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Abstract. EEG source reconstruction is a challenging task and several
methods have been applied to this ill-posed inverse problem. Most of the
reconstruction techniques rely on imaging models, where the neural ac-
tivity is described by a dense set of current dipoles. On the other hand,
the point source models, which employ a small number of equivalent cur-
rent dipoles, has received less attention. While both approaches (imaging
versus current dipoles) have their own issues, the main advantage of the
dipole models is that they approximate summaries of evoked responses
or helpful first approximations. In this paper, we use a recursive Bayesian
estimation technique, known as Particle Filter (PF), to simultaneously
reconstruct the spatial locations within the head and the corresponding
waveforms of the most active dipoles that originated the EEG sensor
data. Normally, in EEG source reconstruction, fixed dipole locations are
assumed. The proposed PF framework presents a shift in the current
paradigm by estimating moving EEG sources, which may vary from one
location to another in the brain reflecting the underlying brain activity.
Our computer simulations, based on generated and real EEG data, show
that the proposed PF approach estimates the dynamic EEG sources with
high fidelity.

Keywords: brain imaging,particle filters, inverse modeling

1 Introduction

Spatial modeling of EEG sensor data is necessary to make inferences about un-
derlying brain activity. Most source reconstruction techniques belong to one of
the two approaches: point source models which explain the data with a small
number of equivalent current dipoles or distributed sources known also as imag-
ing models, which use thousands of dipoles. While the imaging approach has
been widely studied, the few-dipoles approach has received less attention. The
main reason for that is that the inversion of dipole models is harder (nonlinear)
problem than the liner inversion of distributed models. However, models with
a few dipoles are useful because they represent a direct mapping from scalp
topography to a small set of parameters. Dipole models are more suitable for in-
terpretation of observed data, for statistics of dipole parameters across subjects
and for engineering solutions as source-based Brain Computer Interfaces (BCI).
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The reconstruction of dipole sources from EEG scalp data is not possible
without constraints on the inverse solution. As a consequence EEG inverse tech-
niques differ in the assumptions of the constraints. The most popular deter-
ministic inverse methods include the Multiple Signal Classification (MUSIC)
algorithm and its modified versions [1], spatial filters (beamformers) based on
data-independent [2] or data-driven methods [3] and blind source separation
techniques [4]. These approaches, however, are based on the assumption that the
source locations are fixed and known a priori or perform an exhaustive search
of the head volume to find their positions. Given the spatial source locations,
they estimate the amplitude and direction of the brain waveforms. Recently,
owing to the increase in the available computational power, statistical methods
have become feasible within the source localization framework. The Bayesing
probability formalism fits well to the inverse problem where the constrains enter
as priors and the objective of model inversion is to estimate the conditional or
posterior probability of the model parameters. The Variational Bayesian (VB)
inversion [5] attempts to estimate both dipole locations and moments. However,
VB like all current approaches for EEG source localization, cannot handle the
case of moving EEG sources. In this paper, we propose a recursive Bayesian
estimation technique, known as Particle Filter (PF), to simultaneously estimate
the dipole spatial locations and their corresponding waveforms. This approach
presents a shift in the current paradigm by tackling the problem of brain moving
source reconstruction.

2 The Particle Filter

Many problems in statistical signal processing, time series analysis and control
can be stated in a state-space form. A system transition function describes the
prior distribution of a hidden Markov process according to the model

xk+1 = fk(xk,wk), (1)

where fk is the system transition function and wk is a zero-mean, white noise
sequence of known pdf, independent of past and current states. Measurements
{zk; k ∈ N} are available at discrete times k. These measurements are related to
the state vector via the observation equation

zk = hk(xk,vk), (2)

where hk is the measurement function and vk is another zero-mean, white noise
sequence of known pdf, independent of past and present states and the system
noise. Within a Bayesian framework, all relevant information about the state
vector xk given observations up to and including time k can be obtained from the
posterior distribution p(xk|z1:k), where z1:k = {z1, · · · , zk}. This distribution
may be obtained recursively in two steps: prediction and update. Suppose that
the posterior distribution at the previous time index k − 1, p(xk−1|z1:k−1), is
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available. Then, using the system transition model, we can obtain the prior pdf
of the state at time k

p(xk|z1:k−1) =

∫
p(xk|xk−1) p(xk−1|z1:k−1) dxk−1. (3)

When a measurement at time step k, zk, is available, the prior is updated via
the Bayesian rule

p(xk|z1:k) =
p(zk|xk) p(xk|z1:k−1)

p(zk|z1:k−1)
, (4)

where the denominator is a normalizing factor, and the conditional pdf of zk
given xk is defined by the measurement model in (2). The recurrence equations
in (3) and (4) constitute the solution to the Bayesian recursive estimation prob-
lem. If the functions fk and hk are linear and the noises wk and vk are Gaussian
with known variances, then an analytic solution to the Bayesian recursive esti-
mation problem is given by the well-known Kalman filter. In the EEG source
localization problem, however, the measurement function hk is non-linear, or, in
other words, the EEG measurements zk are non-linear functions of the source
locations xk (see Section 3). In order to deal with the non-linear and/or non-
Gaussian realities, two main approaches have been adopted: parametric and non-
parametric. The parametric techniques are based on extensions of the Kalman
filter by linearizing non-linear functions around the predicted values. Because
of their first-order approximations and unimodal Gaussian assumptions, such
extensions found only limited success. The non-parametric techniques are based
on Monte Carlo simulations [6]. Specifically, they use a set of random samples,
called particles, to estimate the posterior. The posterior is then approximated
by a set of weighted particles (hence the name particle filter) as

p(xk|z1:k) ≈
N∑
l=1

π
(l)
k δ(xk − x

(l)
k ), (5)

where N is the total number of particles and π
(l)
k =

w
(l)
k∑N

l=1 w
(l)
k

is the normalized

weight for particle l at time k, and

w
(l)
k = w

(l)
k−1 p(zk|x(l)

k ). (6)

Given a discrete approximation to the posterior distribution, one can then pro-
ceed to a filtered point estimate such as the mean of the state at time k

x̂k =

N∑
l=1

π
(l)
k x

(l)
k . (7)

The main advantage of the particle filter is that no restrictions are placed
on the functions fk and hk, or on the distribution of the system and measure-
ment noise. Moreover, the algorithm is quite simple and very easy to implement.
Notably, it can be implemented on massively parallel computers, raising the
possibility of real time operation with very large sample sets.
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3 EEG state space model

Given that the EEG signal is produced by M active dipoles, the relation between
the scalp data and primary current density is known as the forward model, [7]

zk =
M∑

m=1

Lm(dk(m)) sk(m) + vk (8)

where zk ∈ Rnz is the measured multichannel EEG signal from nz sensors at
time k, dk(m) ∈ R3×1 is the 3D brain source location of the mth dipole at time
k,

Lm(dk(m)) ∈ Rnz×3 is the lead field matrix for dipole m, sk(m) ∈ R3×1 is
the source signal of the mth dipole at time k (termed also dipole moment) and vk

is a white Gaussian process noise with variance σ2
vI. The entries of the lead field

matrix Lm are non-linear functions of the dipole location, electrodes’ positions
and head geometry . Observe also, from Eq. (8) that the EEG measurements zk
are linear with respect to the dipole moments sk, but non-linear with respect
to the source locations dk. This model is routinely used in most clinical and
research applications to EEG source localization. From Eq. (8), we can compute
the likelihood of each measurement as

L(zk|xk) ∝ exp

[
−
(zk −L(dk)sk)

tR−1
zk

(zk −L(dk)sk)

2

]
, (9)

where Rzk is the covariance matrix of the measurement vector zk, ∝ denotes
“proportional to”. dk = [dk(1)

t, · · · ,dk(M)t]t ∈ R3M×1 represent the spatial
coordinates of M dipoles within the head at time k,

L(dk) = [L1(dk(1))
t, · · · ,LM (dk(M))t]t ∈ Rnz×3M is the lead field matrix

of M dipoles at time k, and sk = [sk(1)
t, · · · , sk(M)t]t ∈ R3M×1 is the 3D

propagation of brain source signals for M dipoles. The state vector, at iteration
k, xk = [dt

k, s
t
k]

t, contains the geometrical positions of the M dipoles and their
corresponding signals. In the most general case, having no any prior knowledge
of the source locations or signals, we choose to model the state transition as a
random walk (first-order Markov chain) in the source localization space

xk = xk−1 +wk, (10)

where wk is a zero-mean, Gaussian white noise sequence with covariance σ2
w I,

where I denotes the identity matrix. The process wk is assumed to be inde-
pendent of past and current states. Within the particle filtering framework, the
state-space model of the dipole source localization problem is then given by:{

xk = xk−1 +wk : state transition model,

zk = L(xk) sk + vk : observation model.
(11)
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4 Results on simulated EEG data

In order to assess the performance of the proposed PF algorithm, we first gener-
ate various EEG data sets (the ground truth) by randomly choosing the (x, y, z)
coordinates of two, three and four fixed and moving dipoles from a grid of 21012
uniformly distributed dipoles. We assume that the state-space is discrete and
consists of a finite number of states. The coordinates of a grid of dipoles (D)
normally distributed inside a spherical head model, with radius R = 10 cm,
are defined as D = {dij = [xij , yij , zij ]}. For the moving dipoles, the initial
and the final locations are selected. It is assumed that the locations are fixed
over a duration of 40 ms, which correspond to 20 samples. We simulated four
sequential location stages across 80 samples. The dipoles move linearly between
the initial and final locations with constant speed. Sinusoidal waveforms with
amplitudes 0.1 and frequencies [10, 15, 20, 25] Hz are assumed to be the brain
signals originated from the dipoles. For the moving dipoles, the waves propagate
along the moving directions of each dipole. We can then simulate the EEG signal
with varying SNR using the forward model in Eq. (8). Each dipole di is associ-
ated with 6 variables in the state vector, three space coordinates {xij , yij , zij}
and one amplitude in each direction {sxi, syi, szi}. For the initial state vector,
N = 500 samples were randomly generated from a normal distribution in the
interval x0 ∈ [min (D),max (D)] . Table 1 summarizes the Mean Square Dis-
tance Error (MSDE) for the estimation of two, three and four fixed and moving
dipoles with varying SNR (0.5 dB, 5 dB, 10 dB), where MSDE is

MSDE =
√
(x̂− x)2 + (ŷ − y)2 + (ẑ − z)2 (12)

Observe that the proposed PF algorithm appears to be especially suitable
for estimation of moving dipoles. Taking into account the fact that dynamic
EEG sources is a more plausible assumption, from a biological perspective, than
fixed EEG sources, the PF framework presents a shift in the current approach
of fixed EEG source localization. This is especially important for laying down
a theoretical basis for source-based BCI technology, which relies on an accurate
estimation of the dynamic EEG brain sources.

Table 1. MSDE [mm] of fixed and moving dipole locations

Number of fixed dipoles SNR = 10dB SNR = 5dB SNR = 0.5dB

2 5.9× 10−3 6.3× 10−3 7.61× 10−2

3 7.1× 10−3 8.17× 10−3 9.33× 10−2

4 6.32× 10−3 7.1× 10−3 6.50× 10−2

Number of moving dipoles SNR = 10dB SNR = 5dB SNR = 0.5dB

2 0.8× 10−4 0.3× 10−3 2.19× 10−3

3 1.7× 10−4 0.8× 10−3 3.9× 10−3

4 1.5× 10−4 0.6× 10−3 3.5× 10−3
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5 Results on real EEG data

In this section, the PF is validated with real EEG data. Visually Evoked Poten-
tials (VEPs) were recorded from 13 subjects. Images of transparently superim-
posed human faces and houses were presented as visual stimuli in a sequence of
300 ms each and were preceded by a fixation cross displayed for 500 ms. The
inter-trial interval was 2000 ms. The participants had to decide if the face or the
house is the same as the one presented on the previous trial. EEG signals were
recorded from 20 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2; F7, F8,
T3, T6; P7, P8, Fz, Cz, Pz, Oz) according to the 10/20 International system.
VEPs were calculated off-line averaging segments of 400 points of digitized EEG
(12 bit A/D converter, sampling rate 250 Hz). These segments covered 1600
ms comprising a pre-stimulus interval of 148 ms (37 samples) and post-stimulus
onset interval of 1452 ms. The experimental setup was designed by Santos et
al. [8] for their study on subject attention and perception using VEP signals.

Fig. 1. Superposition of 18 VEP trials measured at four electrodes (O1, O2, Pz,Oz).
The bold trace represents the average of all trials used to test the fPF and the PF &
BF approaches.

Fig. 1 represents 18 enhanced (by Principal Component Analysis) trials of four
channels. In the reconstructed signals, it is possible to identify a positive peak
in the range of 80-120 milliseconds, known as P100. P100 corresponds to the
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perception of the sensory stimulus, a brain activity that is known to happen in
the primary visual cortex. Therefore, the occipital channels (O1, 02, Oz) and the
parietal channels ( Pz, P3, P4) located around the visual cortex are expected to
respond with stronger VEPs.For illustration purposes we choose to reconstruct
only the two most active dipoles.

Comparison with the Beamforming-based PF. The Beamforming (BF)
approach, originated in radar and sonar field, is a popular approach for estimat-
ing EEG source signals [9]. The BF assumes that the brain sources number and
locations are known a priori and estimates the dipole moments using a spatial
filter. The BF spatial filter consists of weight coefficients that, when multiplied
by the electrode measurements, give an estimate of the dipole moment at time
k, i.e., sk = W tzk, where W ∈ Rnz×3M is the weighting matrix. The choice of
the BF weights is based on the statistics of the EEG signal received at the elec-
trodes. The objective is to optimize the BF response with respect to a prescribed
criterion, so that the output sk contains minimal contribution from noise and
interference. There are a number of criteria for choosing the optimum weights.
We propose to minimize the output signal variance in order to provide good sig-
nal estimation. Minimization of contributions to the output due to interference
is accomplished by choosing the weights to minimize the variance of the filter
output. Thus we have var[sk] = Tr[W tRzkW ], where Tr[•] denotes the trace
of the matrix in brackets. To ensure that the desired signal is passed with unity
gain, a constraint may be used so that the BF response to the desired signal
satisfies W tL(xk) = I. The constrained optimization problem can then be ex-
pressed W ∗ = argminW Tr[W tRzkW ] subject to W tL(xk) = I. The optimal
solution can be derived by constrained minimization using Lagrange multipli-
ers W ∗ = R−1

zk
L(xk)[L(xk)

tR−1
zk

L(xk)]
−1. This approach is often called the

linearly constrained minimum variance (LCMV) beamformer.
We compare the proposed fully Bayesian PF framework with the beamformer-

based PF to estimate the two strongest sources (d1 and d2) that may have
produced the P100 peak. The results show that in both approaches the final
coordinates correspond to the zone of the primary visual cortex as illustrated in
Fig. 2. In this sense, both approaches seem to be coherent in identifying the two
strongest brain sources, producing the P100 peak. However, the more symmetric
coordinates estimated by the PF d1 (3.6 mm,-5.5 mm, -1.03 mm) and d2 (-3.3
mm, -2.2 mm, -1.02 mm) are more biologically plausible and easy to interpret
than the beamformer-based PF with d1 (0.71 mm, -6.3 mm, -1.9 mm) and d2
(6.8 mm, -2 mm, -6.14 mm).

6 Conclusions

In this paper, we developed a particle filter (PF) framework to simultaneously
reconstruct the spatial coordinates and waveforms of moving brain dipoles. Our
main contribution is the assumption that the dipoles are dynamic which is bio-
logically plausible.

We conducted extensive simulations, based on generated and real EEG exper-
iments, in order to study the accuracy and robustness of the proposed algorithm.
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Our simulations show that the PF converges to the correct dipole coordinates as
long as the power of the signal is higher than the power of the noise within the
EEG measurements. We have also conducted EEG experiments, where subjects
were exposed to various visual stimuli. The PF pointed out correctly dipoles
inside the visual cortex zone as the ones that most probably have produced the
observed EEG signal. The PF approach reveals to be less dependent on a priori
knowledge about the brain sources. Even when the initial guess is completely
erroneous, the tracker still moves to the active brain zones.

Fig. 2. Axial view of primary visual cortex zone. The arrows point the estimated source
locations.
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