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Abstract

In myoelectric prostheses design, it is normally assumed that the necessary control information can be extracted from the surface
myoelectric signals. In the pattern classification paradigm for controlling myoelectric prosthesis, the autoregressive (AR) model
coefficients are generally considered an efficient and robust feature set. However, no formal statistical methodologies or tests are
reported in the literature to analyze and model the myoelectric signal as an AR process. We analyzed the myoelectric signal as a
stochastic time-series and found that the signal is heteroscedastic, i.e., the AR modeling residuals exhibit a time-varying variance.
Heteroscedasticity is a major concern in statistical modeling because it can invalidate statistical tests of significance which may
assume that the modeling errors are uncorrelated and that the error variances do not vary with the effects being modeled. We sub-
sequently proposed to model the myoelectric signal as an Autoregressive-Generalized Autoregressive Conditional Heteroscedastic
(AR-GARCH) process and used the model parameters as a feature set for signal classification. Multiple statistical tests including
the Ljung-Box Q-test, Engle’s test for heteroscedasticity, Kolmogorov-Smirnov test and the goodness of fit test were performed
to show the validity of the proposed model. Our experimental results show that the proposed AR-GARCH model coefficients,
when used as a feature set in two different classification schemes, significantly outperformed (p < .01) the conventional AR model
coefficients.

Keywords: Myoelectric signal, autoregressive (AR) model, heteroscedasticity, autoregressive-autoregressive generalized
conditional heteroscedastic (AR-GARCH) model, myoelectric control.

1. Introduction

The pattern classification for myoelectric control is based
on the assumption that the muscle activations are distinguish-
able and repeatable. The direct classification of the myoelec-
tric signal is not preferred due to its large dimensionality and
stochastic nature [1]. Therefore, the myoelectric signal is first
segmented to form analysis windows. A set of representative
features is extracted from each analysis window and is sub-
sequently fed to a classifier [2, 3]. Depending on the type
of the classification algorithm, the classifier may require su-
pervised or semi-unsupervised training [4, 5]. Once trained,
the output of the classification algorithm is a single identified
movement class based on the input myoelectric signal. Vari-
ous classification algorithms are employed for the purpose of
myoelectric signal classification, e.g., the linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), differ-
ent flavors of artificial neural networks (ANN), k-nearest neigh-
bor (k-NN), neuro (fuzzy) schemes, Gaussian mixture models
(GMM), and hidden Markov models (HMM) [2, 3, 5] (and ref-
erences therein). Advanced classifiers including the support
vector machines (SVM) [6], twin SVM [7] and self-enhancing
LDA and QDA [8] have also been recently proposed. Further-
more, blind source separation (BSS) techniques including the
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independent component analysis (ICA) are also used to classify
myoelectric signals [9, 10]. Generally the pattern classification
systems have produced promising results with classification ac-
curacies in the range of 90% or more [2, 3].

In the myoelectric control, the choice of an appropriate fea-
ture set is crucial for the pattern classification. Parker et al. have
shown that the classification accuracy in a pattern classification
scheme is more affected by the choice of the feature set than
by the classification algorithm [11]. A common and promis-
ing feature set considered in the myoelectric control literature
consists of autoregressive (AR) coefficients [2, 5, 8]. Tkach et
al. investigated different features under conditions of change
in muscle effort level, muscle fatigue and electrode shift, and
found the AR coefficients to be one of the most robust features
[12]. Similarly, Young et al. found that, under conditions of
socket misalignment, the AR features performed better than the
time-domain features [13]. However, in the myoelectric con-
trol literature, there has not been an exclusive effort to model
the myoelectric signal as an AR process using formal statisti-
cal tools. A generally adopted procedure in the literature is to
adjust (increase or decrease) the AR model order based on the
required classification accuracy and available computational re-
sources. Such practice usually results in an AR model order in
the range of 4 to 6 [2, 5]. We believe that a detailed statistical
study is essential to, 1) identify the parsimonious AR model or-
der for the myoelectric signal, 2) measure the the goodness of fit
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of the identified model, and 3) evaluate various characteristics
of the modeling residuals, such as the sample autocorrelation
and/or the heteroscedasticity. In the present work, we show that
modeling the myoelectric signal as an AR process results into
the residual errors that exhibit heteroscedasticity, i.e., “vari-
ability” in the variance. [14]. Concept of heteroscedasticity,
autoregressive conditional heteroscedasticity (ARCH) and gen-
eralized ARCH (GARCH) models are introduced in Appendix
A.

In biomedical engineering applications, the GARCH mod-
els have been employed to extract features from the electroen-
cephalogram (EEG) signals within the framework of wavelet
transforms [15]. The GARCH models have also been used
within a state-space framework and the Kalman filter for model-
ing non-stationary variance in the EEG signal [16], or modeling
covariance for generation of the EEG signal [17]. In the case
of myoelectric signals, the GARCH process has been used for
noise suppression with wavelet coefficients [18]. However, to
the best of our knowledge, no exclusive effort is reported in the
literature to model the myoelectric signal as an AR-GARCH
process and use its parameters as a basis for statistical infer-
ence and biophysical interpretation. In Fig 1, we contrast the
proposed approach with the conventional AR feature approach.
The proposed AR-GARCH model extracts more information
from the myoelectric signal as compared to the conventional
scheme as the AR residuals further modeled as a GARCH pro-
cess.

2. Material and Methods

The study received approval from the Institutional Review
Board at the University of Arkansas at Little Rock. All par-
ticipants provided written informed consent before start of the
data collection. Experimental protocol for data collection was
designed as per the recommendations of Surface Electromyog-
raphy for the Non-Invasive Assessment of Muscles (SENIAM)
project [19] and standard physiology and anatomy text [20].

2.1. Participants

It has been shown that there is a significant positive correla-
tion between myoelectric data collected from able-bodied par-
ticipants and amputees [21]. Therefore a set of healthy partic-
ipants can form a reasonable basis for testing newly proposed
feature set. A total of six able-bodied participants, male and
female volunteered for the study. All selected participants were
right hand dominant with no neuromuscular disorder history.

2.2. Movements

We identified eleven movements for our data collection, i.e.,
five hand movements and six wrist movements. Hand move-
ments included lateral grasp, cylindrical grasp, tripod grasp,
hand open and index finger point [5]. The wrist movements
included pronation and supination, ulnar and radial deviation,
and flexion and extension. For the classification purpose a “no
movement” class was also added, thus making twelve classes in
total.
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Figure 1: Proposed and conventional approaches to AR modeling of the my-
oelectric signal. The proposed approach captures more information from the
myoelectric signals as the AR residuals are further modeled as the GARCH
process.

2.3. Myoelectric data recording

It has been suggested that four to six surface sensors (myo-
electric channels) capture adequate muscle activation informa-
tion required for good classification accuracies [3, 22]. Any
further increase in the number of channels may not necessarily
increase the classification accuracy [23, 24]. We used wire-
less sensors to record and transmit myoelectric data at a sam-
pling rate of 1500 Hz [25, 26] with a Noraxon TeleMyo Direct
Transmission System (DTS) (Noraxon U.S.A. Inc, Scottsdale,
Arizona). We used disposable, self-adhesive silver/silver chlo-
ride (Ag/AgCl) snap electrodes with two circular conductive
areas of 1 cm each and an inter-electrode distance of 2 cm. It
is known that a comparable accuracy can be achieved without
targeting specific muscle sites [23]. Therefore, we placed all
five electrodes around the circumference of the forearm sym-
metrically with the first electrode placed beneath the medial
epicondyle of the humerus. Electrodes were placed proximally
around the forearm at a location that is 1/3 of the distance be-
tween medial epicondyle of the humerus and styloid process of
the ulna. Electrode placement for the data collection is shown
in Figs. 2(a) and 2(b).
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(a) Electrode arrangement. (b) Wireless myoelectric sensors. (c) Snapshot of the GUI.

Figure 2: (a) Symmetrical placement of electrodes around the forearm on anterior and posterior sides. (b) Arrangement of wireless myoelectric sensors on the
forearm of a participant. (c) A snapshot of the graphical user interface (GUI) for data collection. The GUI provided both visual and auditory cues for movement
initiation and termination. Duration of movement, number of repetitions of a movement in a single trial and inter-movement break duration can be specified
separately for each trial by the experimenter.

2.4. Data collection protocol
Before start of the data collection experiment, each partic-

ipant was sitting comfortably in a chair with adjustable height
armrests. Height of the right armrest was adjusted for each indi-
vidual keeping in view his/her comfort and ease. Initial/rest po-
sition of the arm was defined as: the dorsopalmar axis pointing
inside parallel to the coronal plane (palm facing to the medial
side of the body with forearm parallel to the ground), elbow
flexed at 90o and arm abducted 10o. Forearm was supported
at two places, i.e., under the styloid process of the ulna and the
distal end of the humerus (the elbow joint). A graphical user in-
terface (GUI) based software was developed to provide visual
and auditory cues to participants for guiding through the data
collection process (Fig. 2(c)). The GUI provided the flexibil-
ity to control different experimental parameters including the
movement duration, the number of movement repetitions in a
trial and the duration of the inter-movement break. For this
data collection, a single trial consisted of one repetition of each
movement appearing in front of the participant in a random or-
der. There was a short break of 4 seconds between consecutive
movements. Once indicated by the software through visual and
auditory cues, the user performed a movement for a duration of
5 seconds [6, 12, 27]. Between every two trials, there was an
additional break, the duration of which was left at the discre-
tion of the participant. A total of ten trials were recorded for
each participant. Participants were instructed to start the move-
ment from defined initial (rest) position, stay in the prescribed
posture (shown in the GUI) and then return back to initial posi-
tion. Participants were instructed to maintain comfortable and
repeatable force levels for all movements. Furthermore, par-
ticipants were asked to report any signs of pain and/or fatigue
immediately to the experimenter. Before start of the data collec-
tion, all participants were given approximately ten minutes of
training to familiarize them with the experimental protocol and
movements to be performed. Myoelectric data was collected
using the Noraxon software (MyoResearch XP) and stored in
the hard disk for later processing. All data processing was per-

formed in Matlab (The MathWorks, Natick, MA).

2.5. Myoelectric signal processing

We developed a custom software in Matlab for processing
of the myoelectric data, i.e., data segmentation, feature extrac-
tion and classification. Myoelectric data from a 3 seconds pe-
riod was extracted from the raw myoelectric data (originally
recorded for 5 seconds) from all five channels. The data was
segmented to form non-overlapping analysis windows of 200
ms.

3. Heteroscedastic Processes and Myoelectric Signal Mod-
eling

Heteroscedastic processes are characterized by a volatile na-
ture, and are often encountered in econometrics and finance,
as for instance in stock prices, which exhibit periods of large
inter-day price variability followed by periods of relative sta-
bility. The ARCH and GARCH processes are used to model
heteroscedastic time-series [28, 29]. There are numerous gen-
eralizations of these processes, e.g., nonlinear asymmetric
GARCH, integrated GARCH, exponential GARCH, quadratic
GARCH, Glosten-Jagannathan-Runkle GARCH and threshold
GARCH [30]. In this paper, we focus on the GARCH process
to model heteroscedasticity exhibited by the myoelectric signal.

3.1. The GARCH Process

Let Zt be a sequence of i.i.d. random variables with zero
mean and unit variance from some specified probability density
function. The process Yt is called GARCH(p, q) if

Yt = σtZt, t ∈ Z, (1a)

σ2
t = α0 +

q∑
i=1

αiY2
t−i +

p∑
j=1

β jσ
2
t− j, (1b)
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where α0 > 0, αi ≥ 0 and β j ≥ 0,∀ i, j; σt ≥ 0 and
Zt ∼ N(0, 1). If the parameter p = 0 in the second summa-
tion in (1b), the GARCH(p, q) process reduces to an ARCH(q)
process [28]. In an ARCH(q) process, the conditional vari-
ance is a linear function of past sample variances only, whereas
the GARCH(p, q) process takes into account lagged conditional
variances as well [29]. If both p = q = 0, the process Yt is a
pure white noise with variance specified by the parameter α0.
Some relevant properties of the GARCH process are discussed
in Appendix B, where we show that the GARCH is a white
noise process.

3.2. The AR-GARCH Process

AR processes are driven by white noise [31] and we have
shown that the GARCH process is white noise. We can, there-
fore, generalize an AR process by considering a white noise of
the form specified by a GARCH process. The resulting process
is called the AR-GARCH, where the AR residuals εt are given
by σtZt and σt follows a GARCH volatility specifications in
terms of historical values of εt. This formulation is a general-
ization of the family of AR and GARCH models to exploit fea-
tures of both models [32]. For an observed signal Xt, generated
by an AR(m) and a GARCH(p, q) process,

Xt =

m∑
k=1

φkXt−k + εt, (2a)

εt = σtZt, (2b)

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

β jσ
2
t− j, (2c)

where αi, β j and Zt are defined in Eq.(1).

3.3. Modeling Heteroscedastic Processes

The first step towards modeling a heteroscedastic time-series
is to confirm the presence of heteroscedasticity. Once con-
firmed, different statistical tests can be performed to model and
quantitatively measure the validity of the modeling process.
We discuss four statistical tests to establish the heteroscedas-
tic nature of the myoelectric signal and later model the same
as an AR-GARCH process. These tests include the Ljung-
Box Q-test, Engle’s test of heteroscedasticity, the Kolmogorov-
Smirnov test, and the goodness of fit test which are discussed in
the following.

3.3.1. The Ljung-Box Q-test
The Ljung-Box Q-test is a type of portmanteau statistical test

of whether any of a group of autocorrelations for a time-series
are different from zero [33]. The outcome of the Ljung-Box
Q-test is a parsimonious model for which the sample autocorre-
lation of the residuals falls below the critical value (determined
by the significance level), i.e., the modeling residuals become
approximately white noise. Further details of the test are given
in Appendix C. We employ the Ljung-Box Q-test to find a
statistically correct AR model order for the myoelectric signal.

3.3.2. Engle’s test of heteroscedasticity
Robert Engle, in his seminal paper, proposed a test to es-

tablish the presence of heteroscedasticity in a given time-series
[28]. According to this test, in an ARCH model setting, under
the null hypothesis all ARCH parameters will be zero and under
the alternate hypothesis, at least one parameter will be nonzero.
Formally, we have

H0 : α1 = . . . = αp = 0,
H1 : αi , 0, for some i = 1, · · · , p. (3)

The procedure is to run ordinary least squares regression and
find the residuals. The next step is to regress the squared resid-
uals on a constant and p lags to test for Lagrange Multiplier
statistic TR2 as chi-square (χ2

p), where T is the sample size and
R2 is the coefficient of determination of regression. Under the
null hypothesis, the asymptotic distribution of the test statistic
is χ2

p with p degrees of freedom. We employ the Engle’s test to
confirm that the AR residuals are heteroscedastic.

3.3.3. The Kolmogorov-Smirnov test
The two sample Kolmogorov-Smirnov (K-S) test is a non-

parametric test for the equality of continuous, one-dimensional
probability distributions that can be used to compare two sam-
ples. We use the K-S test to quantitatively measure how close
the AR residual distribution is to that of a GARCH process.
Further details about the test are presented in Appendix D.

3.3.4. Goodness of fit
The goodness of fit of a statistical model describes how well

the model fits the observations. In our setting, we need to quan-
titatively measure how well the AR-GARCH model fits the my-
oelectric signal. There are various tests available in the litera-
ture which can be used to find the goodness of fit of a proposed
statistical model [34]. We used the Akaike information criteria
(AIC) [35] and the Bayesian information criteria (BIC) [36].
Lower AIC/BIC values correspond to a better fit of the model
to the observed data.

4. Results

We present results in two separate parts. In the first part,
we analyzed the myoelectric signal for heteroscedasticity and
modeled it as an AR-GARCH process. Later, we used the AR-
GARCH model parameters as a new feature set and performed
classification of the myoelectric signal using two different clas-
sification algorithms.

4.1. Myoelectric signal modeling and analysis

We modeled the myoelectric signal as an AR process with
the condition that the AR modeling residuals were white noise.
Later, we analyzed the AR modeling residuals for heteroscedas-
ticity and modeled the residuals as a GARCH process. Finally,
we performed a goodness of fit analysis of the proposed model.
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Figure 3: Ljung-Box Q-test results for the myoelectric signal. The AR mod-
eling residuals are approximately white noise for AR(9), while for the squared
residuals, the Q-statistic does not decrease and stays above the critical value for
all AR models.

4.1.1. Myoelectric signal as an AR process
In order to find a statistically correct AR model, we increased

the AR model order till the modeling residuals became white
noise. Specifically, for each AR model, the residuals formed an
input to the Ljung-Box Q-test which analyzed residuals. In ad-
dition, we also used squared values of the residuals as an input
to the Ljung-Box Q-test. The later input was used to highlight
the heteroscedastic nature of the myoelectric signal. We used
a 95% significance level for the test, with the AR model order
ranging from 5 to 15. An analysis window of 200 ms was used
in this test. In Fig. 3, it is evident that for the AR(9) model, the
residuals are approximately white noise, while the Q-statistic
for the squared AR residuals does not decrease with increasing
model order, which is a typical characteristic of a heteroscedas-
tic time-series (in accordance with the lower right figure in Fig.
B.9).

4.1.2. Heteroscedasticity in the myoelectric signal
Once a statistically correct AR model was found (i.e., the

modeling residuals were white noise), we used the Engle’s test
to establish whether the residuals exhibited heteroscedasticity
or otherwise. For this test, we used analysis windows of vari-
ous sizes and two different AR models, i.e., AR(5) and AR(9).
In Table 1, we present results of the heteroscedastic testing. We
varied the size of analysis windows from 50 ms (75 samples)
to 300 ms (450 samples). For both AR models and all analysis
windows of 100 ms or above, the null hypothesis was rejected,
i.e., the myoelectric signal was found to exhibit heteroscedas-
ticity.

Further, we used a two sample K-S test to quantify whether
the AR modeling residuals follow the same distribution as that
of a GARCH process. For this purpose, one sample for the K-
S test consisted of the AR residuals and the other sample was
the GARCH process generated with parameters estimated us-
ing the same AR residuals. The test was performed on various
myoelectric signals selected at random from experimental data
and modeled with an AR(5) or AR(9) process. Invariably, in
all cases, the test was unable to reject the null hypothesis indi-
cating that the GARCH process and the residual samples were
following the same probability distribution function. In Fig. 4,
we present the cumulative distribution function (CDF) and his-

Table 1: Heteroscedasticity in the myoelectric signal for different analysis win-
dows and AR models. Myoelectric data was recorded at a sampling frequency
of 1500 Hz. Critical value for all tests was 18.71.

Window size Samples Statistic Value Result
AR(5)
50 ms 75 11.55 homoscedastic

100 ms 150 29.44 heteroscedastic
150 ms 225 48.37 heteroscedastic
200 ms 300 44.86 heteroscedastic
250 ms 375 46.27 heteroscedastic
300 ms 450 48.84 heteroscedastic
AR(9)
50 ms 75 10.24 homoscedastic

100 ms 150 33.08 heteroscedastic
150 ms 225 55.53 heteroscedastic
200 ms 300 40.79 heteroscedastic
250 ms 375 50.03 heteroscedastic
300 ms 450 54.66 heteroscedastic
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(a) CDFs of the GARCH process and
the AR(5) residuals.
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Figure 4: CDFs and histogram plots for the GARCH(1,1) process and the
AR(5) residuals. The GARCH(1,1) process was generated using the param-
eters estimated from the same AR residuals and Gaussian innovations.

togram plots for the AR(5) residuals and the GARCH(1,1) pro-
cess generated using α0, α1 and β1 parameters estimated from
the same AR modeling residuals and Gaussian innovations for
Zt (Eq. 1).

4.1.3. Goodness of fit
Finally, to establish whether the proposed AR-GARCH mod-

eling scheme actually fits the data well, we perform goodness
of fit testing using the AIC and BIC. We used different num-
ber of models, i.e., AR(m), AR(m)-GARCH(1, 1) and AR(m)-
GARCH(2, 2) with m = 2, · · · 12. The results from the good-
ness of fit testing are presented in Fig. 5.

We have shown that the myoelectric signal can be modeled
as an AR process, however, a statistically correct model order
may be higher, i.e., AR(9), than what is generally used in the
literature, i.e., AR(4) to AR(6). Further, we found that the AR
residuals exhibited heteroscedasticity and can be modeled as a
GARCH process. We also established that the models AR(m)-
GARCH(1,1) and AR(m)-GARCH(2,2) with m > 8 best fit-
ted the myoelectric signal. Similarly, the Ljung-Box Q-test
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Figure 5: Results of goodness of fit using the AIC and the BIC for the AR(m),
AR(m)-GARCH(1, 1) and AR(m)-GARCH(2, 2) with m = 2, · · · , 12 models.
There is a significant difference between the AR(m) and the AR(m)-GARCH
models. However, the AR(m)-GARCH(1,1) and AR(m)-GARCH(2,2) are close
to each other indicating a diminishing effect of increasing the GARCH model
order from (1,1) to (2,2).

resulted in an AR(9) model, therefore we selected an AR(9)
model for further analysis. Also, for the GARCH part, we se-
lected GARCH(1,1) being computationally less expensive to
estimate. A summary of presented statical tests and their out-
come is shown in Table 2. Based on the presented analysis, we
selected the AR(9)-GARCH(1,1) model coefficients as a new
feature set for myoelectric signal classification.

4.2. Myoelectric Feature Extraction and Classification

For the purpose of feature extraction from the myoelectric
signal, we used an analysis window of size 200 ms. After form-
ing analysis windows, the myoelectric signals were modeled as
an AR(m) process and m + 1 coefficients were estimated (Eq.
2a). Next, the AR residuals εt were modeled as a GARCH(p, q)
process and p + q + 1 coefficients were estimated (Eq. 2c).
Two additional coefficients are the AR and the GARCH model
constants. The proposed AR(9)-GARCH(1,1) resulted into a
total of 13 coefficients. For the purpose of comparison, we con-
sider three different feature sets, i.e., AR(5), AR(9), and AR(9)-
GARCH(1,1). A summary of the selected feature sets is given
in Table 3.

To evaluate the performance of the selected three feature sets,
we employed two widely used classification algorithms, i.e.,
the linear discriminant analysis (LDA) and the artificial neu-
ral network (ANN) [2, 5]. The LDA was used in a five-fold
cross-validation setting, where all the data was randomly parti-
tioned into five approximately equal size bins. Out of five data
bins, a single data bin was retained as the validation data for
testing, and the remaining four data bins were used for train-
ing. The cross-validation process was repeated ten times. The
classification errors were averaged to get the final classification
error. Similarly for the ANN classifier, we used a feedforward

Table 3: Feature sets used in the classification.
Feature set Reason
AR(5) Prevalent use in the literature [5].
AR(9) Resulting model from the Ljung-Box Q-test

having white noise residuals (Fig. 3).
AR(9)-
GARCH(1,1)

A model with white noise residuals that
were further modeled as a GARCH(1,1) pro-
cess for heteroscedasticity.
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(a) LDA classification errors.
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(b) ANN classification errors.

Figure 6: Average classification errors for all participants and overall classifica-
tion error using three sets of features AR(5), AR(9), and AR(9)-GARCH(1,1).

network with one input layer, one hidden layer with six neu-
rons and an output layer. Back-propagation training algorithms,
Levenberg-Marquardt was used to train the neural network [37].
The ANN was trained ten times and an average of the classifi-
cation error was recorded. Classification errors for individual
participants and overall averages are presented in Fig. 6.

We performed the multivariate analysis of variance
(MANOVA) with the participants and the feature sets as inde-
pendent variables and classification errors of the LDA and the
ANN as dependent variables. We observed a significant effect
of feature sets on the classification accuracy for both algorithms
(p < .01). A pairwise comparison revealed that the means of
the LDA and the ANN classification errors were significantly
different for all three feature sets (p < .01 for all pairwise com-
parisons). In other words, the classification accuracy was sig-
nificantly affected by the choice of the feature set, i.e., AR(5),
AR(9) or AR(9)-GARCH(1,1) for both the LDA and the ANN
algorithms (Fig. 7).

To test and compare the reliability of myoelectric classifica-
tion for all three feature sets, we used two standard metrics, i.e.,
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Table 2: A summary of statistical tests to model the myoelectric signal as an AR-GARCH process. All four tests were performed sequentially to find a parsimonious
model for the myoelectric signal.

Statistical test Outcome
Ljung-Box Q-test The test ascertains a parsimonious model order for the myoelectric signal once modeled as

an AR process. We found that for the analyzed myoelectric signal, an AR(9) model resulted
in white noise residual.

Engle’s test The test is used on the AR modeling residuals to establish whether the residuals exhibited
heteroscedasticity or otherwise. We found that the AR residuals of the myoelectric signal
actually exhibits heteroscedasticity and we may model the residuals as a GARCH process.

K-S test The test determines whether the AR residuals follow the same probability distribution as that
of a GARCH process. The test confirmed our hypothesis that both AR residuals and the
GARCH(1,1) process actually follow the same distribution.

Goodness of fit AIC and BIC were used to measure the goodness of fit for the myoelectric signal when mod-
eled as an AR or AR-GARCH process. We found that for the analyzed myoelectric signal,
an AR(9)-GARCH(1,1) model performed better than others.

4 4 15.49 22.96 12.47
5 4 14.69 17.47 16.42
6 4 13.58 15.49 11.23
7 4 18.77 12.35 16.11
8 4 18.40 18.27 14.57
9 4 16.79 11.73 11.17

10 4 15.80 13.64 13.58
1 5 15.69 12.96 9.81
2 5 15.37 13.33 12.55
3 5 15.37 14.07 13.84
4 5 14.44 13.75 13.38
5 5 14.26 15.65 11.53
6 5 14.58 14.21 13.52
7 5 19.81 13.43 13.15
8 5 14.77 15.51 13.24
9 5 15.79 13.33 11.53

10 5 17.96 16.53 11.34
1 6 16.60 9.81 8.77
2 6 16.42 10.37 7.10
3 6 12.53 8.21 8.15
4 6 11.48 12.35 6.54
5 6 11.98 9.94 10.25
6 6 6.98 10.99 4.75
7 6 10.43 13.33 8.09
8 6 7.84 5.93 10.68
9 6 10.31 8.33 6.91

10 6 10.06 8.02 9.75
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Figure 7: Average classification errors using three feature sets, i.e., AR(5),
AR(9), and AR(9)-GARCH(1,1).

Table 4: Average sensitivity and specificity values for the LDA algorithm across
all movements.

Feature set Sensitivity Specificity
AR(5) 90.80% 89.14%
AR(9) 91.83% 90.17%
AR(9)-GARCH(1,1) 93.03% 91.36%

the sensitivity and the specificity defined as,

Sensitivity =
Number of recognized true movements

Number of true movements
, (4)

Specificity =
Number of rejected false movements

Number of false movements
. (5)

The average sensitivity and specificity values over all move-
ments are shown in Table 4. It is evident that the newly pro-
posed feature set, i.e. AR(9)-GARCH(1,1) has higher aver-
age sensitivity and specificity values over all movements, i.e,
93.03% and 91.36% respectively. The higher values show that
the proposed feature set is more reliable compared to the clas-
sical AR feature sets. Confusion matrices for all three feature
sets using the LDA classifier are shown in Fig. 8.

5. Discussion

We analyzed the myoelectric signal recorded during perfor-
mance of different movements and found that the signal ex-
hibited heteroscedasticity. A detailed investigation using sta-
tistical tests including the Ljung-Box Q-test, the Engle’s test,

the Kolmogorov-Smirnov test and goodness of fit revealed that
an AR(9)-GARCH(1,1) best fitted the myoelectric data. The
prevalent use of AR(4) to AR(6) [5] in the literature does not
capture all the information present in the myoelectric signal.
Using the Ljung-Box Q-test, we found that an AR(9) model
captures enough information from the myoelectric signal that
the residuals become white noise. However, the residuals for
AR(5) as well as AR(9) exhibited heteroscedastic behavior as
evident from Table 1 and Fig. 3 (red line with circular markers).
It is evident that increasing the model order does not have a sig-
nificant effect on the heteroscedasticity of the myoelectric sig-
nal. Therefore, we assume that it is imperative to consider the
GARCH modeling of the AR residuals to capture an increased
amount of information from the myoelectric signal.

The window size controls the amount of raw myoelectric in-
formation available to the feature extraction routine; and there-
fore directly affects the classifier performance [1, 38]. An anal-
ysis window of size ranging from 150 ms to 250 ms is consid-
ered to give good classification accuracy [38]. Our intensive in-
vestigation and experiments with myoelectric signals revealed
that an analysis window of 200 ms provided maximum classifi-
cation accuracy. As the information contents in the myoelectric
signal change due an increase/decrease in the analysis window
size, we assume that the correct AR model order will depend
on analysis window size. Therefore, we recommend that for a
different analysis window size, the Ljung-Box Q-test should be
performed again to ascertain a correct AR model order. Once
an AR model has been ascertained then the residuals should
be modeled as a GARCH process. Furthermore to determine
correct GARCH model order, we recommend using some in-
formation criteria, e.g., the AIC or the BIC (Fig. 5).

We also used the K-S test to confirm whether the AR resid-
uals and the GARCH process exhibited similar statistical prop-
erties. The K-S test as well as a visual analysis (Fig. 4) of both
data sequences revealed that the both may have same probabil-
ity distribution function. Therefore, our assumption for model-
ing the AR residuals using the GARCH process is supported.

Apart from features, classification algorithms are also an im-
portant part of myoelectric signal classification schemes. De-
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(a) AR(5) Confusion matrix
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(b) AR(9) Confusion matrix.
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(c) AR(9)-GARCH(1,1) Confusion matrix.

Figure 8: Confusion matrices for the AR(5), AR(9) and AR(9)-GARCH(1,1), where CG:Close Grip, XT:Extension, FX:Flexion, HO:Hand Open, IF:Index Finger
Point, LG:Lateral Grasp, NM:No Movement, PR:Pronation, RD:Radial Deviation, SP:Supination, TG:Tripod Grip, UD:Ulnar Deviation.

tails of different classifies can be found in Ref [2, 3, 5] and
references therein. This study was primarily focused on AR
features and heteroscedastic modeling of the myoelectric sig-
nal. Therefore, we focused on two common classifiers [2, 3, 5].

6. Conclusion

We focused on the modeling of the myoelectric signal used
for classification of different hand and wrist movements in my-
oelectric prostheses. We discovered that once the myoelectric
signal is modeled as an AR process, the modeling residuals ex-
hibit heteroscedasticity, i.e, the average size of residuals is not
constant. Subsequently, we proposed the GARCH process to
model such residuals. We performed multiple statistical tests
to establish the heteroscedasticity of the myoelectric signal and
showed the applicability of the proposed AR-GARCH model.
The coefficients of the AR-GARCH model formed the new fea-
ture set for the pattern classification. Experimental results, con-
ducted on several participants, show that the newly proposed
feature set significantly outperformed (p < .01) the conven-
tionally adopted AR feature set in classifying twelve hand and
wrist movements.

Appendix A. Concept of Heteroscedasticity

In order to illustrate the concept of heteroscedasticity, let us
consider a simple linear regression model between two vari-
ables x and y,

y = α + βx + ε, (A.1)

where ε represents the regression error. We call homoscedas-
ticity the assumption that the expected size of the error is con-
stant. We call heteroscedasticity the assumption that the ex-
pected size of the error term is not constant [39]. The assump-
tion of homoscedasticity is standard in regression theory be-
cause of its mathematical convenience. However, in many ap-
plications, this assumption may be unreasonable. A classic ex-
ample of heteroscedasticity is that of income versus expendi-
ture. Those with higher income will display a greater variabil-
ity in consumption than lower-income individuals who tend to

spend a rather constant amount. The concept of heteroscedas-
ticity generalizes to many other linear and non-linear models
including the AR model. The presence of heteroscedasticity
in a time-series can invalidate statistical tests that assume that
the model residual variances are uncorrelated. It is possible to
specify a stochastic process for the residual errors and predict
the average size of the error terms [39] using the Autoregres-
sive Conditional Heteroscedasticity (ARCH) [28] or the Gen-
eralized ARCH (GARCH) models [29]. The GARCH process
is a generalization of the ARCH process, and can model the
heteroscedasticity more parsimoniously.

Appendix B. Properties of the GARCH Process

The expected value (E[ . ]) of the GARCH (p, q) process is
given by

E[Yt] = E[σtZt] = E[σt]E[Zt] = 0. (B.1)

Similarly, the variance (V[ . ]) of the GARCH (p, q) process
is given by

V[Yt] = E[Y2
t ] − [E(Yt)]2 = E[Y2

t ] = E[σ2
t ],

= α0 +

q∑
i=1

αiE[Y2
t ] +

p∑
j=1

β jE[σ2
t ],

=
α0

1 −
q∑

i=1
αi −

p∑
j=1
β j

. (B.2)

From Eqs. (B.1) and (B.2), it is clear that the GARCH(p, q) is
a zero mean process with a constant variance, which is specified
by the parameters {αi}

q
i=0 and {β j}

p
j=1. The GARCH process is

also statistically uncorrelated, i.e.,

E[YtYs] = E[σtZtσsZs] = E[σtZtσs]E[Zs] = 0. (B.3)

We show next that the conditional variance of the GARCH pro-
cess is time-varying, reflecting the volatility of the stochastic
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Figure B.9: A comparison of the Gaussian white noise and the GARCH(1,1)
process. The first column presents Gaussian white noise and the second col-
umn presents GARCH(1,1) process. Top row shows both processes. In the
middle row, we present the samples autocorrelation values for 20 lags for both
processes. The last row presents the sample autocorrelations of the squared
processes. We can see that the GARCH process is a white noise just like the
Gaussian white noise, but with a unique characteristic, i.e., there is a significant
autocorrelation in its squared sample values as is evident in the lower right fig-
ure. The Gaussian noise was generated using standard normal distribution, and
the GARCH process was generated using Zt ∼ N(0, 1), α0 = 2, α1 = 0.09 and
β1 = 0.9.

signal. Let Ft = {Ys : s ≤ t} represent the history of the process
up to time t. We have

E[Yt |Ft−1] = E[σtZt |Ft−1]
= σtE[Zt |Ft−1] = σtE[Zt] = 0 (B.4)

V[Yt |Ft−1] = E[σ2
t Z2

t |Ft−1]

= σ2
t V[Zt] = σ2

t (B.5)

From (B.4) and (B.5), we see that the conditional expected
value of the GARCH process is also zero but the conditional
variance is equal to σ2

t , which is a time-varying quantity. In
summary, we have shown that the GARCH(p, q) process is a
white noise process with time-varying conditional variance.

To understand the difference between a white noise process
and the GARCH process, in Fig. B.9, we generated a Gaus-
sian white noise, wt with zero-mean and unit variance, and a
GARCH process, Yt, using Gaussian innovations. A total of
10,000 realizations for each process were generated. The sam-
ple autocorrelations of the two precesses, wt,Yt, and the squared
processes, w2

t ,Y
2
t , were computed for 20 lag values. It is evi-

dent from Fig. B.9 that the squared sample autocorrelation of
the GARCH process is much higher than the defined signifi-
cance level. Evidently, the GARCH process is a white noise
with statistically significant autocorrelation in its squared sam-
ple values.

Appendix C. The Ljung-Box Q-test

The Ljung-Box Q-test assesses the null hypothesis that the
series of residuals exhibits no autocorrelation for a fixed num-
ber of lags m versus the alternative hypothesis that the autocor-
relation sequence is non-zero. Under the null hypothesis the
asymptotic distribution of the Q-statistic is χ2

m with m degrees
of freedom. The modified Q-statistic is defined as,

Q(r) = n(n + 2)
m∑

k=1

r2
k

n − k
, (C.1)

rk =

n∑
t=k+1

εtεt−k
n∑

t=1
ε2

t

,

where rk is the autocorrelation estimate of the residuals at lag
k, m is an appropriate number of lags of the sample autocor-
relation, n is the sample size, and ε represents the modeling
residuals.

Appendix D. Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (K-S) statistic quantifies a dis-
tance between the empirical distribution functions of two sam-
ples. The null distribution of this statistic is calculated under
the null hypothesis that the samples are drawn from the same
distribution [40]. For the two sample test, the K-S statistic is
given by:

Dm,n = sup
x
|F1,n(x) − F2,m(x)|, (D.1)

where F1,n and F2,m are the empirical cumulative distribution
functions of the first and second sample respectively. The em-
pirical cumulative distribution function is given by

Fk(t) =
1
k

k∑
i=1

1{xi < t}, (D.2)

where 1{.} is the indicator function and is equal to 1 for xi < t
and 0 otherwise. The null hypothesis is rejected at level α if√

n + m
nm

Dn,m > Kα, (D.3)

where Kα is the critical value calculated from the defined sig-
nificance level α [41].
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