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ABSTRACT In this paper, we use two different probability transition

. L matrices: PAM and a first-order Markov transition probabil-
We propose a protein communication system where the transs matrix, P. We construc from the genetic code as fol-
mitted messages are protein sequences and the encoded M&S; e

. ; : . lows: Leta(k) be the probability of a base interchange of any
sagels the DNA. We study the evquUopary dyngm|cs .Of thISone nucleotide at timg, all interchanges being equally prob-
channel in both cases of constant and time-varying point mu-

. o ; : able. Assuming the 64 codons are equally probable and from
tation rate. We prove that the distribution of amino acids-co , 9 . re equally p .
. L R Baye's rule, we obtain the following formula for the prohbabi
verges, at a geometric rate, to a limiting distribution. . s : : . .
ity of a transition from amino acid to amino acidi,

1. INTRODUCTION Priala) = Pr(fer, - enl{br, - bm})
— 1 S - h(bj,ci) 37h(bj,ci)
We model the transmission of information during cell relic T Z Z (k)™ (1 = Bak))TTHEE,
tion or asexual reproduction as a protein communication sys ==t
tem with a single source generating the protein set of the pawhere{c,--- ,¢,}, resp. {b1,--- , b}, are the codons of

ent. The protein message is encoded into the DNA sequendée receivedd), resp. transmittedd, amino acid and (b, ¢;)
before transmission through the channel. The encoding prds the hamming distance between codpand codore;. Since
cess does not happen in biology since proteins cannot be uskdrst mutations are less likely to happen than 1 point nurtati
to generate DNA. It is only a mathematical model of the pro-and for computational efficiency, we retain only the terms of
tein information captured by DNA. To clarify this idea, as- the first degree inv(k).

sume that we have a computer that maintains an MPEG code Let p, be the row probability vector of the initial distri-
while decoding to display a video. Copies of the video tobution of the amino acids (at time 0). It is straightforward
other computers only require sending the MPEG code. Asto show that the row probability vector of the amino acids at
sume further that the first MPEG code was created by chanctime k is given by

This system never encodes a video into MPEG. It only de-

codes MPEG to display a video. The proper communication pr =PoQ(1Q(2) - Qk), (1)
model is, however, “videe- MPEG — MPEG — video” whereQ € {PAM,P}. Observe thaP takes into account
even though the process “videe MPEG” never takes place. all possible mutations between amino acids whether they are
DNA storage and replication is part of the biological com-accepted or rejected by natural selection. The PAM tramsiti
munication medium, or physical channel, which introducesmatrix is estimated from protein sequences and hence takes
errors to the communication system. The decoding processito account the accepted mutations only.

calledtranslationin biology , is accomplished based on the

well-known genetic code. The translation process can make 3. CONSTANT POINT MUTATION RATE

errors. To simplify the communication model, these erroes a

incorporated as part of the physical channel. In this section, we assume that the point mutation rate is con
stant over time, i.eq(k) = «, for all k > 0. Equation (1)
2. PROTEIN COMMUNICATION CHANNEL becomes .
Pr = poQ". (2

Assuming a memoryless channel, it can be easily shown thatroposition 1 Consider an initial probability distribution of

the protein communication channel is characterized by thghe amino acids at time Gy, (some amino acids might have
probability transition matrixQ(k) = {gi;(k)}1<ij<20, @ an initial zero probability of occurrence). Then, the preba
time k, of the amino acids. bility distribution of the amino acid$ converges, over time,

1In this paper, by abuse o f notation, we denote by ‘proteiripootein 2The amino acids are ordered alphabetically by their onetlstandard
sequence’ the polypeptide chain of amino acids which form8tbefolded abbreviations. For instancimy .o Pr (L)=limg oo Pr (R)dimg—
protein. Pr(s)=g.



towards a stationary distribution given by if Q = P and

So if Q = PAMy5, where

proof 2 Denote bymin™ the minimum of the strictly positive
elements. Ley = mini<p<n(min; ;PAM(k); ;). Then we

(A, 2 2 2 2 4 2 3 2 6 1 2 4 2 & havemin™; ; PAM(k); ; > ~ uniformly for allk > 1. Then,
S — 61’ 61 617 61 61 61 61 61° 61 61° 61 61 61 61 61 5] »J
1= &, 4 a4 L 2 theorem 1 follows from [2, Theorem 4.10]. The convergence
. . . 1
(0.087, 0.041, 0.042, 0.048, 0.034, 0.039, 0.051, 0.091, 0.033, rate is geometric with parametét —~*) .
So = 0.036, 0.083, 0.08, 0.014, 0.038, 0.053, 0.07, 0.06, 0.0089,

0.028, 0.064). If we approximate the matrices PAMy PAM¥, the sequence
The proof of Proposition 1 follows from the Perron-Frobeniu Tp.x = PAMPT'PAMPT2 ... PAMPT becomes strongly er-
theorem. Jukes et al. [1] computed the following distribnti ~ godic. In particular, the sequenéey }1>1, in Eq. (1), con-
r, from a study of representative proteins from eukaryoticverges to the limiting distribution,.

prokaryotic and viruses; Theorem 2 Consider a point mutation ratey(k), which is

bounded uniformly o, i.e.,0 < a < a(k) < b < 1. Then

3) the productsT,, i, = Pp_ﬂ --- P4 are strongly ergodic. So,
the sequencépy },>1, in Eq. (1), converges towards the sta-

tionary distributions; independently of the initial distribu-

tion pg. Moreover, the convergence rate is at least geometric

Proposition 2 {pyQ*} >, converges at a geometric rate withwith parameter(1 — v*) ¥, wherey = min{§,1 — 9b}.

|A2| = 0.53, if Q = PAMLs;

|)\2\§1—%a7 if Q:P.

>’ 61 61 61 61 61° 61> 61° 61°

61° 61° 61° 61° 61° 61

Since PAM;, estimates the rate of accepted mutatieass
closer, on average, tothans; .

proof 3 We havenin™; ; p; j(k) = min{1—9a(k), ga(k)}.
Hence,minﬂ,j pi,j (k) > =, uniformly onk. Lete; be the
unique stationary distribution oP (k). We havege, = s3
for all £ > 1. In particular, the sequence of vectofs, },>1
co > M| Ask — oo, Q" = Q. + O(km2—1‘)\2|k), el- converges t@,. SinceT,, ;, have no zero column, the strong
ementwise, where is the algebraic multiplicity of, and ergodicity property follows then from [2, Theorem 4.15].eTh
Q.. is the matrix whose rows are equal to the limiting dis-rate of convergence follows from [2, Theorem 4.10].
tribution [2, Theorem 1.2]. The following inequality givas
upper bound fot\, of the probability transition matri® [3]:

parameterz|, where{

As a consequence, no evolution is possible i 0.
proof 1 Let the eigenvalues @) be ordered byl > |Aq| >

5. CONCLUSION

We can obtain similar results with the BLOSUM probabil-
ity transition matrix constructed from the log-odds BLOSUM
matrix. The convergence of the probability transition ma-
trix shows that a parent organism will be unrelated to its off
springs after infinitely many generations no matter how smal
the initial point mutation rate is as long as it is non-zerbeT
rate of convergence quantifies the speed of this divergence.

A ¥i The limiting distributions; shows that, if all mutations were
Qp+1Qp+2- - Qi fOr everyp > 0. For afixedp, lett be  5ccented, the asymptotic abundance of amino acids in nature
the smallest integer satisfying, ; > 0, in the sense that all \5y1d be proportional to their codon assignment. The dis-
its entries are strictly positive. crepancy between this limiting distribution and the ndtura
Definition 1 [2] The forward productsT, ;. are said to be abundance is related to the relative survival of the amimisac
after they mutate.

1
[A2] < B Hll%X{Pi,i +Dpj; —Pij — Pt Z |pik — pjkl}

k
k#i,j
4. TIME-VARYING POINT MUTATION RATE

In this section, we consider a rate of point mutatiafik),
which varies in time. Consider the produlg , = {tEpfk)} =

weakly ergodicif tfjsk - tf}’f k=20, for eachi, j, s, p. If

weak ergodicity obtains and thg" themselves tend to a limit

for all 4, s, p, then we sagtrong érgodicitwbtains. 6. REFERENCES
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