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ABSTRACT

Identifying periodically expressed genes and their sub-
sequent transcriptional circuitry can shed new lights in
studying the molecular basis of many diseases including
cancer; and subsequently provide potential drug targets
to treat them. Classical approaches for detecting periodi-
cally expressed transcripts in paradigms such as cell-cycle
implicitly assume the given data to be stationary. How-
ever, it has been experimentally shown that modulation in
the magnitude of gene expression is ubiquitous and defy
stationary assumptions. In this paper, we formulate the
problem of estimating the frequencies of multicomponent
amplitude modulated (AM) signals as a hypothesis test-
ing problem based on a time-dependent extension of the
MUSIC algorithm. We subsequently propose a test statis-
tic to detect periodic components in AM time-series. The
power of the proposed algorithm is assessed in synthetic
test signals and in real cell-cycle gene profiles extracted
from microarray data.

1. INTRODUCTION

High-throughput techniques such as microarrays have been
used recently to capture the temporal expression of several
thousand genes simultaneously across distinct biological
paradigms including cell cycle [1–3]. Identifying peri-
odically regulated genes is an important and challenging
problem. It is important because (i) it can help us detect
the deleterious genes in cancerous cells, for which there
is a discrepancy in either the shape or the period of the
genes’ expressions between normal and cancerous cells;
and (ii) it can shed new lights in studying the molecular
basis of many diseases, and subsequently provide poten-
tial drug targets to treat them. For example, symptoms in
Parkinsons disease tend to fluctuate in a circadian man-
ner [4]. The challenge of the problem stems from (i) the
large number (thousands) of genes that have to be simul-
taneously measured; (ii) the small number (3 to 20) of
measurements taken per gene; and (iii) the highly non-
Gaussian nature of the noise embedded in the data [1].

Interestingly, most of the efforts dedicated to finding
periodicity in microarray data sets have relied on Fisher’s
maximum periodogram method and other ad hoc varia-
tions of it [1–3]. However, besides its well-known bias,
poor performance for short time-series typical of microar-

ray time course data, and spectral leakage, the periodogram
is only valid for stationary data series. Per contra, ge-
nomic data series have been shown to be non-stationary
[5]. In particular, many genes known to be cyclically
expressed (also called “clock” genes) have been recently
found to exhibit considerable amplitude modulation in the
magnitude of their expressions across the time points [6].
Such amplitude modulation has been attributed to “mas-
ter” genes that are involved in the control of the circadian
phase and amplitude of clock genes [6]. Also, external
enzymes, such as drugs, were found to modulate the am-
plitude of clock genes. Finally, the inherent heterogeneity
and noisiness characteristic of transcriptional regulation in
cell populations may also explain the observed amplitude
modulation. Thus, it is crucial to develop techniques that
accommodate such non-stationarities to reach meaningful
biological interpretation of the results.

The present study provides a systematic approach for
identifying genes that show amplitude modulated periodic
patterns during the time course of a biological process.
Specifically, we extend the MUltiple Signal Classification
(MUSIC) method [7] to amplitude modulated (AM) sig-
nals. We show that the peaks of the time-dependent MU-
SIC (TD-MUSIC) pseudo-spectrum correspond to the sig-
nal frequencies. We, subsequently, propose a statistic to
determine whether these peaks are significant or not. Fi-
nally, unlike the maximum periodogram method, [1–3],
our approach does not assume Gaussian noise characteris-
tics.

2. PERIODICITY DETECTION

The problem of detecting periodicity in a time-series can
be formulated as a statistical decision problem using hy-
pothesis testing as follows: Given N observations x[1], x[2],
· · · , x[N − 1], consider the model

x[n] =

p
∑

i=1

Ai[n]ej(ωin+φi) + w[n], (1)

where w[n] is an additive white noise process, {ωi}, {φi}
and {Ai[n]} are the unknown angular frequencies, initial
phases, and time-dependent amplitudes, respectively. Ob-
serve that we do not make any assumptions on the noise
distribution. To test for periodic components, we define



the test

H0 : Ai[n] = 0, ∀i, ∀n;

H1 : ∃ Ai[n] 6= 0, for some i = 1, · · · , M.

where the symbols ∀ and ∃ denote “for all” and “there
exists”, respectively.

3. TIME-DEPENDENT MUSIC

Consider first the monocomponent AM signal

x[n] = A[n] ej(nω0+φ0) + w[n], n = 0, 1, · · · , N − 1.

(2)
Let σ2 be the variance of the noise w[n]. We assume that
the initial phase φ0 is a random variable uniformly dis-
tributed on [−π, π]. We further make the assumption that
the time-dependent amplitude A[n] can be expressed as a
linear combination of some basis functions {fk[n]}M

k=0,

A[n] =
M
∑

k=1

ckfk[n], (3)

where M ≤ N . Observe that if the basis {fk[n]}M
k=0

is orthonormal, then the coefficients ck are found by tak-
ing the dot product of A[n] with the basis vector fk, i.e.,
ck =

∑N−1
n=0 A[n]f∗

k [n], where ∗ denotes complex conju-
gate. The basis functions {fk[n]}M

k=1 do not have to be
limited to the standard choices of polynomial functions,
Legendre or Fourier, but can also take advantage of any
prior information, such as the presence of a jump in the
coefficients at a known instant, circadian effects, etc. The
autocorrelation sequence is given by

r[n, m] = E[x[n]x∗[m]] (4)

=

M
∑

k,l=1

ckc∗l fk[n]f∗

l [m]ej(n−m)ω0 + σ2δ[n − m],

where δ[n−m] is the Kronecker delta function. Let T and
H denote transpose and conjugate transpose, respectively,
and consider the data vector x = [x[0], · · · , x[N − 1]]T .
The autocorrelation matrix, Rx = E[xx

H ], may then be
written as

Rx = Rs + Rn =

M
∑

k=1

M
∑

l=1

ckc∗l Γ(k, l) + σ2
I, (5)

where I denotes the identity matrix, and

Γ(k,l)=











fk[0]f∗

l [0] fk[0]f∗

l [1]e−jω0
· · · fk[0]f

∗

l[N−1]e
−j(N−1)ω0

fk[1]f∗

l [0]ejω0 fk[1]f∗

l [1] · · ·fk[2−N]f∗l[N−1]e−j(N−2)ω0

...
...

...
...

fk[N−1]f
∗

l[0]e
j(N−1)ω0 fk[N−2]f∗l[1]e

j(N−2)ω0
· · · fk[N−1]f∗l[N−1]

.











(6)
The matrix Γ(k, l) can be concisely written as

Γ(k, l) = ek(ω0)e
H
l (ω0), (7)

where

ei(ω) = [fi[0], fi[1]ejω, · · · , fi[N − 1]ej(N−1)ω]T . (8)

Subsequently, the signal autocorrelation matrix reduces to

Rs =
M
∑

k=1

M
∑

l=1

ck c∗l ek(ω0) e
H
l (ω0). (9)

Let
E(ω) = [e1(ω), e2(ω), · · · , eM(ω)], (10)

and C = c c
H, where c = [c1, c2, · · · , cM ]T . Then,

Eq. (9) can be rewritten as

Rs = E(ω0) C E
H(ω0) = (E(ω0)c)(E(ω0)c)

H . (11)

Thus, the signal autocorrelation matrix Rs is positive def-
inite of rank 1. Moreover, its unique positive eigenvalue is
given by ||E(ω0)c||

2, and its corresponding eigenvector is
E(ω0)c. The autocorrelation matrix of the data can then
be concisely expressed as

Rx = E(ω0) C E
H(ω0) + σ2

I. (12)

and its eigenvalues, λi, are given by

λi = λs
i + σ2, i = 1, · · · , N, (13)

where λs
1 = ||E(ω0)c||

2 is the positive eigenvalue of Rs.
Arranging the eigenvalues of Rx in non-decreasing order
leads to the following result:

{

λ1 > σ2

λi = σ2, for i = 2, · · · , N .

Since Rx is Hermitian, its eigenvectors, vi, are orthogo-
nal. In particular, the signal subspace, consisting of the
signal eigenvector, E(ω0)c, and the noise subspace, cor-
responding to the remaining eigenvectors, are orthogo-
nal. Therefore, the frequency ω0 may be estimated by the
location of the highest peak of the TD-MUSIC pseudo-
spectrum

PTD-MUSIC(ω) =
1

∑N

k=2 |(E(ω)c)Hvk |2
. (14)

Equation (14) is referred to as a “pseudo-spectrum” be-
cause it indicates the presence of sinusoidal components
in the studied signal, but it is not a true Power Spectral
Density. The extension of the above derivation to mul-
ticomponent AM signals is summarized in the following
proposition.

Proposition 1 (Multicomponent AM signals) Consider the
multicomponent AM signal

x[n] =

p
∑

i=1

Ai[n]ej(ωin+φi) + w[n], (15)

where the initial phases {φi} are independent random vari-
ables uniformly distributed on [−π, π]. We assume that
the time-dependent amplitudes Ai[n] can be expressed as
a linear combination of some basis functions {fk[n]}M

k=1;

Ai[n] =
M
∑

k=1

ci,kfk[n]. (16)



Then the signal frequencies ω1, · · · , ωp may be estimated
by the location of the p highest peaks of the following TD-
MUSIC pseudo-spectrum

PTD-MUSIC(ω) =
1

∑p

i=1

∑N

k=p+1 |(E(ω)ci)Hvk|2
, (17)

where ci = [ci,1, ci,2, · · · , ci,M ], E(ω) is given by Eq. (10),
and the vk’s are the noise eigenvectors (corresponding to
the eigenvalue σ2) of the autocorrelation matrix

Rx =

p
∑

i=1

(E(ωi)ci) (E(ωi)ci)
H + σ2

I. (18)

4. TEST FOR PERIODIC COMPONENTS

The TD-MUSIC pseudo-periodogram is evaluated at the
frequencies ωj = 2πj

N
, j = 0, 1, · · · , N − 1. Let P1 <

P2 < · · · < PN denote the TD-MUSIC pseudo-spectrum
ordinates in ascending order. Define the statistic

U(r) =
PN−r+1
∑N

k=1 Pk

. (19)

If r peaks are indicated by the statistics U(r), then the es-
timates of the frequencies are taken to be the frequencies
associated with the r TD-MUSIC pseudo-spectrum ordi-
nates PN−r+1, · · · , PN . Hence, if U∗(r) is the observed
value of U(r), then Eq. (19) yields a p-value, P (U(r) >

U∗(r)), that allows to test whether the r maximum peaks
in the TD-MUSIC pseudo-spectrum P (ω) are significant.
To obtain the p-value for the observed sequence, we gen-
erate a set of random time-series, evaluate the test statistic
for each one of the time-series, and use the obtained U(r)-
values to compute an estimate of the distribution of the
U(r)-statistic under the null-hypothesis; thus, obtaining
the p-value of the original test-statistic U ∗(r) as an esti-
mate of P (U(r) > U∗(r)). We reject the null hypothesis
if the p-value is smaller than a chosen significance level
α.

5. SIMULATION RESULTS

We first consider a synthetic test signal given by

x[n] = A[n] cos(
41

128
πn) + w[n], n = 1, · · · , N, (20)

where A[n] is a triangular signal given by

A[n] =

{

n, 1 ≤ n ≤ N
2 ;

−n + N, N
2 ≤ n ≤ N .

, and w[n] is a ran-

dom Gaussian noise. the signal length is set to N = 20
(typical for microarray data). Figure 1(a) shows the time-
dependent amplitude A[n], its Fourier basis representa-
tion with M = 40, and its Legendre basis representa-
tion with M = 6. Observe that the Fourier basis pro-
vides an exact representation of the time-dependent am-
plitude, whereas the Legendre basis provides a close ap-
proximation. Figure 1(b) shows the pure sinusoidal sig-
nal cos( 41π

128 n), its noiseless AM modulated version by
A[n], and its noisy AM modulated version with a Signal to

Noise Ratio (SNR) equal to 0 dB. Figure 1(c) displays the
TD-MUSIC pseudo-spectrum, the MUSIC pseudo-spectrum,
and the periodogram of the noisy AM modulated signal.
For display clarity, the three spectrums have been scaled
to [0, 1]. It is clear that, with the sharpest main lobe, the
TD-MUSIC provides the most accurate estimation of the
frequency ω0 = 41π

128 . The broad main lobe of the peri-
odogram, and its extensive leakage are mainly due to the
non-stationarity of the signal, and the short length of the
data.

We then tested the proposed TD-MUSIC algorithm on
microarray real data. Specifically, we investigated tempo-
ral expression profiles from high-throughput microarray
data generated in the alpha-factor synchronization yeast
cell-cycle experiment consisting of 6178 genes across 18
time points [8]. We first eliminated all genes whose val-
ues are missing even at a single time point resulting in
a reduced set consisting of 4491 genes. Spellman et al.
[8] identified 104 sinusoidal genes as well-documented
through extensive literature survey of the cell-cycle paradigm.
Out of these 104 genes, 72 genes had values across all 18
time points (i.e. overlapped with the list of 4491 genes).
We assessed the time-dependent amplitude of each gene
by dividing the signal by its MUSIC estimated sinusoidal
component. We, subsequently, applied the TD-MUSIC al-
gorithm using the Fourier basis representation, and a sig-
nificance value α = 0.05. The TD-MUSIC algorithm de-
tected all 72 ground truth genes. The stationary MUSIC
algorithm missed 13 (18%) periodic genes, and the peri-
odogram missed 35 of them (more than 48%). Interest-
ingly, all the 14 genes missed by the stationary MUSIC
visually exhibited amplitude modulated profiles. The ex-
pression plots (versus time) of three of these genes is given
in Fig. 2 along with their corresponding TD-MUSIC pseudo-
spectrums, MUSIC pseudo-spectrums, and periodograms.
We observe that the time-dependent amplitude seems to
consist of jumps at certain time points for the gene YDL179W
(PCL9), whereas it clearly shows more complex patterns
for the genes YCL055W (KAR4), and YCL027W (FUS1).
While YDL179W and YCL027W are regulated during the
M/G1 boundary, YCL055W is regulated during the G1/SCB
(i.e. SwI4, 6-dependent cell cycle box, CACGAAA) phase
of the cell-cycle. In all cases, the TD-MUSIC pseudo-
spectrum estimates the frequency of each gene profile with
a higher resolution than the MUSIC and the periodogram.

6. CONCLUSION

Classical approaches for detecting periodically expressed
transcripts in paradigms such as cell-cycle implicitly as-
sume the given data to be stationary. However, many
genes known to be cyclically expressed have been recently
found to exhibit considerable amplitude modulation in the
magnitude of their expressions [6]. Such modulations can
be an outcome of biological as well as non-biological fac-
tors. In this paper, we extended the MUSIC algorithm
to multicomponent AM signals, and showed its power in
detecting periodic components in AM modulated signals,
specifically, in cell-cycle gene profiles. Our algorithm as-
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Figure 1. (a) The Time-dependent amplitude A[n] and its Fourier and Legendre basis representations; (b) The pure
sinusoidal signal, its noiseless AM modulated version, and its noisy AM modulated version with SNR = 0 dB; (c) The
TD-MUSIC pseudo-spectrum, the MUSIC pseudo-spectrum, and the periodogram of the noisy AM modulated signal.
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Figure 2. (a) The expression plot (versus time) of the genes YDL179W, YCL055W, and YCL027W, respectively; (d) The
TD-MUSIC pseudo-spectrum, the MUSIC pseudo-spectrum, and the periodogram of the gene profiles in (a).

sumes, however, that the shape of the time-dependent am-
plitude is known a priori. This assumption can be circum-
vented by estimating the time-dependent amplitude using
the stationary MUSIC algorithm. The TD-MUSIC can,
therefore, be applied sequentially, where each iteration
provides a better estimate of the time-dependent ampli-
tude and hence of the signal frequencies. The performance
analysis of the sequential TD-MUSIC will be the subject
of our future work, which will also extend the TD-MUSIC
to amplitude and frequency modulated (AM-FM) signals.
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