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ABSTRACT

In this paper, we present a general theory of adaptive
mathematical morphology (AMM) in the Euclidean space.
The proposed theory preserves the notion of a structuring ele-
ment, which is crucial in the design of geometrical signal and
image processing applications. Moreover, we demonstrate
the theoretical and practical distinctions between adaptive
and spatially-variant mathematical morphology. We provide
examples of the use of AMM in various image processing
applications, and show the power of the proposed framework
in image denoising and segmentation.

Index Terms— adaptive mathematical morphology, ker-
nel representation, basis representation.

1. INTRODUCTION

Mathematical morphology was initially devoted to increas-
ing and translation-invariant operators [1], [2]. Increasing op-
erators preserve order in the sense that they prohibit extrac-
tion of information from occluded regions. This property is
akin to the limitations of the human visual system which have
been investigated in the field of cognitive psychology. Specif-
ically, the high-level vision models of gestalt psychology state
that the perceptual processes underlying the visual interpreta-
tion of a scene are increasing operators [2]. The increasing
condition is thus of fundamental importance in image pro-
cessing applications. However, the translation-invariance as-
sumption, which specifies that the structuring element (SE)
remains fixed in the entire space, is not appropriate for many
applications ranging from image restoration to pattern recog-
nition [3–13]. When the SE changes are determined a priori,
independently of the data, the SE’s can be said to be space
variant [7], [12], [13]. If the changes are made on the ba-
sis of local properties of the image (e.g., gray-level values),
the SE’s can be said to be data dependent or adaptive [4].
In [12] and [13], we laid down the theoretical foundations of
spatially-variant mathematical morphology (SVMM) in the
Euclidean space. The proposed theory is the most general
framework of spatially-variant mathematical morphology that
preserves the concept of structuring element, which is cru-
cial in the design of geometrical signal and image processing
applications. However, SVMM theory does not account for

adaptive SE’s. In this paper, we propose a unified framework
for adaptive mathematical morphology (AMM), which retains
the notion of a geometrical structuring element, and integrates
the techniques proposed thus far [3–14] into a comprehensive
mathematical framework.

In this paper, the proofs can be easily extended from the
spatially-variant case presented in [12], [13], and thus will be
omitted.

2. ADAPTIVE MATHEMATICAL MORPHOLOGY

In this paper, we consider the continuous or discrete Eu-
clidean space E = R

n or Z
n for some n > 0. The set P(E)

denotes the set of all subsets of E. We use O = P(E)P(E) to
denote the set of all operators mapping P(E) into itself. We
shall restrict our attention to non-degenerate operators, i.e.,
ψ(E) = E and ψ(∅) = ∅, for every ψ ∈ O.

2.1. Basic adaptive morphological operators

Consider the adaptive structuring element θ given by a map-
ping from E×P(E) 7→ P(E). Defined this way, the adaptive
SE can change its size, orientation, shape, etc, based on the
pixel being probed and the (local) properties of the image.
The transposed adaptive structuring element θ′ is given by a
mapping from E×P(E) 7→ P(E) such that

θ′(y,X) = {z ∈ E : y ∈ θ(z,X)}. (1)

In the translation-invariant case, θ(z,X) = B + z, ∀z ∈
E, ∀X ∈ P(E), where B is the fixed SE used to probe the
image. It is straightforward to verify that θ′(y,X) = B̌ +
y, ∀y ∈ E, ∀X ∈ P(E), where B̌ = −B is the reflected set
of B.

Definition 1 The adaptive erosion Eθ ∈ O is defined for ev-
ery X ∈ P(E) as

Eθ(X) = {z ∈ E : θ(z,X) ⊆ X} =
⋂

y∈Xc

θ′c(y,X). (2)

Definition 2 The adaptive dilation Dθ ∈ O is defined for
every X ∈ P(E) as

Dθ(X) = {z ∈ E : θ′(z,X)∩X 6= ∅} =
⋃

y∈X

θ(y,X). (3)



One can easily verify that the adaptive erosion and dilation
are increasing, dual operators (i.e., E∗

θ = Dθ), and form an
adjunction (i.e., Dθ(X) ⊆ Y ⇔ X ⊆ Eθ(Y ), ∀ X,Y ∈
P(E)). Moreover, if z ∈ θ(z,X), ∀X ∈ P(E), then the
adaptive erosion is anti-extensive, and the adaptive dilation is
extensive.

The adaptive opening, γθ, is given by

γθ(X) = Dθ(Eθ(X)) =
⋃

{θ(y,X) : θ(y,X) ⊆ X ; y ∈ E},

(4)
and the adaptive closing, φθ, is given by

φθ(X) = Eθ(Dθ(X)) (5)
= {z : θ(y,X) ∩X 6= ∅, ∀ θ(y,X) : z ∈ θ(y,X)},

for every X ∈ P(E).
The adaptive opening and closing are morphological fil-

ters, i.e., they are increasing and idempotent. Moreover, the
adaptive opening is anti-extensive and the adaptive closing is
extensive.

2.2. Examples

2.2.1. Spatially-variant mathematical morphology [12], [13]

If the adaptive structuring element element θ depends only on
the current position being probed, and is independent of the
signal (i.e., θ(z,X) = θ(z), for all z ∈ E and allX ∈ P(E)),
then the proposed adaptive mathematical morphology reduces
to the spatially-variant (SV) mathematical morphology devel-
oped in [12] and [13].

2.2.2. Adaptive neighborhood morphology [9], [10]

Consider E = R
2. Let h : R

2 → R be a criterion mapping
such as luminance or contrast. Let m > 0. For each z ∈
E, define the connected set V hm(z,X) by V hm(z,X) = {y :
|h(y) − h(z)| ≤ m}. Choose the SE mapping θ as follows:

θ(z,X) =
⋃

y∈E

{V hm(y,X) : z ∈ V hm(y,X)}. (6)

The SV erosion and dilation defined in Eqs. (2) and (3), re-
spectively, reduce to

Eθ(X) = {z : ∃y ∈ E such that z ∈ V hm(y,X) and V hm(y,X) ⊆ X},
(7)

and

Dθ(X) =
⋃

x∈X

⋃

z∈E

{V hm(z,X) : x ∈ V hm(z,X)}. (8)

Equations (7) and (8) are, respectively, the adaptive neigh-
borhood erosion and dilation presented in [9], [10]. Thus,
adaptive neighborhood morphology is a special case of the
adaptive mathematical morphology theory.

3. ADAPTIVE KERNEL REPRESENTATION

We define the kernel, Ker(ψ), of an adaptive operator ψ ∈ O
as follows

Ker (ψ) = {θ : z ∈
⋂

X∈P(E)

ψ(θ(z,X)), for every z ∈ E}.

(9)
The adaptive kernel reduces to Matheron’s kernel for translation-
invariant (TI) operators. In the translation invariant case,
θ(z,X) = B + z, ∀z ∈ E, ∀X ∈ P(E), where B ∈ P(E).
Let ψ be a TI operator. Then,

Ker (ψ) = {θ : z ∈ ψ(θ(z,X)), ∀z ∈ E, ∀X ∈ P(E)}

= {B : z ∈ ψ(B + z), ∀z ∈ E}

= {B : 0 ∈ ψ(B)}.

The mapping that associates to each operator ψ ∈ O its
kernel is an isomorphism.

Proposition 1 [12] Given two operators ψ1, ψ2 ∈ O, we
have ψ1 ⊆ ψ2 if and only if ker (ψ1) ⊆ ker (ψ2).

A straightforward corollary of the above proposition is that
the kernel of a non-degenerate operator is non-empty. We can
now obtain the kernel representation of increasing operators
based on adaptive erosions and adaptive dilations.

Theorem 1 An operator ψ ∈ O is increasing if and only if
ψ can be exactly represented as union of adaptive erosions
by mappings in its kernel or equivalently as intersection of
adaptive dilations by the transposed mappings in the kernel
of its dual ψ∗, i.e.,

ψ(X) =
⋃

θ∈Ker(ψ)

Eθ(X) =
⋂

θ∈Ker(ψ∗)

Dθ′(X), (X ∈ P(E)).

(10)

Spatially-variant mathematical morphology (SVMM) and
adaptive mathematical morphology can be viewed as equiv-
alent: increasing operators have a kernel representation in
terms of spatially-variant erosions and dilations [12], [13],
and in terms of adaptive erosions and dilations. The main
value of adaptive morphology is that it can provide a much
more succinct and simple kernel (and minimal basis) rep-
resentation than those provided by SVMM. In effect, many
SV erosions and SV dilations would be combined to form
adaptive erosions and adaptive dilations, respectively. From a
practical point of view, it could be much simpler to implement
fewer adaptive operations rather than many SV operations.
This can potentially result in much faster implementation.
However, adaptive morphological operators are generally
more complex to implement than their SV counterparts [8],
since the latter are data independent and thus can be deter-
mined a priori for each point z ∈ E.



4. ADAPTIVE BASIS REPRESENTATION

The adaptive kernel representation, given in Theorem 1, is re-
dundant: Let ψ ∈ O be a non-degenerate increasing operator,
and consider a mapping θ0 ∈ Ker(ψ). Since ψ is increas-
ing, we observe that every mapping θ that satisfies θ0 ≤ θ

is also in the kernel of ψ. Moreover, Eθ ⊆ Eθ0 , leading to
an “infinitely redundant” kernel representation. We, thus, ex-
tend the notion of the minimal basis of the kernel, which was
first introduced by Maragos for translation-invariant opera-
tors [15] as follows:

Definition 3 Let ψ ∈ O be an increasing operator. The basis
Bψ of Ker (ψ) is the collection of minimal kernel mappings,
i.e.,

Bψ = {θM ∈ Ker (ψ) : θ ∈ Ker (ψ) and θ ≤ θM =⇒ θ = θM}.

If the minimal basis of an increasing operator exists, then the
kernel representation of the operator in Theorem 1 reduces
to an equivalent representation by the elements of the mini-
mal basis, which allows a drastic reduction in the number of
adaptive basic morphological operators needed to implement
the increasing operator.

Let us denote by F (resp. G) the set of all closed (resp.
open) subsets of E. Matheron defined a topology on F called
the hit-or-miss topology [1]. We denote by O

′

the set of all
operators mapping F into itself. From now on, we consider
only mappings in O

′

. In particular, the adaptive structuring
element is now a mapping from E×P(E) to F . A mappingψ
in O

′

is upper-semi-continuous (u.s.c) if and only if for every
sequence {Xn : n ∈ N} of elements of F such that Xn ↓ X
in F (i.e.,X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊇ · · · andX =

⋂

n≥1Xn),
we have ψ(Xn) ↓ ψ(X) in F [1]. Observe that continuity
implies upper-semi-continuity but the converse is not true in
general. The following theorem establishes that increasing
and upper-semi-continuous operators in O’ have a minimal
basis representation.

Theorem 2 Let ψ ∈ O
′

be an increasing upper-semi-
continuous operator. Then, ψ is exactly represented as a
union of adaptive erosions by mappings in its basis Bψ, i.e.,

ψ(X) =
⋃

θ∈Bψ

Eθ(X) (X ∈ F). (11)

A minimal representation of an increasing upper-semi-continuous
operator as an intersection of adaptive dilations is obtained
by duality as follows:

Corollary 1 If ψ is increasing from G to G and has an upper-
semi-continuous dual ψ∗ from F to F , then ψ can be ex-
actly represented as an intersection of adaptive dilations by
the transposed mappings in the basis of its dual, i.e.,

ψ(X) =
⋂

θ∈Bψ∗

Dθ′(X) (X ∈ G). (12)

In the discrete Euclidean space Z
n, the set of open sets and

closed sets are equivalent to the power set P(Zn). Therefore,
every mappingψ from F to F has a dual mappingψ∗ from F
to F . Hence, if ψ (resp., ψ∗) is increasing and u.s.c., then the
basis representation as union of adaptive erosions (resp. in-
tersection of adaptive dilations) exists. In particular, it can be
shown that the adaptive median filter, with odd cardinality n,
can be exactly represented in terms of union and intersection
of

(

n
n+1

2

)

specified sets. In particular, no sorting is required,
which can be computationally efficient for large window sizes
n [15].

5. SIMULATIONS

We illustrate the power of the proposed adaptive mathemat-
ical morphology framework in denoising and segmentation
using the morphological opening by reconstruction technique.
Consider the the binary image of blobs in Fig. 1(a) and its cor-
rupted version by a germ-grain noise model [2] in Fig. 1(b).
We want to segment the noisy image in order to recover the
original blobs. We adopt the following adaptive structuring
element

1. At each pixel z of the image, decide, by exploring
its neighborhood, whether it belongs to a noise-grain
or not (the germ-grain noise model is assumed to be
known, a priori). The detection of the presence of
a noise-grain C(z) centered at the pixel z is deter-
mined by selecting the largest possible grain C which
is present or absent in the degraded image Y . The SE
mapping of the SV erosion is then selected as follows:

θ(z) =

{

C(z) ⊕ S, if z is detected as a noisy pixel;
S, otherwise,

(13)
where S denotes the rhombus structuring element. This
choice of the SE mapping ensures that all noise-grains
are removed completely (since the local SE is larger
than the size of the noise-grain), while preserving the
small main blobs in the image (which have size bigger
than the rhombus).

The result of the translation-invariant and adaptive opening
by reconstruction and segmentations are displayed in Fig. 1.
A persisting noise in the reconstructed image has deleteri-
ous consequences for segmentation as it is either classified as
main blobs (see Fig. 1(f)) or merges originally disconnected
blobs (see Fig. 1(g)) and, in both cases, results in erroneous
segmentation and blob detection. In medical imaging, prior
anatomical knowledge could be used to specify the adaptive
structuring element appropriately.

6. CONCLUSION

In this paper, we presented a general theory of adaptive mor-
phology for binary images in the Euclidean space. This the-



(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1. Translation-invariant and adaptive opening by reconstruction and segmentation (a) Original image; (b) Corrupted image
by a germ-grain noise model; (c) Opening by reconstruction using the rhombus SE; (d) Opening by reconstruction using the
rhombus SE dilated 3 times; (e) adaptive opening by reconstruction; (f), (g), (h) Segmentation of the reconstructed images in
(c), (d) and (e), respectively.

ory provides a unified mathematical framework of numerous
adaptive morphological schemes that have been proposed for
various image processing applications, such as range imagery
and adaptive filtering and segmentation [3–13]. Moreover,
The adaptive morphology theory captures the geometrical in-
terpretation of the structuring element, which is crucial in sig-
nal and image processing applications. The extension of the
adaptive binary morphology to the gray-level case is straight-
forward and would follow the same steps presented in [13].
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