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ABSTRACT

We propose a protein communication system where the trans-
mitted messages are protein sequences and the encoded mes-
sage is the DNA. We study the evolutionary dynamics of this
channel in both cases of constant and time-varying point mu-
tation rate. We prove that the distribution of amino acids con-
verges, at a geometric rate, to a limiting distribution.

1. INTRODUCTION

We model the transmission of information during cell replica-
tion or asexual reproduction as a protein communication sys-
tem with a single source generating the protein set of the par-
ent1. The protein message is encoded into the DNA sequence
before transmission through the channel. The encoding pro-
cess does not happen in biology since proteins cannot be used
to generate DNA. It is only a mathematical model of the pro-
tein information captured by DNA. To clarify this idea, as-
sume that we have a computer that maintains an MPEG code
while decoding to display a video. Copies of the video to
other computers only require sending the MPEG code. As-
sume further that the first MPEG code was created by chance.
This system never encodes a video into MPEG. It only de-
codes MPEG to display a video. The proper communication
model is, however, “video→ MPEG → MPEG → video”
even though the process “video→ MPEG” never takes place.
DNA storage and replication is part of the biological com-
munication medium, or physical channel, which introduces
errors to the communication system. The decoding process,
called translation in biology , is accomplished based on the
well-known genetic code. The translation process can make
errors. To simplify the communication model, these errors are
incorporated as part of the physical channel.

2. PROTEIN COMMUNICATION CHANNEL

Assuming a memoryless channel, it can be easily shown that
the protein communication channel is characterized by the
probability transition matrix,Q(k) = {qi,j(k)}1≤i,j≤20, at
timek, of the amino acids.

1In this paper, by abuse o f notation, we denote by ‘protein’ or‘protein
sequence’ the polypeptide chain of amino acids which forms the3-D folded
protein.

In this paper, we use two different probability transition
matrices: PAM and a first-order Markov transition probabil-
ity matrix, P. We constructP from the genetic code as fol-
lows: Letα(k) be the probability of a base interchange of any
one nucleotide at timek, all interchanges being equally prob-
able. Assuming the 64 codons are equally probable and from
Baye’s rule, we obtain the following formula for the probabil-
ity of a transition from amino acida to amino acid̂a,

Pr(â|a) = Pr({c1, · · · , cn}|{b1, · · · , bm})

=
1

m

n
∑

i=1

n
∑

j=1

α(k)h(bj ,ci)(1 − 3α(k))3−h(bj ,ci),

where{c1, · · · , cn}, resp. {b1, · · · , bm}, are the codons of
the received (̂a), resp. transmitted (a), amino acid andh(bj , ci)
is the hamming distance between codonbj and codonci. Since
burst mutations are less likely to happen than 1 point mutation
and for computational efficiency, we retain only the terms of
the first degree inα(k).

Let p0 be the row probability vector of the initial distri-
bution of the amino acids (at time 0). It is straightforward
to show that the row probability vector of the amino acids at
timek is given by

pk = p0Q(1)Q(2) · · ·Q(k), (1)

whereQ ∈ {PAM,P}. Observe thatP takes into account
all possible mutations between amino acids whether they are
accepted or rejected by natural selection. The PAM transition
matrix is estimated from protein sequences and hence takes
into account the accepted mutations only.

3. CONSTANT POINT MUTATION RATE

In this section, we assume that the point mutation rate is con-
stant over time, i.e.,α(k) = α, for all k ≥ 0. Equation (1)
becomes

pk = p0Q
k. (2)

Proposition 1 Consider an initial probability distribution of
the amino acids at time 0,p0 (some amino acids might have
an initial zero probability of occurrence). Then, the proba-
bility distribution of the amino acids2 converges, over time,

2The amino acids are ordered alphabetically by their one-letter standard
abbreviations. For instance,limk→∞

Pr (L)= limk→∞
Pr (R)=limk→∞

Pr (S)= 6

61
.



towards a stationary distribution given bys1 if Q = P and
s2 if Q = PAM250, where
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s2 =
(0.087, 0.041, 0.042, 0.048, 0.034, 0.039, 0.051, 0.091, 0.033,
0.036, 0.083, 0.08, 0.014, 0.038, 0.053, 0.07, 0.06, 0.0089,

0.028, 0.064).

The proof of Proposition 1 follows from the Perron-Frobenius
theorem. Jukes et al. [1] computed the following distribution,
r, from a study of representative proteins from eukaryotic,
prokaryotic and viruses;
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(3)
Since PAM250 estimates the rate of accepted mutations,s2 is
closer, on average, tor thans1.

Proposition 2 {p0Q
k}k≥1 converges at a geometric rate with

parameter|λ2|, where

{

|λ2| = 0.53, if Q = PAM250;
|λ2| ≤ 1 − 1

2α, if Q = P.

As a consequence, no evolution is possible ifα = 0.

proof 1 Let the eigenvalues ofQ be ordered by1 > |λ2| ≥
· · · ≥ |λt|. Ask → ∞, Qk = Q∞ + O(km2−1|λ2|

k), el-
ementwise, wherem2 is the algebraic multiplicity ofλ2 and
Q∞ is the matrix whose rows are equal to the limiting dis-
tribution [2, Theorem 1.2]. The following inequality givesan
upper bound forλ2 of the probability transition matrixP [3]:

|λ2| ≤
1

2
max

i,j
{pi,i + pj,j − pi,j − pj,i +

∑

k
k 6=i,j

|pi,k − pj,k|}.

4. TIME-VARYING POINT MUTATION RATE

In this section, we consider a rate of point mutation,α(k),
which varies in time. Consider the productsTp,k = {t

(p,k)
i,j } =

Qp+1Qp+2 · · ·Qp+k for everyp ≥ 0. For a fixedp, let t be
the smallest integer satisfyingTp,t > 0, in the sense that all
its entries are strictly positive.

Definition 1 [2] The forward productsTp,k are said to be

weakly ergodicif t
p,k
i,s − t

p,k
j,s

k→∞
−−−−→ 0 for eachi, j, s, p. If

weak ergodicity obtains and thetp,k
i,s themselves tend to a limit

for all i, s, p, then we saystrong ergodicityobtains.

Theorem 1 Consider a finite number of PAM matrices de-
noted by PAM(1),· · · , PAM(N ), where PAM(i) can be PAM1
or PAM160 or PAM250, etc, for all i = 1, · · · , N . Con-
sider the sequence:Tp,k = tp+1tp+2 · · · tp+k, where each
ti ∈ {PAM(1), · · ·PAM(N)}. That is at each timek, the
probability transition matrix is some PAM matrix. The evolu-
tionary time of the PAM matrix and the timek are not neces-
sarily equal. Then,Tp,k is weakly ergodic at a uniform geo-
metric rate for allp ≥ 0. So the sequence{pk}k≥1, in Eq.
(1), tends to a sequence of distributions independently ofp0.

proof 2 Denote bymin+ the minimum of the strictly positive
elements. Letγ = min1≤k≤N (min+

i,jPAM(k)i,j). Then we
havemin+

i,j PAM(k)i,j ≥ γ uniformly for all k ≥ 1. Then,
theorem 1 follows from [2, Theorem 4.10]. The convergence
rate is geometric with parameter(1 − γt)

1

t .

If we approximate the matrices PAMk by PAMk
1 , the sequence

Tp,k = PAMp+1PAMp+2 · · ·PAMp+k becomes strongly er-
godic. In particular, the sequence{pk}k≥1, in Eq. (1), con-
verges to the limiting distributions2.

Theorem 2 Consider a point mutation rate,α(k), which is
bounded uniformly onk, i.e.,0 < a ≤ α(k) ≤ b < 1. Then
the productsTp,k = Pp+1 · · ·Pp+k are strongly ergodic. So,
the sequence{pk}k≥1, in Eq. (1), converges towards the sta-
tionary distributions1 independently of the initial distribu-
tion p0. Moreover, the convergence rate is at least geometric
with parameter(1 − γt)

1

t , whereγ = min{a
6 , 1 − 9b}.

proof 3 We havemin+
i,j pi,j(k) = min{1−9α(k), 1

6α(k)}.
Hence,min+

i,j pi,j(k) ≥ γ, uniformly onk. Let ek be the
unique stationary distribution ofP(k). We have,ek = s1
for all k ≥ 1. In particular, the sequence of vectors{ek}k≥1

converges tos1. SinceTp,k have no zero column, the strong
ergodicity property follows then from [2, Theorem 4.15]. The
rate of convergence follows from [2, Theorem 4.10].

5. CONCLUSION

We can obtain similar results with the BLOSUM probabil-
ity transition matrix constructed from the log-odds BLOSUM
matrix. The convergence of the probability transition ma-
trix shows that a parent organism will be unrelated to its off-
springs after infinitely many generations no matter how small
the initial point mutation rate is as long as it is non-zero. The
rate of convergence quantifies the speed of this divergence.
The limiting distributions1 shows that, if all mutations were
accepted, the asymptotic abundance of amino acids in nature
would be proportional to their codon assignment. The dis-
crepancy between this limiting distribution and the natural
abundance is related to the relative survival of the amino acids
after they mutate.
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