
OPTIMAL PERTURBATION CONTROL OF GENE REGULATORY NETWORKS

Nidhal Bouaynaya1, Roman Shterenberg2 and Dan Schonfeld3

1Department of Systems Engineering, University of Arkansasat Little Rock,
2Department of Mathematics, University of Alabama at Birmingham,

3 Department of Electrical and Computer Engineering, University of Illinois at Chicago

ABSTRACT
We formulate the control problem in gene regulatory net-
works as an inverse perturbation problem, which provides
the feasible set of perturbations that force the network to
transition from an undesirable steady-state distributionto
a desirable one. We derive a general characterization of
such perturbations in an appropriate basis representation.
We subsequently consider the optimal perturbation, which
minimizes the overall energy of change between the origi-
nal and controlled (perturbed) networks. The “energy” of
change is characterized by the Euclidean-norm of the per-
turbation matrix. We cast the optimal control problem as a
semi-definite programming (SDP) problem, thus providing a
globally optimal solution which can be efficiently computed
using standard SDP solvers. We apply the proposed control
to the Human melanoma gene regulatory network and show
that the steady-state probability mass is shifted from the un-
desirable high metastatic states to the chosen steady-state
probability mass.

1. INTRODUCTION

The ultimate goal of gene regulatory network modeling and
analysis is to use the network to design effective interven-
tion strategies for affecting the network dynamics in such a
way as to avoid undesirable cellular states. As futuristic gene
therapeutic interventions, two main control strategies have
been proposed to alter gene regulatory network dynamics in
a desirable way: (i) introduce external control variables to
act upon some control genes, in such a way as to optimize a
given cost function [1], and (ii) alter the underlying rule-based
structure of the network in order to shift the steady-state mass
of the network from undesirable to desirable states.

The first strategy produces a recurrent control policy, over
a possibly infinite time horizon interval [1]. Clinically, such
an infinite-horizon intervention can be viewed as connecting
the patient to an infinitely recurrent feedback control loop.
If the control is applied over a finite time horizon and then
stopped, the network may not converge towards the desired
steady-state distribution. The second strategy, on the other
hand, aims at altering the steady-state distribution of thenet-
work. A simulation-based study was first conducted in [2],

where a procedure to alter the steady-state probability of cer-
tain states was implemented using genetic algorithms. Xiaoet
al. [3] considered an analytical study, where they exploredthe
impact of function perturbations on network attractors. How-
ever, their algorithms are rather cumbersome as they need to
closely investigate the state changes before and after pertur-
bations. An analytical characterization of the effect on the
steady-state distribution caused by perturbation of the regula-
tory network appears in [4]. The authors relied on the gen-
eral perturbation theory for finite Markov chains to compute
the perturbed steady-state distribution in a sequential manner.
However, their intervention is restricted to rank-one perturba-
tions. The extension to higher-rank perturbations is iterative
and computationally expensive.

In this paper, we propose a “one-time” (i.e., non-iterative)
general intervention strategy that forces the network to con-
verge towards a desired steady-state distribution. Specifically,
we formulate the control problem as an inverse perturbation
problem by addressing the following question: Given an ini-
tial ergodic network, and given a desired steady-state distri-
bution, find an (optimal) perturbation, which forces the net-
work to converge to the desired distribution. The criteria
adopted for optimality depends on the particular application
and could vary among several possible limitations: potential
adverse effects on the patient, length of treatment for the pa-
tient, and complexity in the design of bio-molecular control
agents. In this paper, we consider minimizing the overall en-
ergy of change between the original and perturbed transition
matrices criteria for minimal-perturbation control. The “en-
ergy” of change is characterized by the Euclidean-norm of the
perturbation matrix. The analytical solution to this inverse
problem will provide a minimally-perturbed Markov chain
characterized by a unique attractor corresponding to the de-
sired distribution.

2. MATHEMATICAL NOTATION

In this paper,1 denotes a vector all of whose components
are equal to one, andI stands for the identity matrix. The
notationx = (y, z) is a shorthand forx is a linear combina-
tion of y andz. If the inner product< x,y >= 0, we write
x ⊥ y. Let P ∈ R

n×n, then vec(P) transformsP into an



n2-dimensional vector by stacking the columns. The curled
inequality symbols,�,≺,�,≻, denote generalized matrix
inequalities associated with the positive semi-definite cone.
That is, ifA,B ∈ R

n×n, thenA � B means thatA − B is
positive-semi-definite.

3. THE FEASIBILITY PROBLEM

We consider a gene regulatory network withm genes, where
the expression level of each gene is quantized tol values.
The dynamic behavior of this network can be represented as a
finite-state Markov chain described by a probability transition
matrixP0 of sizen = lm. We assume thatP0 is ergodic, i.e.,
irreducible and aperiodic [5].

A row probability vectorµt = (µ1, · · · , µn) is called a
stationary distribution, or a steady-state distribution,for P0 if
µtP0 = µt. BecauseP0 is stochastic (i.e., its rows sum up to
1), the existence of stationary distributions is guaranteed[5].

Let π0 denote the undesirable steady-state distribution of
P0. We wish to alter this distribution by linearly perturbing
the probability transition matrixP0. Specifically, we consider
the perturbed stochastic matrix

P = P0 + C, (1)

whereC is a zero row-sum perturbation matrix. The zero
row-sum condition is necessary to ensure that the perturbed
matrix P is stochastic. Let us denote byπd the desired sta-
tionary distribution. We seek to find a zero row-sum pertur-
bation matrixC such that the perturbed matrixP is ergodic
and converges to the desired steady-state distributionπd.

The genes’ dynamics can be obtained from the probabil-
ity transition matrix as the marginal distribution of the state
transition probabilities. It is easy to see that if the probabil-
ity transition matrixP0 is perturbed linearly with a zero-row
sum matrix, then the conditional probability of each gene will
also be perturbed linearly. Thus, “small” perturbations ofthe
probability transition matrix lead to “small” perturbations of
the genes’ dynamics.

The set of perturbation matricesC, which force the long-
term dynamics of the network to transition fromπ0 to πd is
given by the polyhedraD:

D = {C ∈ R
n×n : πt

d = πt
d(P0+C),C1 = 0,P0+C ≥ 0}.

(2)
The following proposition provides a characterization of

the feasible set of perturbation matrices.

Proposition 1 Given an ergodic probability transition ma-
trix P0 with a stationary distributionπ0, and given a desired
probability vectorπd, consider the basisX = (x1,x2, · · · ,xn)
formed by the vectorsx1 = 1, x2 = (1, πd) ⊥ πd, i.e.,x2 is
a linear combination of1 andπd that is orthogonal toπd, and
xi ⊥ (1, πd) for i ≥ 3. Let A be the representation matrix
of basisX in the canonical basis. Then, the perturbed matrix

P = P0 + C has the following block form representation in
basisX :

PX =











1 0 · · · 0
0 ∗ ∗ ∗
... ∗ ∗ ∗
0 ∗ ∗ ∗











, (3)

where∗ denotes any real value such thatP = APXA−1 ≥
0.

For instance, a feasible solution is obtained when all values
∗ are equal to zero. In this case,P = APXA−1 = 1πt

d

(see Fig. 1(d)). In particular, proposition 1 shows that there
are infinitely many perturbation matricesC, which can force
the network to transition from its original undesirable steady-
state to a desirable one. All such perturbations, in princi-
ple, constitute plausible control strategies and can therefore
be used to drive the network from one steady-state to another.
We impose the minimum-energy constraint in order to limit
the structural changes in the network and reduce the transient
dynamics after perturbation.

4. THE OPTIMAL CONTROL PROBLEM

4.0.1. Minimal-perturbation energy control

The minimal perturbation energy control is defined by mini-
mization of the Euclidean-norm of the perturbation matrix.It
corresponds, biologically, to the control which minimizesthe
overall “energy” of change between the perturbed and unper-
turbed gene regulatory networks. The Euclidean- or spectral-
norm ofC is defined as

‖C‖2 =
√

λmax(CtC) = max
x:‖x‖=1

< CtCx,x >, (4)

where λmax(C
tC) ≥ 0 is the highest eigenvalue of the

positive-semi-definite matrixCtC. The minimum pertur-
bation energy control can be formulated as the following
optimization problem:

Minimal-perturbation energy control:

Minimize ‖C‖2 subject to C ∈ D, (5)

whereD is the feasible set in Eq. (2).
The optimization problem formulated in Eq. (5) is a con-

vex optimization problem, which can be efficiently computed
using standard toolboxes for convex optimization [6]. A fun-
damental property of convex optimization problems is that
any locally optimal point is also globally optimal. Moreover,
because the Euclidean-norm is strictly convex, the optimalso-
lution is unique.

Next, we express the convex optimization problem as a
semi-definite programming (SDP) problem: Using the fact
that [6]

‖C‖2 ≤ t ⇐⇒ CtC � t2I, t ≥ 0, (6)



we can express the problem in Eq. (5) in the following form

Minimize t

subject to CtC � t2I, C ∈ D, (7)

with variablest ∈ R andC ∈ R
n×n. The problem (7) is

readily transformed to a SDP standard form, in which a linear
function is minimized, subject to a linear matrix inequality
and linear equality constraints. We first observe that, fromthe
Schur complement, we have

CtC � t2I (andt ≥ 0) ⇐⇒

(

tI C

Ct tI

)

� 0. (8)

The inequalities in (7) can be expressed as a single linear ma-
trix inequality by using the fact that a block diagonal matrix
is positive-semi-definite if and only if its blocks are positive
semi-definite.

Minimize t

subject to





tI C 0
Ct tI 0
0 0 vec(P0 + C)



 � 0 (9)

πt
d(P0 + C) = πt

d, C1 = 0

The optimization problem in Eq. (9) is a standard semi-
definite programming problem, which can be solved effi-
ciently using standard SDP solvers. A list of 16 SDP solvers
can be found at the SDP website maintained by Helmberg
[7].

5. SIMULATION RESULTS

We apply the proposed inverse perturbation control to a prob-
abilistic Boolean network derived from gene expression data
collected in a study of metastatic melanoma [9], [8], [1], [4].
The abundance of mRNA for the gene WNT5A was found to
be highly discriminating between cells with properties typi-
cally associated with high versus low metastatic competence.
Furthermore, it was found that an intervention that blocked
the Wnt5a protein from activating its receptor, the use of an
antibody that binds the Wnt5a protein, could substantially
reduce Wnt5A’s ability to induce a metastatic phenotype [8].
This suggests a control strategy that reduces the WNT5A
genes action in affecting biological regulation.

A seven-gene probabilistic Boolean network (PBN)
model of the melanoma network containing the genes WNT5A,
pirin, S100P, RET1, MART1, HADHB, and STC2 was de-
rived in [10]. Figure 1(a), derived in [8], illustrates the rela-
tionship between genes in the Human melanoma regulatory
network. Note that the Human melanoma Boolean network
consists of27 = 128 states ranging from00 · · ·0 to 11 · · · 1,
where the states are ordered as WNT5A, pirin, S100P, RET1,
MART1, HADHB, and STC2, with WNT5A and STC2 de-
noted by the most significant bit (MSB) and least significant
bit (LSB), respectively.

Using the breadth first search algorithm, we found that
the melanoma probabilistic Boolean network is irreducible.
Therefore, it has a unique stationary distribution, and we can
apply the inverse perturbation control developed in this paper.
Because the control objective is to downregulate the WNT5A
gene, let us consider as an example a (hypothetical) desired
steady-state distribution where the probability of the states
having WNT5A upregulated is10−4 and the probability of
the other states, which correspond to WNT5A downregulated
is set equal to0.015525 so that the state probabilities sum up
to 1 (see Fig. 1(b)). Observe that the states from 0 to 63 have
WNT5A downregulated (0) and hence are desirable states, as
compared to states 64 to 127 that have WNT5A upregulated
(1) and hence are undesirable. The steady-state distribution of
the Human melanoma network of the original and perturbed
networks are shown in Fig. 1. Observe that the after-control
steady-state is identical to the desired steady-state. There-
fore, the control has enabled us to shift the steady-state prob-
ability mass from the undesirable states to states with lower
metastatic competence.

The minimal-energy perturbed matrix, which optimally
solves the SDP problem in (9), is‖C∗‖2 = 1.20667. The
SDP problem has been implemented in MATLAB and uses
the CVX software for convex optimization [11].
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6. APPENDIX

Proof 1 (Proof of Proposition 1) We will distinguish be-
tween the matrixP and its corresponding operator̃P. Let us
find a finite dimensional operator̃P that satisfies:

(i) P̃1 = 1, (ii) P̃tπd = πd. (10)

Consider the basisY = (y1, · · · ,yn) defined as follows:
y1 = πd,y2 = (1, πd) ⊥ 1 andyi = xi, for 3 ≤ i ≤ n. We
know that the operator̃P can be written in the following form

P̃ =

n
∑

j=1

n
∑

k=1

αjk < •,yj > xk. (11)

Applying the operator to the vectorx1, we obtain

P̃x1 =

n
∑

k=1

α1kxk = α11x1 +

n
∑

k=2

α1kxk. (12)



(a) (b) (c) (d)

Fig. 1. Intervention in the Human melanoma gene regulatory network: (a) An abstract diagram of the melanoma gene regulatory
network [8]; (b) The original (red line), desired (blue line), and minimal-perturbation energy controlled (green line) steady-state
distributions of the Human melanoma gene regulatory network. Thex-axis represents the 128 states of the network, and the
y-axis indicates the probability of each state; (c) A plot of the minimum-energy perturbed matrixP = P0 + C∗; (d) A plot of
the feasible perturbed matrixP = 1πt

d. Both perturbed matrices converge towards the desired steady-stateπd.

Sincex1 = 1 by construction, the conditioñP1 = 1 is equiv-
alent toα11 = 1 and α1k = 0, for k = 2, · · · , n. Simi-
larly, the conditionP̃tπd = πd is equivalent toα11 = 1 and
αj1 = 0, for j = 2, · · · , n. Finally, the operator̃P satisfying
the two conditions in (10) can be written as:

P̃ =< •,y1 > x1 +

n
∑

j=2

n
∑

k=2

αjk < •,yj > xk. (13)

Applying the operator̃P in Eq. (13) to the basisX , we ob-
tain the desired block form representationPX . The condition
P ≥ 0 is satisfied if and only if< P̃ei, ej >≥ 0 for all
1 ≤ i, j ≤ n or equivalentlyAPXA−1 ≥ 0, where{ei}

n
i=1

denotes the canonical basis, i.e., the standard basis for the
Euclidean spaceRn.
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