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ABSTRACT where a procedure to alter the steady-state probabilitgef ¢
We formulate the control problem in gene regulatory nettain states was implemented using genetic algorithms. &tiao
works as an inverse perturbation problem, which providesl. [3] considered an analytical study, where they expltined
the feasible set of perturbations that force the network tampact of function perturbations on network attractorswHo
transition from an undesirable steady-state distribution ever, their algorithms are rather cumbersome as they need to
a desirable one. We derive a general characterization afosely investigate the state changes before and aftenrpert
such perturbations in an appropriate basis representatiobations. An analytical characterization of the effect oa th
We subsequently consider the optimal perturbation, whiclsteady-state distribution caused by perturbation of thalee
minimizes the overall energy of change between the origitory network appears in [4]. The authors relied on the gen-
nal and controlled (perturbed) networks. The “energy” oferal perturbation theory for finite Markov chains to compute
change is characterized by the Euclidean-norm of the pethe perturbed steady-state distribution in a sequentialaa
turbation matrix. We cast the optimal control problem as aHowever, their intervention is restricted to rank-one peya-
semi-definite programming (SDP) problem, thus providing @ions. The extension to higher-rank perturbations is iteza
globally optimal solution which can be efficiently computedand computationally expensive.
using standard SDP solvers. We apply the proposed control In this paper, we propose a “one-time” (i.e., non-itergtive
to the Human melanoma gene regulatory network and shogeneral intervention strategy that forces the network to- co
that the steady-state probability mass is shifted from the u verge towards a desired steady-state distribution. Spaftyf
desirable high metastatic states to the chosen steady-state formulate the control problem as an inverse perturbation
probability mass. problem by addressing the following question: Given an ini-
tial ergodic network, and given a desired steady-statei-dist
1. INTRODUCTION bution, find an (optimal) perturbation, which forces the-net
work to converge to the desired distribution. The criteria
The ultimate goal of gene regulatory network modeling ancdopted for optimality depends on the particular applicati
analysis is to use the network to design effective intervenand could vary among several possible limitations: poanti
tion strategies for affecting the network dynamics in such a@dverse effects on the patient, length of treatment for &e p
way as to avoid undesirable cellular states. As futuristicey  tient, and complexity in the design of bio-molecular cohtro
therapeutic interventions, two main control strategiegeha agents. In this paper, we consider minimizing the overall en
been proposed to alter gene regulatory network dynamics i&rgy of change between the original and perturbed transitio
a desirable way: (i) introduce external control variables t matrices criteria for minimal-perturbation control. Then*
act upon some control genes, in such a way as to optimize&gy” of change is characterized by the Euclidean-normef th
given cost function [1], and (ii) alter the underlying ridased perturbation matrix. The analytical solution to this inser
structure of the network in order to shift the steady-staassn problem will provide a minimally-perturbed Markov chain
of the network from undesirable to desirable states. characterized by a unique attractor corresponding to the de
The first strategy produces a recurrent control policy, ovesired distribution.
a possibly infinite time horizon interval [1]. Clinicallyush
an infinite-horizon intervention can be viewed as connectin 2. MATHEMATICAL NOTATION
the patient to an infinitely recurrent feedback control loop
If the control is applied over a finite time horizon and thenlin this paper,1 denotes a vector all of whose components
stopped, the network may not converge towards the desireate equal to one, anH stands for the identity matrix. The
steady-state distribution. The second strategy, on therothnotationx = (y, z) is a shorthand fox is a linear combina-
hand, aims at altering the steady-state distribution ohtfte  tion of y andz. If the inner produck x,y >= 0, we write
work. A simulation-based study was first conducted in [2],x L y. LetP € R"*", then ve¢P) transformsP into an



n?-dimensional vector by stacking the columns. The curled®® = P, + C has the following block form representation in
inequality symbols,<, <, =, =, denote generalized matrix basisX:

inequalities associated with the positive semi-definiteeco ro -0

Thatis, if A,B € R"*", thenA = B means thalA — B is 0 = =

*
positive-semi-definite. e x %

0 * x *
3. THE FEASIBILITY PROBLEM
wherex denotes any real value such tHat= APy A~ >
We consider a gene regulatory network withgenes, where 0.
the expression Ievgl of eaph gene is quantized values. For instance, a feasible solution is obtained when all \&lue
The dynamic behavior of this network can be represented as a

. . ) o .~ “are equal to zero. In this casB, = APyA~! = 1l
finite-state Markov chain described by a probability tréosi : : -

i . . o Fig. 1(d)). | ticular, tion 1 sh thatr¢h
matrix P of sizen = [". We assume th&, is ergodic, i.e., (see Fig. 1(d)). In particular, proposition 1 shows thatéhe

: ) o are infinitely many perturbation matric€s which can force
irreducible and ap_er|od|c [5]. . _ the network to transition from its original undesirablesste-

A row probability vectory:® = (uu1, -+ ) is called a g0 14 5 desirable one. All such perturbations, in princi-
sttatlonar%dlstnbutlon, ora steady.-sta_lte d.'smbUtfonPO i ple, constitute plausible control strategies and can there
u'Py = pt. Becausd is stochastic (i.e., its rows sum up to

: : R . be used to drive the network from one steady-state to another
1), the existence of stationary distributions is gua.rar.]{E]a-d e impose the minimum-energy constraint in order to limit
Letm denote the undesirable steady-state distribution °¥r\1/e structural changes in the network and reduce the transie
Py. We wish to alter this distribution by linearly perturbing dynamics after perturbation

the probability transition matri®,. Specifically, we consider

the perturbed stochastic matrix
4. THE OPTIMAL CONTROL PROBLEM

P=Py+C, 1)
4.0.1. Minimal-perturbation energy control

whereC is a zero row-sum perturbation matrix. The zero_l_ e minimal perturbation energy control is defined by mini
row-sum condition is necessary to ensure that the perturbecJ1 P 9y y

matrix P is stochastic. Let us denote hy the desired sta- mization of the Euclidean-norm of the perturbation mattix.

tionary distribution. We seek to find a zero row-sum pertur_corresponds, biologically, to the control which minimizbe

bation matrixC such that the perturbed matiX is ergodic ?Jrirjél er]g?g lcj)lfa(t:(r)]?nr?eetvt\)/itrvlzsee'll"]rigeEFL)JEIrit(;J(;g?\d(?rns l;gt)r(:‘r—
and converges to the desired steady-state distribatjon 9 9 y : A

The genes’ dynamics can be obtained from the probabilr-1orm ofC'is defined as
ity transition matrix as the marginal distribution of thatst A It t
transition probabilities. It is easy to see that if the ptuba €l =V Amax(C°C) = iy < C'Cxx > (4)
ity transition matrixP, is perturbed linearly with a zero-row
sum matrix, then the conditional probability of each genié wi Where Amax(C*C) > 0 is the highest eigenvalue of the
also be perturbed linearly. Thus, “small” perturbationshef ~ POSitive-semi-definite matrbxC*C. The minimum pertur-
probability transition matrix lead to “small” perturbatisof ~ bation energy control can be formulated as the following
the genes’ dynamics. optimization problem:

The set of perturbation matric€ which force the long- Minimal-perturbation energy control
term dynamics of the network to transition frorg to m; is
given by the polyhedr®:

Minimize |C|2 subjectto C € D, (5)

D= {C e R™" : 1t = 74(Py+C),C1 = 0, Py +C > 0}. whereD is t_he_fea_lsible setin Eg. (2). _ _
2 The optimization problem formulated in Eq. (5) is a con-

fvex optimization problem, which can be efficiently computed
using standard toolboxes for convex optimization [6]. A-fun
damental property of convex optimization problems is that
Proposition 1 Given an ergodic probability transition ma- any locally optimal point is also globally optimal. Moreaye
trix Py with a stationary distributionry, and given a desired because the Euclidean-norm s strictly convex, the optsoal
probability vectorr,, consider the basi& = (x1,xa2, -+ ,x,) lutionis unique.

formed by the vectors; = 1, x2 = (1,74) L 74, i.€.,x2 IS Next, we express the convex optimization problem as a
alinear combination ol andry thatis orthogonalter;, and  semi-definite programming (SDP) problem: Using the fact
x; L (1,m4) fori > 3. Let A be the representation matrix that [6]

of basisX’ in the canonical basis. Then, the perturbed matrix IC|l2 <t <= C'C <1, t>0, (6)

The following proposition provides a characterization o
the feasible set of perturbation matrices.



we can express the problem in Eq. (5) in the following form  Using the breadth first search algorithm, we found that
the melanoma probabilistic Boolean network is irreducible
_ Therefore, it has a unique stationary distribution, and ame c
subjectto C'C < ¢*I, C e D, (7)  apply the inverse perturbation control developed in thizgpa
with variablest € R andC € R"*". The problem (7) is Because the control objective is to downregulate the WNT5A

readily transformed to a SDP standard form, in which a ”neagene, let us cc?ns!der- as an example a (hypgthetmal) desired
A . : L .. steady-state distribution where the probability of theesta
function is minimized, subject to a linear matrix inequalit

: N -
and linear equality constraints. We first observe that, fiioen having WNTSA upr_egulated i$0~" and the probability of

the other states, which correspond to WNT5A downregulated
Schur complement, we have

is set equal t@.015525 so that the state probabilities sum up
tI C 8 to 1 (see Fig. 1(b)). Observe that the states from 0 to 63 have
Ct =0. (8 WNT5A downregulated (0) and hence are desirable states, as

: e , ) compared to states 64 to 127 that have WNT5A upregulated
The inequalities in (7) can be expressed as a single linear Mgy and hence are undesirable. The steady-state distribodi
trix inequality by using the fact that a block diagonal matri {he Hyman melanoma network of the original and perturbed

is positive-semi-definite if and only if its blocks are po&t  petworks are shown in Fig. 1. Observe that the after-control
semi-definite. steady-state is identical to the desired steady-state.reThe

Minimize t

C!C =< #*I (andt > 0) <= <

Minimize ¢ fore, the control has enabled us to shift the steady-state-pr
e 0 ability mass from the undesirable states to states with dlowe
subject to Ct 41 0 =0 (9) metastatic competence.
0 0 veqP,+C) - The minimal-energy perturbed matrix, which optimally

. . solves the SDP problem in (9), |&2*|2 = 1.20667. The
mq(Po+C) =mg, C1=0 SDP problem has been implemented in MATLAB and uses

The optimization problem in Eq. (9) is a standard semi-h€ CVX software for convex optimization [11].
definite programming problem, which can be solved effi-
ciently using standard SDP solvers. A list of 16 SDP solverACknOWledgement

be found at the SDP websit intained by Helmb
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be highly discriminating between cells with propertiesityp

cally associated with high versus low metastatic competenc

Furthermore, it was found that an intervention that blocked 6. APPENDIX

the Wntba protein from activating its receptor, the use of al

antibody that binds the Wnt5a protein, could substantiall

reduce Wnt5A's ability to induce a metastatic phenotype [8]

This suggests a control strategy that reduces the WNT5

genes action in affecting biological regulation. (1) P1=1, (i) Piry, =7, (10)
A seven-gene probabilistic Boolean network (PBN) ) ) i

model of the melanoma network containing the genes WNT5KONSIder the basig) = (yi,---.y,) defined as follows:

pirin, S100P, RET1, MART1, HADHB, and STC2 was de- Y1 = Td;¥2 = (1,ma) L 1andy; = x;, for3 <i < n. We

rived in [10]. Figure 1(a), derived in [8], illustrates thela- know that the operatdP can be written in the following form

tionship between genes in the Human melanoma regulatory - n.n

network. Note that the Human melanoma Boolean network = Z Z Qjk < ,Yj > Xk. (11)

consists oR7 = 128 states ranging fror0---0to 11---1, J=1k=1

where the states are ordered as WNT5A, pirin, S100P, REThpplying the operator to the vectar, we obtain

MART1, HADHB, and STC2, with WNT5A and STC2 de-

noted by the most significant bit (MSB) and least significant Px, = ialkxk — X1 + ialkxk_ (12)
k=1 k=2

5. SSIMULATION RESULTS

roof 1 (Proof of Proposition 1) We will distinguish be-
tween the matridP and its corresponding operatd?. Let us
Rnd a finite dimensional operatd that satisfies:

e,

bit (LSB), respectively.



Initial, desired and controlled stationary distributions

—— Desired distribution

s Controlled stationary distribution
Initial steady-state distribution

(b) (©) (d)

Fig. 1. Intervention in the Human melanoma gene regulatory nétw@a) An abstract diagram of the melanoma gene regulatory
network [8]; (b) The original (red line), desired (blue ljnand minimal-perturbation energy controlled (green)lsteady-state
distributions of the Human melanoma gene regulatory ndéwdhe x-axis represents the 128 states of the network, and the
y-axis indicates the probability of each state; (c) A plothe# minimum-energy perturbed mati#x= P, + C*; (d) A plot of

the feasible perturbed matr® = 17,. Both perturbed matrices converge towards the desiredyststater,;.

Sincex; = 1 by construction, the conditioR1 = 1 is equiv- genetic regulatory networks: Optimal structural inter-
alenttoa;; = 1anday, = 0, fork = 2,--- ,n. Simi- vention,” IEEE Transactions on Signal Processjmgl.
larly, the conditionP?r,; = 74 is equivalent tax;; = 1 and 52, no. 10, pp. 4966-4976, October 2008.
aj1 =0, forj =2,---,n. Finally, the operato®P satisfying . . :
the two conditions in (10) can be written as: [5] E. S_eneta,Non—n_e_gatlve Matrices antfiarkov Chain
Springer, 2nd edition, 2006.
P=<ey >x+ ZZ% <ey;>xp  (13) [6] S. Boyd and L. VandenbergheConvex Optimization
=2 k=2 Cambridge University Press, 2003.

Applying the operatoP in Eq. (13) to the basist, we ob-  [7] C. Helmberg, “Semidefinite  programming
tain the desired block form representatiBry.. The condition page” http://www-user.tu-chemnitz.de/  helm-
P > 0 is satisfied if and only ik Pe;,e; >> 0 for all berg/semidef.html, 2003.

1 <i,j < norequivalentyAPyA~! > 0, where{e; }7* , 8]
denotes the canonical basis, i.e., the standard basis fer th
Euclidean spac®&”.
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