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ABSTRACT

Dynamical systems are often required to satisfy certain con-
straints arising from basic physical laws, mathematical prop-
erties or geometric considerations. Incorporating constraints
improves the performance of state estimation and increases
the accuracy compared to unconstrained estimation.

Particle filters (PF) have gained popularity within the sig-
nal processing community, thanks to their asymptotically op-
timal estimation for nonlinear and non-Gaussian state-space
models. However, their constrained formulation has emerged
only very recently; and the developments to incorporate state
constraints in particle filters have mainly relied on constrain-
ing all particles of the PF. This approach is termed Pointwise
or Particle Density Truncation (PDT).

In this paper, we show that PDT constrains the posterior
density of the state rather than the conditional mean estimate,
which leads to more stringent and possibly completely differ-
ent or even irrelevant conditions than the original constraints.
Subsequently, we introduce an alternative novel solution to
constrained particle filtering, which enforces the constraints
on the conditional mean without further restricting the state
posterior density. The proposed approach is termed Mean
Density truncation (MDT) and is compared to PDT and pro-
jection methods for a severely nonlinear model.

Index Terms— Constrained Particle Filtering; State Esti-
mation; Constrained Bayesian Estimation.

1. INTRODUCTION

The state of many dynamical systems is often required to
satisfy certain constraints arising from basic physical laws,
mathematical properties or geometric considerations, e.g.,
maximum power or transmission capacity, energy conserva-
tion laws and bounded parameters. In fact, constrained sys-
tems are already omnipresent in many real-world applications
including camera tracking [1], fault diagnosis [2], chemical
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processes [3], vision-based systems [4], target tracking [5, 6],
biomedical systems [7], robotics [8] and navigation [9].

Particle Filters (PF) are a broad class of Monte Carlo
algorithms, which provide approximate solutions to analyti-
cally intractable inference problems, which can include non-
linear and non-Gaussian modeling scenarios. PFs can solve
these problems by using particles, which sample the state
space of the system. These particles are then weighted to es-
timate the state posterior density. The estimation converges,
in the mean-square error, to the true posterior density of the
state. PFs have become a viable alternative to more tradi-
tional techniques, such as the Extended Kalman Filter (EKF)
due to the PF’s ability to calculate posterior densities with-
out using functional approximation such as local linearization
techniques or assume Gaussian noise.

However, the very numerical nature of the particle filters,
which constitutes their strength for multidimensional numer-
ical integration, becomes their major weakness in handling
constraints on the state. The main difficulty of the constrained
PF problem stems from the fact that every particle in the par-
ticle approximation of the state posterior density is a local
representation of the density, and thus cannot characterize
global properties of the density, such as constraints on the
conditional mean or any other functional expectation. The
current trend in constrained particle filtering simply enforces
the constraints on all particles of the PF. This approach, how-
ever, constrains the posterior density of the state rather than its
mean, which leads to more stringent conditions and possibly
a completely different condition than the original constraints
(see Fig. 1). We refer to the approach of constraining all par-
ticles as the Pointwise Density Truncation (PDT) method.

In this paper, we introduce a new approach called, Mean
Density Truncation (MDT), that imposes the state constraints
on the conditional mean estimate without further restraining
the posterior distribution of the state. The paper is organized
in the following way: the unconstrained PF framework is re-
viewed in Section 2, the PDT and MDT approaches are ad-
vanced in Section 3, simulation results that compare PDT,
MDT and projection approaches are presented in Section 4,
and concluding remarks and future directions are discussed
in Section 5.



2. THE UNCONSTRAINED PARTICLE FILTER

We consider a discrete-time state-space model defined by the
following state and measurement equations:

xk = fk(xk−1) +wk,

yk = hk(xk) + vk, (1)

where xk ∈ Rnx and yk ∈ Rny represent the system state
and the system output, respectively, fk and hk are known,
possibly non-linear, mappings, andwk and vk are zero-mean
process and measurement noise with known probability den-
sity functions (pdfs), g and r, respectively.

Let Y k = [y1, ...,yk] denote the history of observations
up to time k. In the Bayesian context, inference of xk given
a realization of the observations Y k relies upon the posterior
density p(xk|Y k). Using the Bayesian rule, we can obtain
the following two-step Bayesian recursion formula:

p(xk|Y k−1) =

∫
g(xk|xk−1)p(xk−1|Y k−1)dxk−1 (2)

p(xk|Y k) =
r(yk|xk)p(xk|Y k−1)∫
r(yk|xk)p(xk|Y k−1)dxk

(3)

Equations (2)-(3) are a conceptual solution because the inte-
grals defined are, in general, intractable. For the linear Gaus-
sian model, it is easy to check that p(xk|Y k) is a Gaus-
sian distribution whose mean and covariance can be com-
puted using the Kalman filter. However, for most nonlinear
non-Gaussian models, it is not possible to compute these dis-
tributions in closed-form.

The PF approximates the posterior pdf using an ensemble
of particles {x(i)

k }Ni=1 and their associated weights {w(i)
k }:

p̂(xk|Y k) =

N∑
i=1

w
(i)
k δ(xk − x(i)

k ) (4)

where δ(.) is the Dirac delta function and N is the num-
ber of particles. Ideally, the particles are required to be
sampled from the true posterior, p(xk|Y k), which is not
available. Therefore, another distribution, referred to as
the importance distribution or the proposal distribution,
q(xk|xk−1,yk), is used. The particles at time k are sam-
pled from x

(i)
k ∼ q(xk|x(i)

k−1,yk). The importance weight of

each particle x(i)
k is computed as

w̃
(i)
k = w

(i)
k−1

r(yk|x
(i)
k )g(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1,yk)

, (5)

where w̃k are the un-normalized weights [10]. The normal-
ized weights in (4) are given by w(i)

k = w̃
(i)
k /

∑N
j=1 w

(j)
k .

3. THE CONSTRAINED PARTICLE FILTER

We focus on the discrete state-space model in (1) augmented
with the following general constraint

ak ≤ φk(xk) ≤ bk, (6)
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Fig. 1. Illustration of the PDT approach for an interval-constrained sys-
tem, xn ∈ [70, 170] for all n. The true posterior density (green curve) is
multimodel with mean 110 (green x-mark). If all particles are constrained
to be within the interval [70, 170], then the estimated posterior density (red
curve) will be a truncated exponential density, that is dramatically different
from the true posterior distribution.

where φn is the constraint function at time n and the inequal-
ity holds for all elements. It is important to emphasize the
fact that the constraint needs to only be satisfied by the state
estimate given by the conditional mean, i.e., we must have

ak ≤ φk(x̂k) = φk(E[xk|Y k]) ≈ φk(
N∑
j=1

w
(i)
k x

(i)
k ) ≤ bk

This mean constraint is not a local condition, meaning there
are many ways to globally constrain the mean. Projection of
the unconstrained density onto the constraint set is only one
possible option. The widely used approach in constrained se-
quential Monte Carlo is the acceptance/rejection approach,
which enforces the constraints by simply rejecting the par-
ticles violating them [11]. The acceptance/rejection proce-
dure does not make any assumption on the distributions and
therefore maintains the generic property of the particle filter.
However, the number of samples will be reduced and hence
the estimation accuracy may decrease, especially with a poor
choice of the proposal density. An extreme example is when
most (or all) of the particle violate the constraint and the al-
gorithm fails [12].

3.1. Pointwise Density Truncation (PDT)
The current practice in the literature constrains the mean of
the posterior distribution by imposing the constraints on all
particles of the PF [12–20]. However, this is not true. Im-
posing the constraint on all particles results, in general, in
a stronger constraint and possibly a completely different or
even irrelevant condition. To see this, let us consider the
scalar case with Ck = [a, b] for all k: the state estimate is
constrained in the interval [a, b] or a ≤ xk ≤ b. Constraining
every particle to be within the interval [a, b] is equivalent to
constraining the support of the posterior distribution to this
interval, which is a much stronger condition than constrain-



ing the mean of the distribution, or any point estimate, to be
inside the interval. We refer to this approach as pointwise den-
sity truncation or particle density truncation (PDT). Since the
particle filter estimates the posterior density of the state, im-
posing stronger constraints may, and in general will, result in
an erroneous estimation of the density, as illustrated in Fig. 1.

3.2. Mean Density Truncation (MDT)
In the constrained state-space model, the constraints must be
satisfied by the estimate of the conditional mean. Unlike the
pointwise density truncation approach, which enforces the
constraints on all particles, we propose the mean density trun-
cation (MDT) approach, which constrains only one particle in
order to confine the estimated mean to the desired constraints.
In the MDT approach, (N − 1) unconstrained particles are
drawn from the proposal distribution. Then, the N th particle
is constrained in order to impose the conditions on the sam-
ple mean. A constraint of the form ak ≤ g(xk) ≤ bk can be
equivalently expressed as

ak ≤ g

( N∑
j=1

ω
(j)
k x

(j)
k

)
≤ bk. (7)

For simplicity, we will assume that the weights are given by
the likelihood, i.e., the proposal density is the prior distribu-
tion function; the essence of the MDT method remains the
same in the general case, where the proposal density is dif-
ferent from the prior distribution. Separating the summation
of the (N − 1) unconstrained particles from the N th particle,
and taking into account the normalization of the weights, the
constraint becomes

ak ≤ g
(∑N−1

j=1 p(yk|x
(j)
k )x

(j)
k + p(yk|x

(N)
k )x

(N)
k∑N

j=1 p(yk|x
(j)
k )

)
≤ bk

Then, conditions on the N th particle can be derived depend-
ing on the explicit expression of the constraint function g. For
instance, if we consider the interval-type constraint, i.e., g
is the identity function, then the above inequality becomes
equivalent to the two inequalities,

N−1∑
j=1

p(yk|x
(j)
k )(ak − x

(j)
k ) ≤ p(yk|x

(N)
k )(x

(N)
k − ak), (8)

N−1∑
j=1

p(yk|x
(j)
k )(bk − x

(j)
k ) ≥ p(yk|x

(N)
k )(x

(N)
k − bk). (9)

Letting q1(x
(N)
k ) = p(yk|x

(N)
k )(x

(N)
k − ak) and q2(x

(N)
k ) =

p(yk|x
(N)
k )(x

(N)
k − bk), we obtain the two inequalities

q1(x
(N)
k ) ≥ C1({x(j)

k }
N−1
j=1 ),

q2(x
(N)
k ) ≤ C2({x(j)

k }
N−1
j=1 ),

(10)

which have to be satisfied for the N th particle only. C1 and
C2 are two constants, which depend only on the already sam-
pled (N − 1) unconstrained particles and their weights. De-
pending on the likelihood function, Eq (10) can be solved an-
alytically or numerically. The solution to (10) may not be

unique. Many “N th particles” can satisfy (10), all of them
enforcing the original constraint on the sample mean esti-
mate. These different solutions may lead to different con-
strained estimates. We found, in our preliminary results, that
the solution with the highest weight (here, likelihood) leads to
the most accurate estimator among all other solutions having
lower weights.

If the proposal distribution is chosen poorly, the (N − 1)

unconstrained particles will lie in a low probability region of
the posterior density of the state. In this case, it may not be
possible to find an N th particle that satisfies (10), thus im-
posing the constraint on the sample mean. Intuitively, if the
initial particle sampling is poor, then one additional particle
may not be able to force the mean to satisfy the desired con-
straints. We advance two solutions to ensure the existence of
an N th particle that will enforce the constraint on the sample
mean: mth-order MDT and inductive MDT (IMDT).

In the case where one particle may not be sufficient to con-
strain the mean, it seems reasonable to consider constraining
more than one particle, e.g., two, three or up to m ≤ N parti-
cles. These m constrained particles will ensure that the sam-
ple mean satisfies the desired constraint. The MDT method
is thus termed 1st-order MDT, and its extension to m con-
strained particles is called mth-order MDT. In the mth-order
MDT, (N −m) unconstrained particles are sampled from the
proposal distribution, and the remaining m particles are con-
strained in order to satisfy the condition on the sample mean.
It is important to notice that when m = N , the N th-order
MDT is very different from the PDT method: In the PDT ap-
proach, the original constraint is imposed on all particles. On
the other hand, the N th-order MDT constrains the particles,
as in Eq. (7), in order to impose the desired condition on the
sample mean.

4. SIMULATION RESULTS

We consider the following nonlinear dynamic system

xk+1 =
xk

2
+ 25

xk

1 + x2
k

+ 8 cos(1.2k) + wk (11)

yk =
x3
k

25
+ xk + vk; −5 ≤ xk ≤ 5,

where wk and vk are zero-mean Gaussian white noise. This
example is severely nonlinear, both in the system and the mea-
surement equations. It was shown in [21] that the EKF fails in
estimating the true state value of this unconstrained system.

Figure (2)(a) shows the true and estimated trajectories us-
ing 1st-order MDT, PDT and projection of the unconstrained
mean estimate. The results are shown for 1000 Monte Carlo
simulations. It is seen that, on average, the 1st-order MDT
leads to more accurate estimation of the dynamic state, where
both the mean-square error and the variance are smaller.
Figures (2) (b),(c),(d) show the posterior density of the con-
strained state as it evolves over time, for 1st-order MDT,
PDT and projection, respectively. First, observe that the PDT
approach (Fig. 2(c)) produces posterior distributions with a



(a) True and estimated trajectories
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Fig. 2. Constrained state-estimation of the nonlinear dynamic system in (11). (a) State estimation for 1000 Monte Carlo simulations. Shading represents
a two standard deviations band. Top row: 1st-order MDT (MSE=3.58, σ = 0.83); middle row: PDT (MSE=5.36, σ = 2.03); bottom row: projection of
the unconstrained mean estimate (MSE=5.92, σ = 1.31). (b),(c),(d): State posterior densities evolving over time for 1st-order MDT, PDT and projection,
respectively.

bounded support at all time points, whereas the MDT and
projection approaches result in proper unbounded support
densities. Moreover, the PDT and the projection estimation
approaches result in multiple spurious peaks within the densi-
ties. These large peaks are located mainly at the boundary of
the constraining interval. In the PDT approach, these spuri-
ous peaks are due to the fact that sampled particles that do not
satisfy the constraint are projected onto the boundary, thus
creating a significant positive mass at the boundary of the
constraint set and a small density mass elsewhere. In other
words, in PDT, the density outside of the interval [−5, 5]
is projected onto the boundary points. In the mean projec-
tion approach, unconstrained particles are sampled from the
proposal density (here, the prior). Because of the highly non-
linear nature of the system, the constraint and the poor choice
of the proposal, many of these particles are sampled from low
probability regions of the actual posterior; thus having low
weight. These low weight particles are replaced, during the
resampling procedure, by higher weight boundary particles.
On the other hand, the 1st-order MDT method does not suffer
from the ‘boundary spurious peaks’ problem and estimates
smooth (multinomial) densities over time, which result in

more accurate estimation of the conditional mean.

5. CONCLUSION

Arising from physical principles and process restrictions,
constraints are commonly encountered in real-world dynami-
cal systems. Therefore, constraints must be taken into account
in order to obtain physically meaningful estimation results.
In this paper, we considered the particle filter framework
for state estimation in nonlinear and non-Gaussian dynam-
ical systems. We argued that constraining all particles is
equivalent to constraining the posterior distribution of the
state. This may lead either to a stronger condition or to a
different (unrelated) condition; both of which result in in-
correct estimation of the posterior distribution of the state.
We, subsequently, advanced a new approach, MDT, which
imposes the desired constraints on the conditional mean es-
timate without further restricting the posterior density of the
state; and hence preserving the convergence properties of
the particle filter towards the optimal posterior density of the
state. Future research directions include efficient algorithmic
implementation of the MDT approach and its variants.
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