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Abstract—This paper tackles the problem of recovering time-
varying gene networks from a series of undersampled and noisy
observations. Gene regulatory networks evolve over time in
response to functional requirements in the cell and environmental
conditions. Collected genetic profiles from dynamic biological
processes, such as cell development, cancer progression and
treatment recovery, underlie genetic interactions that rewire over
the course of time. We formulate the problem of estimating
time-varying networks in a state-space framework. We show
that, due to the small number of measurements, the system
is unobservable; thus making the application of the standard

Kalman filter ineffective. We remedy the problem by performing
simultaneous compression and state estimation. The sparsity
property of gene regulatory networks is incorporated as a
constraint in the Kalman filter, leading to a compressed Kalman
estimate and reducing the number of required observations for
effective tracking of the network. Moreover, we improve the
estimation accuracy by taking into account the entire sample set
for each time instant estimate of the network through a forward-
backward smoothing procedure. The proposed constrained and
smoothed Kalman filter is shown to yield good tracking results
for varying small and medium-size networks.

I. INTRODUCTION

Deciphering the complex dynamic nature of genetic regu-

latory networks (GRNs) is crucial for understanding cellular

system dynamics, which can be fostered into educated control

mechanisms and design principles for therapeutic targeting

and drug design. The literature about reverse-engineering of

genetic networks from high-throughput data is replete with

various mathematical, statistical and graphical methods. These

methods, however, infer a time-invariant network, i.e., a net-

work with fixed genetic interactions and structure over the

course of time. Biological processes, however, are dynamic

and evolve over time in response to various intrinsic and

extrinsic factors, such as cellular development, disease pro-

gression, targeted therapy and environmental conditions.

A major difficulty in inferring time-varying GRNs is the

limited number of available measurements compared to the

number of nodes (here genes) , i.e., “small n, large p” problem.

This problem, which already exists in the inference of time-

invariant networks, is even more severe in the time-varying

case: At each time point, usually only one measurement

is available. Thus, a naive formulation of the time-varying

inference problem, which requires the estimation of a network

given one measurement, is ill-posed. A plausible assumption

on the network is that it evolves in phases or regimes, or

equivalently that the underlying biological process is piecewise

stationary. In this case, the time-series data is segmented

into regimes and a time-invariant network is inferred in each

regime segment [1]. This approach still suffers from a high

variance in the estimators due to the limited number of data

points in each segment. Alternatively, Ahmed and Xing [2]

presented a regularized logistic regression method to capture

the temporal rewiring of time-varying networks. Their model-

based approach, however, reveals only the network skeleton

and does not render the nature (inhibitive or stimulative) or

strength of the interactions between the nodes, which are of

crucial importance for biologists. Other graphical models, such

as dynamic Bayesian networks (DBNs), have been extended

to the time varying case [3]. In time-varying DBNs, the time-

varying structure and parameters of the network are treated

as additional hidden nodes in the graph model, and prior

knowledge on their time evolution is required to update the

model.

The two main approaches discussed above (segmentation

into time-invariant regimes and extending existing graphical

models to the time-varying case) do not take advantage of

the sparse nature of gene regulatory networks. In this paper,

we propose a different and new perspective to the inference

of time-varying networks, which has full temporal resolution

(i.e., uses the entire data set to estimate the network at each

time instant) and takes into account the sparse nature of the

network in order to overcome the undersampling (scarcity

of measurements) problem. Specifically, we propose a con-

strained and smoothed Kalman filter to track the time-varying

interactions between the nodes. The Kalman filter provides

the optimum mean-square error of a time-varying signal with

linear dynamics in Gaussian noise. The sparsity constraint on

the filter overcomes the undersampling problem by reducing

the number of required observations for a statistically mean-

ingful estimation. The smoothing uses all available data points

in the inference; thus improving the estimation by reducing its

variance.

II. THE STATE-SPACE MODEL

We model the concentrations of mRNAs, proteins, and other

molecules using a time-varying ordinary differential equation

(ODE). More specifically, the concentration of each molecule

is modeled as a linear function of the concentrations of the

other components in the system. The linearity of the ODE

model can be justified if the system is operating near its

steady-state. The time-dependent coefficients of the linear

ODE capture the rewiring structure of the network. We have

ẋi(t) = −λi(t)xi(t) +

p
∑

j=1

wij(t)xj(t) + biu(t) + vi(t), (1)



where i = 1, · · · , p, p being the number of genes, xi(t) is the

expression level of gene i at time t, ẋi(t) is the rate of change

of expression of gene i at time t, λi is the self degradation

rate, wij(t) represents the time-varying influence of gene j

on gene i, bi is the effect of the external perturbation u(t)
on gene i and vi(t) models the measurement and biological

noise. The goal is to infer the time-varying gene interactions

λi(t), {wij(t)}
p
i,j=1, given a limited number of measurements

n < p.

To simplify the notation, we absorb the self degradation

rate λi(t) into the interaction parameters by letting aij(t) =
wij(t) − λi(t)δij , where δij is the Kronecker delta function.

The external perturbation is assumed to be known. The model

in (1) can be simplified by introducing a new variable

zi(t) = ẋi(t) − biu(t). (2)

The discrete-time equivalent of (1) can, therefore, be expressed

as

zi(k) =

p
∑

j=1

aij(k)xj(k)+vi(k), i = 1, · · · , p, k = 1, . . . , n.

(3)

Writing (3) in matrix form, we obtain

z(k) = A(k)x(k) + v(k), (4)

where z(k) = [z1(k), . . . , zp(k)]T , A(k) = {aij(k)}
is the matrix of time-dependent interactions, x(k) =
[x1(k), . . . xp(k)]T and v(k) = [v1(k), . . . , vp(k)]T . Let

a(k) ∈ R
p2

be the vectorized form of the matrix A(k), i.e.,

a(k) = vec[A(k)T ]

= [a11(k), . . . , a1p(k), . . . , ap1(k), . . . , app(k)]T ,(5)

where vec(.) is the vectorization operator. Using this notation,

we can write

A(k)x(k) =







x1(k) . . . xp(k) 0
...

...

0 x1(k) . . . xp(k)






a(k)

= [Ip ⊗ x(k)T ]a(k) = Λ(k)a(k), (6)

where Λ(k) = Ip ⊗ x(k)T is a p × p2 block diagonal

matrix and ⊗ represents the Kronecker product. Therefore,

the observation equation (4) becomes

z(k) = [Ip ⊗ x(k)T ] a(k) + v(k). (7)

The state equation models the dynamics of the state vector

a(k) given a priori knowledge of the system. In this work,

we assume a random walk model of the network parameters.

The random walk model is chosen for two reasons. First, it

reflects a flat prior or a lack of a priori knowledge. Second,

it leads to a smooth evolution of the state vector over time (if

the variance of the random walk is not too high). The state

space model of the time-varying network is, therefore, given

by

a(k + 1) = a(k) + w(k), (8)

z(k) = [Ip ⊗ x(k)T ]a(k) + v(k), (9)

where w(k) and v(k) are, respectively, the process noise and

the observation noise, assumed to be zero mean Gaussian noise

processes with known covariance matrices. In addition, the

process and observation noise are assumed to be uncorrelated

with each other and with the state vector a(k). If the linear

system is observable, then the minimum mean-square error

(MSE) solution can be obtained using the Kalman filter.

On the other hand, if the system is unobservable, then the

regular Kalman filter cannot recover the optimal solution. In

the sequel, we will show that the observability problem may

be circumvented by taking into account the sparsity of the

network.

III. OBSERVABILITY OF THE SYSTEM

The time-varying linear system in (8, 9) is observable if the

p2 × p2 matrix Q(k)

Q(k) =

n
∑

k=0

ΦT (k, 0)HT (k)H(k)Φ(k, 0). (10)

is positive definite (equivalently does not have a zero as an

eigenvalue or has a non-zero determinant). Φ(k, j) is the state

transition matrix and H(k) = Ip ⊗ x(k)T is the observation

matrix. From the random walk state transition model, we have

Φ(k, j) = I
(k−j)
p2 = Ip2 . Equation (10) can, therefore, be

simplified to

Q(k) =

n
∑

k=0

HT (k)H(k). (11)

Replacing the matrix H(k) by its expression and using the

properties of the Kronecker product, we have

Q(k) =

n
∑

k=0

[

IT
p ⊗ x(k)

] [

Ip ⊗ xT (k)
]

,

=

n
∑

k=0

[

Ip ⊗ {x(k)xT (k)}
]

= Ip ⊗

n
∑

k=0

x(k)xT (k). (12)

The matrix summation on the right side of the Kronecker

product in (12) is the sum of n rank 1 matrices. Its rank is,

therefore, upper bounded by the sum of the ranks of matrices,

i.e.,

rank

[

n
∑

k=0

x(k)xT (k)

]

≤
n

∑

k=0

rank
[

x(k)xT (k)
]

= n. (13)

Finally, using the property of the Kronecker product for the

rank of matrices, we obtain from (12)

rank[Q(k)] = rank [Ip] × rank

[

n
∑

k=0

x(k)xT (k)

]

≤ p × n < p2, (14)

where the last inequality follows from the fact that the system

is undersampled or n < p. Therefore, Q(k) is rank-deficit for

all k whenever the number of measurements n is less than the

number of genes p. Thus, the system is unobservable.



IV. THE CONSTRAINED AND SMOOTHED KALMAN FILTER

A. Constraining the filter

Gene regulatory networks are known to be sparse: each

gene is governed by only a small number of the genes in

the network. The recovery of sparse networks is an NP-hard

combinatorial problem. Instead, the problem can be relaxed

by resorting to a convex l1 minimization. We, subsequently,

constrain the estimated state in (8, 9) to be sparse by bounding

its l1-norm. Intuitively, the sparsity constraint compresses the

state vector by introducing zero entries; thus reducing the

amount of required observations and making the system ob-

servable. Without such a constraint, the system is unobservable

and any effort to reconstruct the time-varying network from

undersampled measurements will be ineffective. We derive the

constrained state estimate using the projection method. We

compute the standard unconstrained estimate â and project it

onto the constraint space. This can be formulated as

ã = argmin
ã

(ã − â)T W (ã − â) such that ‖ã‖1 ≤ γ, (15)

where W is a positive definite weighting matrix, and γ is the

sparsity inducing parameter. The optimization problem in (15)

may be conveniently expressed in the following form

ã = argmin
ã

(ã − â)T W (ã − â) + λ‖ã‖1. (16)

The problem in (16) is a Second Order Cone Programming

(SOCP) problem, and can be efficiently solved using a myriad

of existing convex optimization methods. The parameter λ ≥
0 controls the amount of compression that is applied to the

estimate and can be estimated by the cross-validation or the

generalized cross-validation methods.

B. Forward-backward smoothing

The Kalman filter is a causal filter. It takes into account

only the past and current observations in order to obtain an

estimate of the state vector at the current time. The Kalman

filter equations for the state-space model in (8, 9) are given

by

[Prediction]

ak|k−1 = ak−1|k−1,

Vk|k−1 = Vk−1|k−1 + Qk. (17)

[Filtering]

Kk = Vk|k−1H
T
k (HkVk|k−1H

T
k + Rk)−1,

ak|k = ak|k−1 + Kk(yk − Hkak|k−1),

Vk|k = (I − KkHk)Vk|k−1. (18)

Here, Kk is the Kalman gain and Vk|. is the state estimation

error covariance matrix.

We would like to use all of the available data for each

state estimate, thus improving the estimation accuracy. We

propose to smooth the Kalman filter by working backwards

from k = n to obtain the optimal estimate in the light of the

whole sample. Specifically, we obtain two estimates for the

forward and backward runs of the filter. The first estimate is

based on the standard Kalman filter that operates from i = 1
to i = k as described in Eqs. (17)-(18). The second estimate

is based on a filter than runs backward in time from i = n

back to i = k. The forward-backward approach to smoothing

combines the two estimates to form an optimal smoothed

estimate. Smoothing will provide ak|n, k = n − 1, . . . , 1,

according to the following equations

Φk = Vk|kV −1
k+1|k,

ak|n = ak|k + Φk(ak+1|n − ak+1|k),

Vk|n = Vk|k + Φk(Vk+1|n − Vk+1|k)ΦT
k . (19)

C. The constrained and smoothed Kalman filter

The constrained and smoothed Kalman filter algorithm is

summarized below.

1) Initialize the state vector a0|0 = â and state estima-

tion error covariance V0|0 = 0.

2) For k = 1, · · · , n

- Update the matrix Hk using the vector xk.

- Compute the state estimate at time k using the

standard Kalman filter equations as described in

(17) and (18).

- Project the estimated state onto a sparse space by

solving the convex optimization problem in (16)

using, for instance, the cvx package [4].

3) Smooth the state estimate ak|n using (19).

V. SIMULATION RESULTS

We generate synthetic GRNs with different sizes (number

of genes), varying degrees of sparsity and noise level. We

simulate a smooth evolution of the network over time by

including elimination of edges, birth of new edges and changes

of the strength of interactions between the nodes. We per-

form Monte Carlo simulations in order to obtain statistically

reliable results. To assess the efficiency of the algorithm,

we use the performance measure in [5]. We present results

for four distinct cases: (i) unconstrained Kalman estimation;

(ii) constrained causal Kalman estimation; (iii) constrained

and smoothed Kalman estimation; and (iv) constrained and

smoothed Kalman estimation with an initial estimate of the

state vector given by the time-invariant network estimation

algorithm described in [5].

Figure 1 shows the error plots as a function of the number

of measurements for the four cases. The underlying network

topology and parameters are changing at each time instant. The

constrained Kalman filter outperforms the unconstrained filter

and converges to the optimal estimate when the number of

measurements exceeds the number of nodes. The constrained

and smoothed Kalman filter leads to the smallest error, particu-

larly when the number of measurements is much smaller than

the number of nodes. The estimated time-varying network,

with a number of measurements smaller than the number of
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Fig. 1. Percentage error for a 10-gene network as a function of the number
of measurements: unconstrained Kalman filtering in blue, constrained Kalman
filtering in green, constrained and smoothed Kalman with a random initial
estimate in red, and constrained and smoothed Kalman filtering with an initial
state estimate given by [5] in black.

genes, is shown in Fig. 2. Figure 2(a) shows the initial time-

varying network, which has three “regimes” over time. In the

second regime of the network, a new stimulative edge (E→G)

appears. In the third regime, the inhibitory edge (B→G) disap-

pears and a new inhibitory edge (B→F) appears. Figures 2(b)

(2(c)) shows the constrained and smoothed Kalman estimate

of the network with 9 (resp., 6) measurements available, each

phase of the network having 3 (resp., 2) measurements. Figure

2(d) is the estimation result using the standard (causal and

unconstrained) Kalman filter with 9 measurements.

VI. CONCLUSION

We proposed a constrained and smoothed Kalman filter

algorithm to estimate time-varying networks from undersam-

pled data, when the number of measurements is smaller than

the number of nodes. We showed that the under-determined

system of time-varying gene profiles is unobservable. Thus

the time-varying network parameters cannot be tracked using

the standard Kalman filter. We showed that this problem

can be circumvented if compression and tracking are carried

out simultaneously, thereby reducing the amount of required

observations. We have also adjusted the constrained (sparse)

Kalman estimate to obtain an optimal estimate in the light

of the whole data sample by smoothing. The proposed con-

strained and smoothed Kalman framework for time-varying

network inference can be easily extended to the nonlinear

case by considering a non-linear ODE in the state equation.

In the non-linear case, the constrained and smoothed extended

Kalman filter (EKF) or unscented Kalman filter (UKF) can be

used. Our simulation results show that the constrained and

smoothed Kalman filter yields good tracking of small and

medium-size time-varying networks with undersampled data,

compared to the unconstrained or unsmoothed versions of the

filter.
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[3] E. E. Kuruoǧlu, X. Yang, Y. Xu, and T. S. Huang, “Time varying
dynamic Bayesian network for nonstationary events modeling and online
inference,” IEEE Transactions on Signal Processing, vol. 59, no. 4, pp.
1553 – 1568, April 2011.

[4] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 1.21,” Apr. 2011.

[5] G. Rasool, N. Bouaynaya, H. Fathallah-Shaykh, and D. Schonfeld, “In-
ference of genetic regulatory networks using regularized likelihood with
covariance estimation,” in IEEE Statistical Signal Processing Workshop,
Ann Arbor, Michigan, USA, 2012, pp. 560–563.


