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ABSTRACT

In this paper, we will bring to bear new tools to analyze
non-stationary signals that have emerged in the statisti-
cal and signal processing community over the past few
years. The emergence of these new methods will be used
to shed new light and help resolve the issues of (i) the
existence of long-range correlations in DNA sequences
and (ii) whether they are present in both coding and non-
coding segments or only in the latter. It turns out that
the statistical differences between coding and non-coding
segments are much more subtle than previously thought
using stationary analysis. In particular, both coding and
non-coding sequences exhibit long-range correlations, as
asserted by a 1/fβ(n) evolutionary (i.e., time-dependent)
spectrum. However, we will use an index of randomness,
which we derive from the Hilbert-Huang Transform, to
demonstrate that coding sequences, although not random
as previously suspected, are often “more random” (i.e.,
more white) than non-coding sequences. Moreover, the
study of the evolution of the rate of change of these time-
dependent parameters in homologous gene families shows
a sudden jump around the rat, which might be related to
the well-known supercharged evolution of this rodent.

1. INTRODUCTION

In 1992, Peng et al.[1] studied the stochastic properties of
DNA sequences by constructing a map of the nucleotide
sequences onto a walk, u(i), which they termed a “DNA
walk.” The DNA walk is defined by the rule that the walker
steps up (u(i) = +1) (resp., down (u(i) = −1)) if a
pyrimidine (resp., purine) resides at position i. In our
analysis, we will rely on the same mapping of the nu-
cleotides. Peng et al. found that non-coding sequences ex-
hibit long-range correlations; whereas coding sequences
behave like random sequences or sustain at most short-
range correlations. Similar observations were reported in-
dependently by Li et al. [2] This prompted a sequence
of controversial papers, some affirming [3] and others dis-
puting [4] the existence of long-range correlations in DNA
sequences or the statistical difference between coding and
non-coding segments. This debate continues till today and
consequently impedes further progress to explain the ori-
gins and functions of these correlations and their effect
on the evolution of the DNA. We believe that such con-

tradictory results are an artifact of using stationary signal
processing and statistics tools to study non-stationary ge-
nomic signals. The Detrended Fluctuation Analysis (DFA)
technique [5] constructs a stationary process from the non-
stationary DNA walk by subtracting the non-stationary
trend from the sequence. However, the DFA method is
limited to the very special case of non-stationary signals
consisting of stationary signals with embedded (polyno-
mial) trends, i.e.,

X(t) = c(t) + X0(t), (1)

where c(t) is a deterministic (usually assumed polyno-
mial) function and X0(t) is a stationary process. More-
over, even if the data were embedded in some trend, then
(i) one has to estimate the form of the trend (polynomial,
logarithmic, exponential, sinusoidal, etc) in order to sub-
tract it, and (ii) one has to guarantee that the window
size adopted in the DFA always coincides with the lo-
cal stationary time scale. As we will show below, ge-
nomic sequences are quite complex and exhibit different
forms of non-stationarities that are more heterogeneous
than embedded trends. Therefore, in the hope to resolve
the issue of long range correlations in genomic sequences,
one should apply techniques for a wider class of non-
stationary signals.

2. NON-STATIONARY MODEL

Through our extensive simulations and analysis of dif-
ferent nucleotide sequences, we found that genomic se-
quences exhibit different forms of non-stationarity. Priest-
ley [6] proposed a statistical test for stationarity. The ba-
sis of the method is to estimate the evolutionary (or time-
dependent) spectrum of the process over a discrete range
of time points, and then test these spectra for uniformity
over time. Figure 1(a) shows the DNA walk of the Human
gene TXNDC9. Applying Priestley’s test on this gene re-
veals, with 95% confidence, that its DNA walk is non-
stationary and its non-stationarity is not associated with a
deterministic trend. Therefore, the DFA is not an appro-
priate tool to study this gene.

3. THE EVOLUTIONARY 1/F SPECTRUM

Much of the current evidence for long-range correlations
in DNA sequences stems from the experimentally observed

1-4244-2372-9/08/$20.00 ©2008 IEEE 

Authorized licensed use limited to: University of Arkansas Litte Rock. Downloaded on December 24, 2008 at 12:36 from IEEE Xplore.  Restrictions apply.



1/f spectrum [4]. The 1/f spectrum assumes the exis-
tence of a stationary process with a fixed spectral exponent
β. This assumption, however, is in contradiction to our as-
sertion that nucleotide sequences are non-stationary. We
therefore propose a new evolutionary (time-dependent)1/f
spectrum whose spectral exponent β(n) varies in time.
This approach also resolves the classical paradox of 1/f
processes, namely, the variance of a 1/f process with a
spectral exponent β, 1 < β < 2, obtained by integration
of the power spectral density, is infinite [7].

A generalization of the periodogram for estimating the
power spectrum of non-stationary signals is given by a
powerful new method called the evolutionary periodogram
(EP) [8]. The EP of a non-stationary signal x(n), n =
0, · · · , N − 1, is defined as

S(n, f) =
N

M
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∣

∣
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where ∗ denotes complex conjugate, and {Pi(n)}M−1
i=0 is

an orthonormal basis, and M ≤ N . In our simulations,
we use the discrete Legendre polynomials with M = 3.
Observe that Eq. (2) can be interpreted as the magnitude
squared of the Fourier transform of x(k) windowed by
the sequence v(n, k) =

∑M−1
i=0 β∗

i (n)βi(k). The EP of
the coding region of the Human MHY6 gene is shown in
Fig. 1(a) for n = 1000, 2000, 3000, 4000, 5000. Note
that the two peaks, corresponding to the frequencies 1/3
and 2/3, are known to be related to the codon structure
in DNA coding regions. Also, note that the scaling ex-
ponent β is not constant, but rather varies for different
values of n. This shows that DNA correlations are much
more complex than power laws with a single scaling ex-
ponent. Thus, the proposed time-varying or “evolution-
ary 1/f” process, where the exponent β(n) is a func-
tion of time, provides a far superior model of the corre-
lation structure of DNA sequences. We estimate the func-
tion β(n) by a linear least-squares fit of the slope of the
EP at each time instant n. White noise corresponds to
β(n) = 0. Figure 1(b) depicts a plot of β(n) versus
log10(n) for the coding and non-coding regions of the Hu-
man gene TXNDC9. Observe that, for this gene, both the
coding and non-coding regions exhibit long-range corre-
lations. Moreover, the average exponent function of the
non-coding region is higher than the corresponding value
in the coding region. Next, we will demonstrate that our
conclusion that (i) neither the coding or non-coding re-
gions are random and (ii) the “degree of randomness” of
the coding regions is higher than non-coding regions, is
not an artifact of the evolutionary 1/f model.

4. INDEX OF RANDOMNESS

A prerequisite for a quantitative definition of a“degree of
randomness” is a method to represent the data in the frequency-
time space. The Fourier transform represents a signal as
a composition of stationary sinusoidal components with
constant amplitude and frequency, and so is not appropri-
ate for the analysis of non-stationary signals. An emerging

method for the representation of non-stationary signals
relies on the AM-FM model and often uses the Hilbert
Transform for demodulation. We use the powerful new
method of Empirical Mode Decomposition (EMD) [9] to
decompose the genetic process into a finite number of ba-
sis functions admitting well-behaved Hilbert transforms.
We then apply the Hilbert transform to each basis function
and construct the energy-frequency-time distribution, des-
ignated as the Hilbert spectrum [9]. The process {X(t)}
can then be expressed as

X(t) =

n
∑

j=1

aj(t) exp(i

∫

ωj(t)dt). (2)

We define the index of randomness, IR(t), of a signal at
instant t, as the weighted variance or spread of the spec-
trum at time t. Therefore, for a pure sine wave, the spec-
trum is a delta function and the variance is zero; whereas
for white noise, the spectrum is flat and the variance is
infinite. Analytically,

IR(t) =
1

N

N
∑

f=1

a(f, t)

max
f

{a(f, t)}
(f − µ(t))2, (3)

where a(f, t) is the amplitude of the Hilbert spectrum at
frequency f and time t, N is the maximum number of
frequency cells, and µ(t) = mean1≤f≤N {a(f, t)}.

5. EVOLUTIONARY TRENDS

We now apply the non-stationary tools presented to two
homologous gene families: the myosin heavy cardiac mus-
cle gene and the thioredoxin domain containing 9 gene.
Both homologous groups were identified using the on-
line NCBI HomoloGene system for automated detection
of homologs among annotated genes (http://www.ncbi.
nlm.nih.gov/sites/entrez?db=homologene).
We plotted the inferred phylogenies of both families in
Fig. 2 using the PHYLIP package developed at the Uni-
versity of Washington (http://evolution.genetics.
washington.edu/phylip.html). The exponent curves
β(n) of the coding and non-coding segments of each gene
are displayed in Fig. 3, along with the average index of
randomness of the coding and non-coding segments of
each gene group. Notice that the exponent curve β(n) is
more conserved across evolution in exons than in introns.
This result is consistent with the findings that functional
DNA sequences tend to undergo mutation at a slower rate
than nonfunctional sequences [10]. For example, the cod-
ing sequence of a human protein-coding gene is typically
about 80% identical to its mouse ortholog, while their
genomes as a whole are much more widely divergent. More-
over, the average index of randomness in coding sequences
is higher than its counterpart in non-coding sequences. Fi-
nally, even though the exponent curves β(n) do not seem
to follow a particular evolutionary trend, we will show
that some statistical features derived from β(n) exhibit
very interesting evolutionary patterns. For each gene, we
consider the average exponent βa given by the mean of
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Figure 1. (a) DNA walk of the Human gene MHY6 using the purine-pyrimidine rule; (b) Evolutionary Periodogram of the
coding region of the Human MHY6 gene for n = 1000, 2000, 3000, 4000 and 5000. The length of the gene is N = 5820;
(c) The scaling exponent β(n) for the coding and non-coding regions of the Human gene TXNDC9 as a function of
log10(n).

(a) Homologous TXNDC9 genes (b) Homologous MYH6 genes

Figure 2. The Phylogenetic trees of the gene groups: TXNDC9 and MYH6.
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Figure 3. Exponent curves and index of randomness. Row one: Gene TXNDC9 (a) The exponent curves β(n) of the
coding region of gene TXNDC9; (b) The exponent curves β(n) of the non coding region of gene TXNDC9; (c) Index
of randomness of the coding (blue) and non-coding (red) segments of the TXNDC9 gene group. The plot of the non-
coding graph was truncated to the length of the coding segment. The lower (upper) horizontal line is the average index of
randomness of the non-coding (coding) regions. Row 2: same as Row 1 for gene MYH6.
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Table 1. Evolutionary rates and their variances
Gene TXNDC9 Evolutionary Rate Variance Gene MYH6 Evolutionary Rate Variance

Thaliana Gambiae
Elegans -0.04 0.00 Elegans 0.08 0.02

Drosophila 0.00 0.00 Drosophila -0.09 0.01
Fowl -0.06 0.00 Fowl 0.00 0.03
Rat 0.03 0.01 Rat 0.26 0.58

Mouse 0.12 0.18 Mouse -1.16 0.58
Dog -0.67 0.21 Human 0.00

Chimpanzee 0.15 0.19
Human 0.00

the coding curve. We define the evolutionary rate, rg ,
at a node gene g as the derivative of βa along the tree
branch between the gene, g, and its ancestor G, i.e., rg =
βa(g)−βa(G)

tg−tG
, where βa(g), βa(G) are the values of βa for

the genes g and G, respectively; and tg , tG are the rel-
ative evolutionary times of genes g and G, respectively.
The evolutionary distance tg − tG was computed as the
distance between the aligned gene sequences g and G,
provided by the PHYLIP package. Table 1 provides the
evolutionary rates of both gene groups and shows a clear
jump in the evolutionary rate around the mouse in both
gene groups. This observation is quite remarkable given
the well-known explosive evolution of this rodent. Fur-
thermore, the variance of the evolutionary rates, using a
window of size 3, shows an increasing trend throughout
evolution. The evolutionary rate could therefore possibly
be used to observe and predict the dynamics of change in
a lineage.

6. CONCLUSION

We have introduced new non-stationary methods to study
the correlation properties in nucleotide sequences, and de-
fined a quantitative measure of the degree of randomness.
We find that coding and non-coding DNA sequences ex-
hibit long range correlations, as attested by an evolution-
ary 1/f spectrum. So, DNA correlation are much more
complex than power laws with a single scaling exponent.
Furthermore, to quantify the statistical processes further,
an index is introduced to give a quantitative measure of
how far the process deviates from a random white noise.
The higher the index value, the more random is the pro-
cess. We find that coding segments are “closer”, on aver-
age, to random sequences than non-coding segments. This
observation might have been the source of confusion and
controversy in previous work related to DNA correlations.
Finally, we showed that the evolutionary rate, which is the
derivative of the average power law scaling exponent, can
be used to observe and possibly predict the dynamics of
change in a lineage.
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