) sub-regions. (A) Whole tumor
(yellow) visible in T2-FLAIR, (B) Tumor core (orange) visible in T2, (C) Enhancing
tumor (blue) surrounding the cystic/necrotic core (green) visible in T1c, (D) Com-
bined segmentations [94].
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4 Inception Modules in Brain Tumor Segmentation

After assimilating the brain tumor segmentation problem using DNNs, let
us now look at one of the architectures that has appreciable accuracy in
solving this problem. This architecture is based on U-Net with Inception
modules.

4.1 Brain Tumor Segmentation Using Inception and
Dilated Inception modules

Cahall et al. proposed an image segmentation framework for tumor de-
lineation that benefits from two state-of-the-art ML architectures in CV:
Inception modules and U-Net [70, 74, 80]. This new framework includes two
learning regimes, i.e., learning to segment intra-tumoral structures (necrotic
and non-enhancing tumor core, peritumoral edema, and enhancing tumor)
or learning to segment glioma sub-regions (WT, TC, ET). Both learning
regimes are described in section 2.4 above. These learning regimes were
incorporated into a modified loss function based on the DSC described in
section 2.1 equ. 5 above.

U-Net was originally developed for cell tracking. However, it has been
applied recently to other medical segmentation tasks, such as, brain vessel
segmentation [95], brain tumor segmentation [96], and retinal segmentation
[97]. To tackle different medical imaging segmentation problems, variations
and extensions of U-Net have also been proposed, such as 3D U-Net [98,
99], H-DenseUNet [100], RIC-UNet [101], and Bayesian U-Net [102]. Cahall
et al. used a cascade learning approach in which three different models
were used first to learn the WT, then TC, and finally, ET resulting in a
proposed end-to-end implementation for all tumor sub-types [70].

4.2 BraTS Dataset and Pre-processing

We used BraTS 2018 dataset, described in section 2.4, for experiments
[94, 51, 103, 93]. The dataset contains four sequences for each patient’s
MRI (T1, T1c, T2, and FLAIR) images. It also contains ground truth in
the form of pixel-level manual segmentation markings for three intratu-
moral structures: necrotic and non-enhancing tumor core (labeled as 1),
peritumoral edema (labeled as 2), and enhancing tumor (labeled as 4). The
glioma sub-regions have been defined as WT having all three intratumoral
structures (labeled as (1 ∪ 2 ∪ 4)), TC containing all except peritumoral
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edema (labeled as (1∪ 4)), and ET (labeled as 4). Different sequences pro-
vide complementary information for identifying the intratumoral structures:

• FLAIR highlights the peritumoral edema.
• T1c distinguishes the ET.
• T2 highlights the necrotic and non-enhancing tumor core.

BraTS images have been pre-processed for skull-stripping, re-sampled
to an isotropic 1 mm3 resolution, and co-registered all four modalities of
each patient. Cahall et al. [70] performed additional pre-processing in the
following order:

1. Discard excess background pixels from images by obtaining the bound-
ing box of the brain and extracting the selected portion, effectively
zooming on the brain.

2. Re-size the cropped image to 128× 128 pixels.
3. Drop the images having no tumor regions in the ground truth segmen-

tation.
4. Apply intensity windowing function to each image such that the lowest

1% and the highest 99% pixels were mapped to 0 and 255, respectively.
5. Normalize images by subtracting the mean and dividing by the standard

deviation of the dataset.

4.3 Deep Artificial Neural Network Architectures

In medical imaging, semantic segmentation’s accuracy depends on the abil-
ity to extract the local structural as well as global contextual information
from MRI scans while training the model. For this reason, many multi-path
architectures in the context of medical imaging have been proposed, and
all of them extract the structural and contextual information from input
data at multiple scales [98, 104, 105]. This features extraction-aggregation
concept at various scales was also done in Inception modules [74]. However,
the feature extraction mechanism in the Inception module is different from
the multi-path architectures. The Inception module applies filters of various
sizes at each layer and concatenates resulting feature maps [74]. Cahall et
al. [70] proposed a modified version of Dilated Residual Inception (DRI)
[106] based on U-Net and factorized convolution Inception module [80, 74].
DRI’s special blocks were inspired from Inception module [107] and dilated
convolution [108]. DRI has fewer parameters than the original Inception
module and employs residual connections to alleviate the vanishing gradi-
ents problem at a faster convergence rate [73]. MultiResUNet combined a
U-Net with residual Inception modules for multi-scale feature extraction,
applying the architecture to several multimodal medical imaging datasets
[109]. Integration of Inception modules with U-Net has been evaluated for
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left atrial segmentation [110], liver and tumor segmentation [111], and brain
tumor segmentation [112].

4.3.1 Inception Module

The convolutional layer in the proposed Inception module [70] in the orig-
inal U-Net was replaced with an Inception module having multiple sets of
3 × 3 convolutions, 1 × 1 convolutions, 3 × 3 max pooling, and cascaded
3× 3 convolutions as depicted in Fig. 8(B). At each layer on the contract-
ing path, the height and width of the feature maps are halved, and the
depth is doubled until reaching the bottleneck, i.e., the center of the U.
On the corresponding expanding path at each layer, the height and width
of feature maps are doubled, and the depth is halved until having the
segmentation mask as the output. As with U-Net, feature maps generated
on the contracting path are concatenated to the corresponding expanding
path. The authors employed a Rectified Linear Unit (ReLU) as the acti-
vation function, with batch normalization [113] in each Inception module.
The architecture setting receives an input image of size N ×M × D and
outputs an N×M×K tensor where N = M = 128 pixels, D = 4 represents
the four MRI modalities (T1, T1c, T2, FLAIR), and K = 3 represents the
segmentation classes (intra-tumoral structures or glioma sub-regions). The
output image of K slices is a binary image representing the predicted seg-
ments for the ith class (0 ≤ i ≤ K − 1). Pixel-wise activation functions
(sigmoid [114] for glioma and softmax [114] for intra-tumoral structures)
are used to generate the output binary images.

4.3.2 Dilated Inception U-Net

Another useful architecture, called Dilated Inception U-Net (DIU-Net), in-
tegrates dilated or astrous convolutions [84] and Inception modules in the
U-Net architecture [115] as shown in Fig. 8(A). Here, each dilated Incep-
tion module consists of three 1 × 1 convolutional operations, followed by
one l-dilated convolutional filter (with l = 1, 2, 3), as illustrated in Fig.
8(C). The 1×1 convolutional filters perform dimensionality reduction, while
three l-dilated convolutional filters each of size 3×3 implement atrous con-
volutions. In dilated convolutions, an image I of size m× n and a discrete
convolutional filter w of size k × k are convolved by:

(I ∗ w)(p) =
∑
s

I [p+ s]w [s] . (6)

Simple convolution operation of equ. 6 can be generalized to l-dilated
convolution (*l) as [108]:
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(I ∗l w)(p) =
∑
s

I [p+ ls]w [s] . (7)

For l = 1, we get the simple convolutional operation of equ. 6. For l >
1, l-1 zeroes are inserted between each filter element, creating a scaled and
sparse filter of size ks × ks, where ks is defined by:

ks = k + (k − 1)(l − 1), (8)

= l(k − 1) + 1. (9)

The scaling s increases the receptive field of the filter by a factor ks
k .

ks
k

=
k + (k − 1)(l − 1)

k
, (10)

= l +

(
−l + 1

k

)
. (11)

The receptive field of the filter increases linearly with l, while the number
of elements (k × k) remains fixed.

4.3.3 Modified DSC as Objective/Loss Function

Cahall et al. used a modified version of DSC (equ. 5) as an objective/ loss
function, after incorporating three changes: (1) the sign of DSC was changed
to convert it into a minimization problem, (2) a log function was introduced,
and (3) a new parameter γ was used to cater for extremely large values of
the loss function [70]. From initial experiments, it was empirically observed
that γ = 100 provided the best segmentation performance. Modified DSC
as a loss function for a binary class (tumor or not tumor) and multi-class
(for K classes) are given in the following two equations:

LDSC(P ,G) = −log

[
2

∑N−1
i=0

∑M−1
j=0 PijGij + γ∑N−1

i=0

∑M−1
j=0 Pij +

∑N−1
i=0

∑M−1
j=0 Gij + γ

]
, (12)

LDSC(P ,G) = −log

[
1

K

K−1∑
i=0

DSC(Pi,Gi)

]
. (13)
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Fig. 8 : (A) DIU-Net architecture with contracting and expanding path and a bot-
tleneck in the middle. On the contracting path, the multiplication by 3 indicates three
l-dilated convolutional filters. On expanding path, concatenation of feature maps from
contracting path doubles the depth of output feature map, hence the multiplication
by 6. (B) Inception module architecture, (C) Dilated Inception module with three
l-dilated convolutional filters and 1x1 dimensional reduction convolution filters.

4.4 Experimental Setup and Results

Four different models were trained by Cahall et al. [70], two for the U-Net
architecture (intra-tumoral structures and glioma sub-regions), and two for
the U-Net with Inception module (intra-tumoral structures and glioma sub-
regions). All four models were trained using k -fold cross-validation on the
dataset that was randomly split into k mutually exclusive subsets of equal
or near-equal size. Each algorithm was run k times subsequently, and each
time one of the k splits was taken as a validation subset and the rest as the
training subset. Stochastic gradient descent [116] with an adaptive moment
estimator (Adam[116]) was used for training all models and their variations
[117]. With a batch size of 64 and 100 epochs, the learning rate was ini-
tially set to 10−4, which was exponentially decayed every 10 epochs. All
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learnable parameters (weights and biases) were initialized based on the He
initialization method [118]. Keras [119] Application Programming Interface
(API) with TensorFlow [120] backend was used for implementation, and
all models were trained on a Google Cloud Compute [121] instance with 4
NVIDIA TESLA P100 Graphical Processing Units (GPUs).

4.4.1 Results from Inception Modules

For intra-tumoral structures, the addition of Inception modules to U-Net
resulted in statistically significant improvements in WT (DSC improved
from 0.903 to 0.925, p < 0.001), TC (0.938 to 0.952, p < 0.001), and
ET (0.937 to 0.948, p <0.001). For glioma sub-regions, significant improve-
ments were also noticed in WT (0.898 to 0.918, p < 0.001), TC (0.942 to
0.951, p = 0.001), and ET (0.942 to 0.948, p = 0.002). Changing the ob-
jective from intra-tumoral structures to glioma sub-regions learning in the
U-Net resulted in no difference in performance for WT (0.903 to 0.898, p =
0.307), TC (0.938 to 0.942, p = 0.284), and ET (0.937 to 0.942, p = 0.098).
However, U-Net with Inception modules, which learned the intra-tumoral
structures outperformed those which learned glioma sub-regions in WT
(0.918 to 0.925, p = 0.007), but there was no difference in the performance
for TC (0.952 to 0.951, p = 0.597) and ET (0.948 to 0.948, p = 0.402).
This implies that integrating Inception modules in the U-Net architecture
resulted in statistically significant improvement in tumor segmentation per-
formance that was quantified using k -fold cross-validation (p < 0.05 for all
three glioma sub-regions). The improvement in the validation accuracy can
be attributed to the multiple convolutional filters of different sizes employed
in each Inception module. These filters are able to capture and retain con-
textual information at multiple scales during the learning process, both in
the contracting as well as expanding paths. We also consider that the im-
provement in the tumor segmentation accuracy is linked to the new loss
function based on the modified DSC (equ. 13). DSC scores for Inception
modules are comparable or exceed the results of No New-Net [122], which
achieved second place in the BraTS 2018 competition, and the ensemble
approach proposed in [122, 123, 124].

4.4.2 Results from DIU-Net

DIU-Net showed significant improvement in the WT sub-region with an
increase in the Dice score from 0.925 to 0.931 with p < 0.05. For the
TC sub-region, the Dice score improved from 0.952 to 0.957 with p < 0.05.
However, for the ET, the change was not statistically significant, p = 0.114.
Interestingly, DIU-Net is computationally more efficient. DIU-Net has 2.5
million fewer parameters than U-Net with Inception modules. In contrast,
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DIU-Net achieves significantly better results at a lesser computational cost
(15% fewer parameters). The Dice scores for each glioma sub-region are
comparable or exceed the results of other recently published architectures,
including No New-Net, SDResU-Net and the ensemble approach proposed
in [122, 123, 124].

5 Uncertainty Estimation in Brain Tumor Segmentation

As mentioned before, accurate segmentation of brain tumors is crucial for
treatment planning and follow-up evaluations. Furthermore, the robustness
and trustworthiness of the segmentation results are of particular interest
in medical imaging and in the clinic for diagnosis and prognosis due to
their link to human health. In this section, we propose a new DL frame-
work, named extended Variational Density Propagation (exVDP), that can
quantify uncertainty in the output decision [125]. In exVDP, we adopt the
Variational Inference (VI) [126] framework and propagate the first two mo-
ments of the variational distribution through all ANN’s layers (convolution,
max-pooling and fully-connected) and non-linearities. We use the first-order
Taylor series linearization [127] to propagate the mean and covariance of
the variational distribution through the non-linear activation functions in
the DNNs.

We consider a CNN with a total of C convolutional layers and L fully-
connected layers, where the convolutional kernels and the weights of the
fully-connected layers are random tensors. A non-linear activation function
follows every convolutional and fully-connected layer. Moreover, the ANN
contains max-pooling layers. The ANN’s weights (and biases) are repre-

sented by Ω = {{{W(kc)}Kckc=1}Cc=1, {W(l)}Ll=1}, where {{W(kc)}Kckc=1}Cc=1

is the set of Kc kernels in the cth convolutional layer, and {W(l)}Ll=1 is
the set of weights in L fully-connected layers. We consider input tensor
X ∈ RI1×I2×K , where I1, I2, and K represent image height, width, and
number of channels, respectively.

5.1 Variational Learning

We introduce a prior distribution over ANN weights, Ω ∼ p(Ω). We assume
that convolutional kernels are independent of each other within a layer as
well as across different layers. This independence assumption is desirable
as it promotes convolutional kernels to extract uncorrelated features within
and across layers. Given the training data D = {X(i), y(i)}Ni=1 and the prior
p(Ω), the posterior p(Ω|D) is given through the Bayes’ rule. However,
p(Ω|D) is typically intractable. VI methods approximate the true posterior
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p(Ω|D) with a simpler parametrized variational distribution qφ(Ω). The
optimal parameters of the variational posterior φ∗ are estimated by mini-
mizing the Kullback-Leibler (KL) divergence between the approximate and
the true posterior [128, 126].

φ∗ = argmin KL [qφ(Ω)‖p(Ω|D)]

= argmin

∫
qφ(Ω) log

qφ(Ω)

p(Ω)p(D|Ω)
dΩ

= argmin KL [qφ(Ω)‖p(Ω]− Eqφ(Ω) {log p(D|Ω)} .

(14)

The optimization objective is given by the Evidence Lower BOund (ELBO)
L(φ; y|X):

L(φ; y|X) = Eqφ(Ω)(log p(y|X, Ω))−KL(qφ(Ω‖p(Ω)). (15)

ELBO consists of two parts, the expected log-likelihood of the training data
given the weights and a regularization term, which can be re-written as:

KL(qφ(Ω‖p(Ω) =

C∑
c=1

Kc∑
kc=1

KL(qφ(W(kc))‖p(W(kc)))−
L∑
l=1

KL(qφ(W(l))‖p(W(l))).

(16)

5.2 Variational Density Propagation

We propose to approximate the true unknown posterior p(Ω|D) by a vari-
ational distribution qφ(Ω). We have defined Gaussian distribution as a
prior over convolutional kernels and weights of the fully-connected layers
[125]. The task is now to propagate the moments of the variational distribu-
tion qφ(Ω) through various layers, i.e., convolution, activation, max-pooling,
fully-connected, and softmax. It is important to note that in our settings,
the convolutional kernels, resulting activations, extracted features, logits,
and output of the softmax function are all random variables. Therefore,
instead of performing algebraic operations on real numbers, we are con-
fronted with operations on random variables, including (1) multiplication
of a random variable with a constant, (2) multiplication of two random
variables, and (3) non-linear transformations [125] operating over random
variables. As a result of the multiplication of two Gaussian random variables
[127] or non-linear transformation, the resulting random variables may not
have Gaussian distribution [127]. Our goal is to propagate the mean and
covariance of the variational distribution and later obtain the mean and
covariance of the predictive distribution, p(y|X,D). The mean of p(y|X,D)
represents the ANN’s prediction, while the covariance matrix reflects the
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uncertainty associated with the output decision. An illustration of the pro-
posed variational density propagation CNN with one convolutional layer,
one max-pooling and one fully-connected layer is shown in Fig. (9).

Fig. 9 A schematic layout of the proposed variational density propagation CNN is
presented. We show the propagation of the mean and covariance of the variational
distribution qφ(Ω) through multiple layers of a CNN.

5.3 Extended Variational Density Propagation

We start with our mathematical results for the propagation of the mean
and covariance of the variational distribution qφ(Ω) through convolutional
layers, activation functions, max-pooling, fully-connected layers, and the
softmax function. We use first-order Taylor series for the approximation of
the first two moments (mean and covariance) after a non-linear activation
function and refer to this method as the exVDP [125].

5.3.1 First convolutional layer

The convolution operation between a set of kernels and the input tensor
is formulated as a matrix-vector multiplication. We first form sub-tensors
Xi:i+r1−1,j:j+r2−1 from the input tensor X, having the same size as the

kernels W(kc) ∈ Rr1×r2×K . These sub-tensors are subsequently vectorized
and arranged as the rows of a matrix X̃. Thus, convolving X with the kthc
kernel W(kc) is equivalent to the multiplication of X̃ with vec(W(kc)). Let

z(kc) = X ∗W(kc) = X̃× vec(W(kc)), (17)

where ∗ denotes the convolution operation and × is a regular matrix-vector
multiplication.

We have defined a multivariate Gaussian distribution over the vectorized
convolutional kernels, i.e. vec(W(kc)) ∼ N

(
m(kc), Σ(kc)

)
. It follows that:
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z(ks) ∼ N
(
µz(kc) = X̃m(kc), Σz(kc) = X̃Σ(kc)X̃T

)
. (18)

5.3.2 Non-linear activation function

We approximate the mean and covariance after the non-linear activation
function ψ using the first-order Taylor series approximation [127]). Let

g
(kc)
i = ψ[z

(kc)
i ] be the element-wise ith output of ψ. We have µg(kc) and

Σg(kc) :

µ
g
(kc)
i
≈ ψ(µ

z
(kc)
i

),

Σg(kc) ≈


σ2

z
(kc)
i

(
dψ(µ

z
(kc)
i

)

dz
(kc)
i

)2

, if i = j.

σ
z
(kc)
i z

(kc)
j

(
dψ(µ

z
(kc)
i

)

dz
(kc)
i

)(dψ(µ
z
(kc)
j

)

dz
(kc)
j

)
, if i 6= j.

(19)

5.3.3 Max-pooling layer

For the max-pooling, µp(kc) = pool(µg(kc)) and Σp(kc) = co-pool(Σg(kc)),
where pool represents the max-pooling operation on the mean and co-pool
represents down-sampling the covariance, i.e., we keep only the rows and
columns of Σg(kc) corresponding to the pooled mean elements.

5.3.4 Flattening operation

The output tensor P of the max-pooling layer is vectorized to form the in-

put vector b of the fully-connected layer such that, b =
[
p(1)T , · · · , p(Kc)T

]T
.

The mean and covariance matrix of b are given by:

µb =

 µp(1)

...
µp(Kc)

 , Σb =

Σp(1) · · · 0
...

. . .
...

0 · · · Σp(Kc)

 . (20)

5.3.5 Fully-connected layer

Let wh ∼ N (mh, Σh) be hth weight vector of the fully-connected layer,
where h = 1, · · · ,H, and H is the number of output neurons. We note that
fh is the product of two independent random vectors b and wh. Let f be
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the output vector of the fully-connected layer, then the elements of µf and
Σf are derived by the following proposition:

Proposition 1.

µfh = mT
hµb,

Σf =

{
tr
(
ΣhΣb

)
+ mT

hΣbmh + µTbΣhµb,

mT
h1

Σbmh2 , h1 6= h2,

(21)

where h1,h2 = 1, · · · ,H represent any two weight vectors in the fully-
connected layer.

5.3.6 Softmax function

Let the output of the ANN be y = ϕ(f), where ϕ is the softmax function.
Using the first-order Taylor series approximation, the mean and covariance
of the output vector, i.e., µy and Σy, are derived as follows [129]:

µy ≈ ϕ(µf ); Σy ≈ JϕΣfJ
T
ϕ , (22)

where Jϕ is the Jacobian matrix of ϕ with respect to f evaluated at
µf [129].

5.3.7 Objective function

Assuming a diagonal covariance matrix for the variational posterior distri-
bution, N independently and identically distributed (iid) data points and
using M Monte Carlo samples to approximate the expectation by a sum-
mation, the expected log-likelihood in the ELBO objective function is given
as follows:

Eqφ(Ω)(log p(y|X, Ω)) ≈

− NH

2
log(2π)− 1

M

M∑
m=1

[N
2

log(|Σy|) +
1

2

N∑
i=1

(y(i) − µ(m)
y )T (Σ(m)

y )−1(y(i) − µ(m)
y )

]
(23)

The regularization term in (16) is the KL-divergence between two mul-
tivariate Gaussian distributions [127]. If we have a CNN with one convolu-
tional layer followed by the activation function, one max-pooling and one
fully-connected layer, thus the regularization term in the ELBO objective
function is derived as follows:
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KL(qφ(Ω‖p(Ω) =

1

2

K1∑
k=1

(
r1r2K σ2

r1,k σ
2
r2,k σ

2
K,k + ‖M(k)‖2F − r1r2K − r1r2K

(
log(σ2

r1,k σ
2
r2,k σ

2
K,k)

))

+
1

2

H∑
h=1

(
nf σ

2
h + ‖mh‖2F − nf − nf log σ2

h

)
,

(24)

where (r1 × r2 ×K) is the size of the kernels, K1 is the number of kernels
in the convolutional layer, H is the number of output neurons and nf is
the length of the weight vector wh in the fully-connected layer.

5.3.8 Back-propagation

During back-propagation, we compute the gradient of the objective function
∇φL(φ;D) with respect to the variational parameters:

φ =

{{{
M(kc),σ2

r1,kc ,σ
2
r2,kc ,σ

2
Kc−1,kc

}Kc
kc=1

}C
c=1

,
{
mh,σ2

h

}H
h=1

}
, (25)

where (r1 × r2 × Kc−1) is the size of the kthc kernel, Kc is the number
of kernels in the cth convolutional layer and H is the number of output
neurons. We use ∇φL(φ;D) to update our parameters φ using the gradient
descent update rule.

5.4 Application to Brain Tumor Segmentation in MRI
Images

The performance of the proposed exVDP model on the HGG brain tumor
segmentation task using the BraTS 2015 dataset has been evaluated. The
dataset consists of 5 classes, i.e. class 0 - normal tissue, class 1 - necrosis,
class 2 - edema, class 3 - non-enhancing, and class 4 - enhancing tumor
[94]. The evaluation of segmentation is based on three regions, (1) complete
tumor (1, 2, 3 and 4), (2) tumor core (1, 3 and 4), and (3) enhancing tumor
(class 4) [94].

Brain tumor segmentation has been formulated as a multi-class classifi-
cation problem by randomly sampling patches from four MRI modalities,
i.e., FLAIR, T1, T2 and T1c [130]. The label of each patch has been man-
ually set to the label of the center pixel. The sampled patches are balanced
over all classes, and a total of 100, 000 patches of size 33 × 33 are ex-
tracted from the BraTS data of 20 patients. These patches are divided into
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training and validation bins (95% for training and 5% for validation). The
test set included randomly sampled 372 images, i.e., 43, 264 patches, from
each of the four modalities. The proposed exVDP model is compared with
a deterministic CNN, presented in [130]. The following CNN architecture
has been used: six convolution layers (all kernels were 3×3, and we had 32,
32, 64, 64, 128, 128 kernels in layers one to six, respectively, followed by
ReLU activation), two max-pooling layers, and a fully-connected layer. The
architecture is shown in Table (1).

DSC has been used to evaluate the segmentation results before and
after adding Gaussian noise or targeted adversarial attack (targeted class is
class 3, i.e., non-enhancing tumor). The evaluation of the proposed model
on the BraTS dataset is done without doing any pre-processing or data
augmentation techniques.

In Table (2), DSC values for three test cases have been presented, i.e.,
noise-free, Gaussian, and adversarial noise. We note that the DSC values of
the proposed model are significantly higher than that of the deterministic
CNN for all cases in general and adversarial noise in particular. Fig. (10)
shows segmentation results for exVDP and a deterministic CNN for a repre-
sentative HGG image (with and without adversarial noise). The uncertainty
map associated with each segmentation is also presented for the exVDP
model. The uncertainty map allows physicians to review the segmentation
results quickly and, if needed, make corrections of tumor boundaries in the
regions where the uncertainty is high.

Table 1 Architecture of the two models, i.e., exVDP and deterministic CNN

Layer Type Filter size HGG stride No. kernels FC units Input

1 Conv. 3×3 1×1 32 - 33×33×4

2 Conv. 3×3 1×1 32 - 33×33×32

3 Conv. 3×3 1×1 64 - 33×33×32

4 Max-pool. 3×3 2×2 - - 33×33×64

5 Conv. 3×3 1×1 64 - 16×16×64

6 Conv. 3×3 1×1 128 - 16×16×64

7 Conv. 3×3 1×1 128 - 16×16×128

8 Max-pool. 3×3 2×2 - - 16×16×128

9 FC - - - 5 6272
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Table 2 Segmentation results measured using the DSC for the BraTS test dataset

Method Tumor Regions No noise Adversarial noise Gaussian noise

Complete 80.8% 77.4% 80.6%

exVDP Core 74.6% 72.6% 74.5%

Enhancing 74.0% 69.8% 73.9%

Complete 78.0% 43.4% 66.9%

Deterministic CNN Core 65.0% 47.1% 51.9%

Enhancing 75.0% 43.9% 55.7%

6 Tumor Surveillance

As defined in section 2.3, tumor surveillance is the process of monitoring
patient’s tumor in longitudinal studies to establish severity of the disease
and planning treatment accordingly. It helps identifying early signs of tumor
occurrence which is critical especially in case of the cancerous tumors.

6.1 Rationale for Tumor Surveillance

Temporal medical imaging data is widely used in oncology as well as radi-
ology for visual comparison of disease over an extended period of time. The
2D medical images (CT or MRI scans) are examined by the physicians to
diagnose the disease in 4D (3D tumor volume over time) usually referred
to as change in volume over time. A detection at an earlier stage of disease
is more responsive to treatment, resulting in improved outcomes for the
patient. Biological characteristics of various tumor types such as growth,
location, and patterns of local as well as metastatic disease are the basis
for surveillance scheduling, protocols, and selection of imaging techniques.
Usually low-risk tumor is subjected to active surveillance as part of a pa-
tient’s treatment plan and an ideal candidate for active surveillance is the
one which has one or more of these conditions: (1) disease has not spread,
(2) tumor is small and growing slowly, or (3) patient exhibits no symptoms
of specific cancer. The data from active surveillance is also used to look
for trends and patterns over time in certain regions/ groups of people, and
to see if preventive measures are making a difference among the sample
population. Apart from brain cancer, active surveillance has been widely
employed in other forms of cancer diagnosis. It has been shown that use of
Prostate-Specific Antigen (PSA) [131] testing as part of active surveillance
of prostate cancer helps in understanding tumor progression and prognosis,
enabling the patients diagnosed with lower grade disease feel more comfort-
able [24].
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Fig. 10 Example 1: Segmentation results of the proposed exVDP and a deterministic
CNN on the BraTS 2015 dataset with and without adding adversarial noise. The
uncertainty map associated with each segmentation is also shown for each of the two
models. The class label non-enhancing tumor, which is the target of the attack, is
represented in yellow color in the ground truth image. The green color refers to the
edema class, the red color refers to the enhancing tumor, and the blue color refers to
the necrosis.

6.2 Surveillance Techniques

Change-point detection is the classical technique of detecting abrupt changes
in sequential data, which focuses predominantly on datasets with a single
observable. It has been a long-standing research area in statistics [132, 133],
with applications in fields ranging from economics [134], bioinformatics
[135, 136], and climatology [137], wherein it is dealt as the problem of
detecting abrupt changes in temporal data. The objective is to determine
if the observed time series is statistically homogeneous or otherwise to find
the point in time when the change happens. There are two variations to
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the change-point detection technique: posterior and sequential. Posterior
tests are done offline after entire data is collected, and a decision of homo-
geneity or change-point is made based on the analysis of all the collected
data. Whereas, sequential tests are done on-the-fly as the data is presented
sequentially, and the decisions are made online. Gleason grade is another
technique used for pathological scoring of the differentiation of prostate
cancer, and it has been the most widely used grading system for prostate
tumor differentiation and prognostic indicator for prostate cancer progres-
sion [138].

6.3 Community-level Active Surveillance

Apart from the individual tumor surveillance, the term of active surveil-
lance is also often used for collective cancer surveillance data and programs
in the United States through Cancer Registries. A cancer registry is an
information system designed for the collection, storage, and management of
data on persons with cancer [139]. Data on cancer in the United States is
collected through two types of registries: hospital registries, which are the
part of a facility’s cancer program, and population-based registries, usu-
ally tied to state health departments. Hospital registries provide patient’s
data on care within the hospital for evaluation. Population-based registries,
under state health departments, collect information on all cases diagnosed
within a certain geographic area from multiple reporting facilities, including
hospitals, doctors’ offices, nursing homes, pathology laboratories, radiation
and chemotherapy treatment centers, etc. The collected data is used to
build statistics like new cancer cases (incidence), death rates (mortality),
cancer types related to types of jobs, cancer trends over time to keep an eye
on age and racial groups that are most affected by different types of cancer.
Registries are staffed under the Certified Tumor Registrar (CTR), having
pre-defined standards of training, testing, and continuing education, and
they compile timely, accurate, and complete cancer information to report
to the registry. The major cancer surveillance programs in the United States
are the National Cancer Data Base (NCDB) [140], National Cancer Insti-
tute’s (NCI) Surveillance, Epidemiology and End Results (SEER) program
[139], and National Program of Cancer Registries (NPCR) of the Center for
Disease Control and Prevention (CDC) [141]. Central Brain Tumor Registry
of the United States (CBTRUS) is a registry dedicated to collecting and
disseminating statistical data on all primary benign and malignant brain
tumors [142]. A recent study [143] tries to estimate excess mortality in
people with cancer and multi-morbidity in the COVID-19 affected patients
through analysis of surveillance data DATA-CAN, the UK National Health
Data Research Hub for cancer emergency [144].
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6.4 Surveillance of Brain Tumor

Tumors of the Central Nervous System (CNS) are the second most common
tumors among children after leukemia. Treatment protocols for high-grade
pediatric brain tumors recommend regular follow-up imaging for up to 10
years. Based on the surveillance data of high-grade childhood brain tumor
patients, a review of maximal time to recurrence and minimal time to
radiologically detectable long-term sequel such as secondary malignancies,
vascular complications, and white matter disease found that there was no
recurrence of the primary brain tumor, either local or distant, 10 years
or more after the end of treatment in the reviewed literature and so the
results do not justify routine screening to detect tumor recurrence more
than 10 years after the end of treatment [145].

Tumor surveillance is being used for building statistical figures in a broad
spectrum of ways, including adult glioma incidence and survival by race
or ethnicity in the United States [146], county-level glioma incidence and
survival variations [147], and accurate population-based statistics on the
brain and other central nervous system tumors [148]. A CBTRUS statistical
report on the primary brain and Other Central Nervous System (OCNS)
tumors data diagnosed in the United States in the period 2011-2015 states
that brain and OCNS tumors (both malignant and non-malignant) were the
most common cancer types in persons age 0–14 years for both males and
females. For age 15–39 years, these tumors were the second most common
cancer in males and the third most common among females in this age
group. For age 40+, these were the eighth most common cancer type,
with males having eighth and females having the fifth most common brain
cancer. These results were based on the NPCR data of 388,786 brain and
OCNS tumors, and 16,633 tumor cases from SEER [149].

Tumor Surveillance among patients also enables the authorities to pre-
dict cancer cases and death in advance and respond in time to offset the
predicted scores. A recent report by the American Cancer Society on can-
cer statistics in 2020 projected the number of new cancer cases and deaths
that will occur in the United States. Incidence data from 2002 to 2017 were
collected, and it was estimated that in 2020, 23,890 new cases and 18,020
deaths related to brain and ONS tumors were projected to occur in the
United States [150]. Similarly, tumor surveillance is equally important to
avoid the side effects of the aggressive forms of treatment. Patients treated
for glioma, meningioma, and brain metastases may develop side effects
of treatment, including neuropathy (with visual loss), cataracts, hypopitu-
itarism, cognitive decline, increased risk of stroke, and risk of secondary
tumor occurring months or even years later. The surgical treatment causes
immediate side effects, chemotherapy-caused side effects occur early after
treatment (but infertility may not manifest itself until later), and radio-
therapy’s side effects occur months or even years after treatment. The risks
vary depending on the technique used and the area of the brain treated.
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Surveillance enables the physicians to identify these potential late side-
effects earlier which increases the length and quality of life for patients
[151].

6.4.1 An example of Surveillance Study

In this section, we will study an example of tumor surveillance, specifically
of patients having low-grade gliomas [152]. Low-grade gliomas, constituting
around 15% of all adult brain tumors, significantly affect neurological mor-
bidity by brain invasion. Generally, there is no universally-accepted tech-
nique available for the detection of growth of low-grade gliomas in the clin-
ical setting. Clinicians usually consider visual comparisons of two or more
longitudinal radiological scans through subjective evaluation for detecting
the growth of low-grade gliomas. The paper [152] suggests a Computer-
Assisted Diagnosis (CAD) method to help physicians detect earlier growth
of low-grade gliomas. This method consists of tumor segmentation, comput-
ing volumes, and pointing to growth by the online abrupt change-of-point
method considering only past measurements. The study suggests that early
growth detection of tumor sets the stage for future clinical studies to de-
cide upon the type of treatment-path to be undertaken and whether early
therapeutic interventions prolong survival and improve quality of life. Lon-
gitudinal (temporal) radiological studies of 63 patients were carried out with
a median follow-up period of 33.6 months. These patients were diagnosed
with grade 2 gliomas by expert physicians through manual (visual) proce-
dures as well as detection of growth with that of the CAD method, and
both detection methods were compared by 7 expert physicians [152] . Each
patient had at least 4 MRI scans available for review either after the initial
diagnosis or after the completion of chemotherapy with temozolomide (if
applicable). The researchers calculated the time to growth detection from
the impressions of the radiological reports of these patients from 627 MRI
scans. Unexpectedly, the study found large differences in growth detection
by visual comparison and by physicians aided by the CAD method. The
reasons for missing growth by the visual inspection can be attributed to one
or more of these reasons: (1) interpreting a large number of prior studies by
physicians takes a very long time, (2) the practice in vogue of comparing
the current MRI to a couple of MRI scans immediately preceding it, (3)
the lack of determination of baseline MRI, (4) small changes from one scan
to the next, and (5) comparing single 2-D images overlooks the growth in
the third dimension.

The study [152] showed that the CAD method helped physicians detect
growth at earlier times and significantly smaller tumor volumes than the
manual standard method. Moreover, physicians aided by the CAD method
diagnosed tumor growth in 13 of 22 glioma patients labeled as clinically
stable by the standard method. Fig. 11 shows the volume growth curves of
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grade 2 gliomas of two patients diagnosed with oligos, seen at the University
of Alabama at Birmingham clinics between 1 July 2017 and 14 May 2018
[152]. The x-axis corresponds to the time interval from the baseline MRI,
and the y-axis corresponds to the change in the volume of tumors from
the baseline. The volume at each time step until the growth detected by
CAD is colored in yellow, and the manual (visual) detection of change-point
time is colored in red. The CAD for patient 1 detected a change-point in
20 months from the baseline, whereas visual detection by a physician was
done in 80 months.

Similarly, CAD detection time for patient 2 was also around 20 months,
where visual detection was in 150 months, primarily because this tumor
did not grow at a faster pace. The detection of tumor volume growth
in time enabled the researchers to identify tumors with nonlinear and non-
homogeneous growth. Early growth detection holds the potential of lowering
the morbidity, and perhaps mortality of patients with low-grade gliomas.
The decision to treat a patient would be determined by the rate of growth
and proximity to critical areas of the brain, once they have been measured.
The study also suggested early interventions for cases where (1) the new
growth is in the proximity of key nonsurgical structures like the corpus
callosum, (2) the rate of growth is elevated, or (3) the tumor is sensitive
to chemotherapy.

Fig. 11 Volume growth curves of grade 2 gliomas of two patients diagnosed with
oligos. x-axis corresponds to the time interval from the baseline MRI, y-axis corre-
sponds to change in volume of tumor from baseline. The volume at the time-to-growth
detected by computer-assisted diagnosis is colored in yellow and manual (visual) de-
tection time is colored in red.
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7 Conclusion

In this chapter, we have thoroughly reviewed the image segmentation task
in the classical CV field and examined various techniques of CV employed
in DL frameworks for brain tumor segmentation. We have also assessed
multiple DL architectures having varying attributes that make them suit-
to-task employment. We have looked into a case study for in-depth analysis
of U-Net with Inception and dilated Inception modules in the context of
brain tumor segmentation. A new DL framework, called exVDP, that can
quantify uncertainty in the output decision of an ANN, has also been
discussed. In the last section, we have discussed the concept of tumor
surveillance, its rationale, techniques, and an example study on low-grade
gliomas surveillance.

The brain tumor segmentation community has achieved substantial
progress in the last decade because of the advances in DL. Although efforts
have been made in commercializing the technology for clinicians, there is
still a long way to make brain tumor segmentation a reliable and routine
tool broadly applied to practical clinical decisions with minimal human
interventions. This is due to the lack of existing methods in the face of ad-
versarial examples and research-oriented frameworks that are not suited to
production environments. Breakthrough is likely to come with the advent
of effective and scalable platforms by the ML community, and direction of
research towards adversarial learning.
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