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Abstract—Electroencephalography (EEG)-based brain com-
puter interface (BCI) is the most studied non-invasive interface to
build a direct communication pathway between the brain and an
external device. However, correlated noises in EEG measurements
still constitute a significant challenge. Alternatively, building BCIs
based on filtered brain activity source signals instead of using
their surface projections, obtained from the noisy EEG signals,
is a promising and not well explored direction. In this context,
finding the locations and waveforms of inner brain sources
represents a crucial task for advancing source-based non-invasive
BCI technologies. In this paper, we propose a novel Multi-core
Beamformer Particle Filter (Multi-core BPF) to estimate the EEG
brain source spatial locations and their corresponding waveforms.
In contrast to conventional (single-core) Beamforming spatial fil-
ters, the developed Multi-core BPF considers explicitly temporal
correlation among the estimated brain sources by suppressing
activation from regions with interfering coherent sources. The
hybrid Multi-core BPF brings together the advantages of both
deterministic and Bayesian inverse problem algorithms in order
to improve the estimation accuracy. It solves the brain activity lo-
calization problem without prior information about approximate
areas of source locations. Moreover, the multi-core BPF reduces
the dimensionality of the problem to half compared with the PF
solution; thus alleviating the curse of dimensionality problem.
The results, based on generated and real EEG data, show that
the proposed framework recovers correctly the dominant sources
of brain activity.

Index Terms—EEG inverse problem, spatial-temporal brain
source localization, Bayesian estimation, particle filtering, multi-
core beamformer

I. INTRODUCTION

ELectroencephalography (EEG) is a widely used technol-
ogy for brain study because it is non-invasive, relatively

cheap, portable and with an excellent temporal resolution.
These salient features hold the promise of EEG-based Brain
Computer Interface (BCI) technologies [1] capable of building
alternative communication channels between humans and the
external world. The spatial-temporal reconstruction of the
underlying brain neural generators based on the EEG recording
has emerged as an active area of research over the last decade.
Several source reconstruction approaches, each employing a
different set of assumptions, have been proposed to overcome
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the ill-posed inverse problem. They can be divided in two
main classes, [2]: i) imaging models (also known as current
density reconstruction models), which explain the data with
a dense set of current dipoles distributed at fixed locations;
and ii) equivalent current dipole models (also known as point
source or parametric models), which assume a small number
of focal sources at locations to be estimated from the data.
While the imaging techniques provide a detailed map of the
neuronal activity, the parametric models represent a direct
mapping from scalp topology to a small number of parameters.
Dipole solutions provide more intuitive interpretations that
explain the sensor data. Furthermore, it is easy to report statis-
tics of dipole parameters over different subjects. Summarizing
distributed brain activity with a small number of active dipoles
simplifies the analysis of connectivity among those sources.
Additionally, building BCIs based on the neuronal sources
instead of the EEG sensor data is gaining more interest [3]–[6].
In particular, source-based BCI seems an appealing alternative
to well known invasive solutions through implant placement
(intra-cortical electrodes) by neurosurgery.
Popular deterministic parametric solutions include the Mul-
tiple Signal Classification (MUSIC) algorithm and its mod-
ified versions [7], the methods for inverse problems [8],
the construction of spatial filters by data-independent [9] or
data-driven methods [10] and blind source separation tech-
niques [11], [12]. However, these approaches are based on the
assumption that the brain source locations are known a priori
or perform a search of the overall head volume to find their
positions. Given the spatial source locations, they estimate the
amplitudes and directions of the source waveforms.

Recently, statistical methods have gained popularity. Galka
et al. [2] consider the inverse problem as a dynamical one
and apply Kalman filtering to a linear distributed EEG source
model. In Kiebel et al. [13] a variational Bayesian approach
is developed, which allows for specification of priors on all
the model parameters. Following a similar approach as [2],
Sorrentino et al. [14], [15] propose a dynamical Bayesian
framework to estimate the locations of magnetoencephalo-
grafic (MEG) sources.

In the statistical state-space model framework, the EEG
source localization problem is formulated as the estimation
of the posterior probability density function (pdf) of the
state based on the available observations. For the linear and
Gaussian estimation problem, the Kalman filter propagates and
updates the mean and covariance of the distribution. For non-
linear problems and non-Gaussian noise, there is no general
analytical solution to the posterior density estimation problem.
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Therefore, a numerical approach is needed to evaluate the
posterior pdf of the state vector. The Particle Filter [16], [17]
has emerged, within the object tracking community, as one
of the most successful methods for state estimation in highly
non-linear or non-Gaussian state-space models. The main idea
is to represent the posterior pdf as a set of random samples,
called particles. When propagated and weighted properly, these
samples tend to the exact pdf as the number of samples
becomes very large [17]. The recent surveys [17]–[20] show
successful applications of particle filtering to different areas.

The computational complexity is a major challenge in the
reviewed techniques for brain source analysis. It is related
with the number of estimated dipoles, the dimension of the
dipole grid over which the active dipoles are searched and
the dipole temporal correlation. Deterministic solutions like
the MUSIC algorithm and its variations look for a trade-
off between the dense dipole grid space and correct dipole
estimation of an unlimited number of uncorrelated dipoles, or
large grid spacing (for fast computation), but sources may be
missed or incorrectly estimated if their true location is too far
apart from a grid point. Spatial filters like Beamforming (BF)
have the advantage of providing closed-form linear solution
of the inverse problem [21], [22]. However, they are rather
sensitive to correlated dipoles and require knowledge of the
dipole positions. Statistical approaches, like particle filtering,
are more suitable to the brain source analysis but they have to
deal with the problem of the high state vector dimension that
usually deteriorates the estimation accuracy. For example, in a
full particle filter framework, one estimated dipole corresponds
to 6 estimated parameters (3 space location coordinates and
3 directions of dipole moments propagation). This problem
is addressed in [23] by an algorithm that integrates multiple
particle filters to estimate individual dipoles. However, such
a framework does not provide tools for analyzing a potential
dipole correlation and connectivity, which is a central issue
in neuroscience. Moreover, applying a full particle filter,
designed for solving nonlinear problems, for estimation of
dipole moments, a linear function of the EEG signal, is an
unjustified complication of the inverse problem.
In order to overcome the limitation of the conventional (single-
core) BF [10], [24] to reconstruct only uncorrelated sources,
Brookes et. al. [25] and Diwakar et al. [26] proposed a dual-
core BF to consider two simultaneously activated sources
into a single spatial filter. Dalal etal [27] and Popescu [28]
extended the methodology of Diwakar, by adding multiple
null-constraints in the potentially correlated source locations
(multi-core Beamformer). A combined solution of the brain
dipole recovery is proposed in [29], referred to as a Beam-
forming Particle Filter (BPF), where a single-core BF is used
to estimate the source waveforms and a particle filter (PF)
to estimate the source spatial locations. The algorithm was
illustrated for one dipole.
The key contributions of this work are the following: 1) We
propose a hybrid approach (multi-core BF and PF) that, in
contrast to previous solutions, does not assume knowledge
of the spatial locations of the brain sources in order to
estimate the waveforms. The spatial dipole coordinates are
estimated using the PF, whereas the waveforms are estimated

using the Beamformer; 2) The multi-core BF reconstructs the
moments of each identified dominant source considering null
constrains with respect to the others. Since the number of
the identified sources (by PF) is smaller than the suppressed
single correlated interferers or nulling entire brain volumes as
in previous works [27], [28], the computational complexity
of the proposed combined solution is significantly lower.;3)
Satisfactory reconstruction accuracy was obtained for very low
EEG Signal to Noise Ratios (less than 8 dB) which is an
additional advantage of the hybrid approach.

This paper is organized as follows: In Section II the PF
framework is outlined. Section III presents the EEG state-
space model in order to apply the PF, based on physiologi-
cal specifications. The Beamformer for correlated sources is
introduced in Section IV. The joint Multi-core Beamformer
and Particle Filter (Multi-core BPF), for recursive estimation
of the source locations and waveforms is presented in Section
V. In Section VI, the Multi-core BPF is applied to simulated
and real EEG data and compared with alternative solutions.
Section VII summarizes the results.

II. THE PARTICLE FILTER

The active zones in the brain can be described in general
with a nonlinear state space model defined by the state and
measurement equations:

xk+1 = fk(xk,wk) (1)
zk = hk(xk,vk), (2)

where fk is the system transition function and wk is a zero-
mean, white noise sequence of known pdf, independent of
past and current states and k is the discrete time index.
Measurements zk, k = 1, 2, · · · , are available at discrete
time steps k, relating to the unknown state vector xk via
the observation equation in (2), where hk is the measurement
function and vk is a zero-mean, white noise sequence of
known pdf, independent of past and present states and the
system noise.

Within the Bayesian framework, all relevant informa-
tion about the state vector, given observations Z1:k =
{z1, · · · , zk} up to and including time k, can be obtained
from the posterior distribution of the state p(xk|Z1:k). This
distribution can be obtained recursively in two steps: predic-
tion and update. Suppose that the posterior distribution at the
previous time index k−1, p(xk−1|Z1:k−1), is available. Then,
using the system transition model, we can obtain the prior pdf
of the state at time k as follows:

p(xk|Z1:k−1) =

∫
p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1. (3)

When a measurement , at time step k, is available, the prior
is updated via the Bayes rule [30], [31]:

p(xk|Z1:k) =
p(zk|xk)p(xk|Z1:k−1)

p(zk|Z1:k−1)
, (4)

where the denominator is a normalizing factor and the con-
ditional pdf of zk given xk is defined by the measurement
model in (2).

The recursive equations in (3) and (4) constitute the solution
to the Bayesian estimation problem. If the functions fk and
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hk are linear and the noises wk and vk are Gaussian with
known variances, then an analytical solution to the Bayesian
recursive estimation problem is given by the well-known
Kalman filter [32]. In the EEG source localization problem,
however, the measurement function hk is non-linear, i.e. the
EEG measurements zk are non-linear functions of the source
locations xk [33]. The measurement model will be presented
in the sequel.

In order to deal with the non-linear models and/or non-
Gaussian noises, two main approaches have been adopted:
parametric and non-parametric. The parametric techniques
are based on extensions of the Kalman filter by linearizing
non-linear functions around the predicted values [34]. Other
Kalman filter variants such as the Extended Kalman filter and
Unscented Kalman filter [35] exist but they can only deal with
unimodal distributions. Because of their first-order approxi-
mations and unimodal Gaussian assumptions, such extensions
find difficulties in dealing with multi-model distributions. Non-
parametric methods such as Monte Carlo methods [16], [30],
[35] use a set of random samples, called particles, to represent
the posterior pdf. The posterior is then approximated by a set
of weighted particles (hence the name particle filter) as [16]:

p(xk|Z1:k) ≈
N∑
i=1

π
(l)
k δ(xk − x

(l)
k ), (5)

where N is the total number of particles, π(l)
k =

w
(l)
k∑N

l=1 w
(l)
k

is

the normalized weight for particle l at time k and δ(.) is the
Dirac delta function.

Different methods [19], [20], [35] have been proposed to
update the current weights w

(l)
k based on previous weights

w
(l)
k−1 and measurement zk. Sampling-importance-resampling

(SIR) is the most popular method where the importance weight
of a particle is given by [16], [30], [35]:

w
(l)
k = w

(l)
k−1

p(zk|x(l)
k )p(x

(l)
k |x(l)

k−1)

q(x
(l)
k |x(l)

k−1,Z1:k)
, (6)

where q(x
(l)
k |x(l)

k−1,Z1:k) denotes the importance function
from which samples are drawn. The most popular choice [16]
for the prior importance function is q(x

(l)
k |x(l)

k−1,Z1:k) =

p(x
(l)
k |x(l)

k−1) and it implies that equation (6) reduces to:

w
(l)
k = w

(l)
k−1p(zk|x(l)

k ). (7)

Given a discrete approximation to the posterior distribution,
one can then proceed to a filtered point estimate such as the
mean of the state at time k:

x̂k =

N∑
l=1

π
(l)
k x

(l)
k . (8)

The main advantage of the particle filter is that no restrictions
are placed on the modeling functions fk and hk, or on the
distribution of the system and measurement noise. Moreover,
the algorithm is quite simple and very easy to implement.
However, this increases the computational cost. Notably, it can
be implemented on massively parallel computers, raising the
possibility of real time operation with very large sample sets.

III. THE EEG STATE-SPACE MODEL

In order to apply the particle filtering framework, we
need to define the state-space model of the EEG source
localization problem based on physiological constraints. The
state vector xk, at time k, represents the coordinates of
the brain sources, or dipoles, within the three-dimensional
head geometry. For example, for two dipoles, the state vector
comprises (xik, yik, zik), the three dimensional coordinates of
the ith dipole in the chosen head geometry at time k, xk =
[x1k, y1k, z1k, x2k, y2k, z2k]

t and t is the transpose operator.
The observation vector zk represents the EEG measurements
collected from all sensors at time k. The goal is to estimate
the brain source locations given the multichannel EEG signal.

A. The EEG Measurement Model

The main source of EEG potentials, measured at the scalp,
derive from simultaneous postsynaptic current flows of many
neighboring neurons with similar orientations. In particular,
these clusters of similar oriented neurons are mainly found in
the cortical areas of the brain associated with the pyramidal
cells. The total electric current in an activated region is
often modelled by a mathematical current dipole with an
adequate dipole moment. Additionally, many of those current
dipoles representing microscopic current flows with the same
orientation can be replaced by an equivalent current dipole [1].
Assuming that the electrical activity of the brain is originated
from M dipolar sources, the measured multichannel EEG
signal zk from nz sensors at time k can be expressed by:

zk =
M∑

m=1

Lm(xk(m))sk(m) + vk, (9)

where xk(m) is a 3M × 1-dimensional state vector, that
represents the spatial source location at time k, Lm(xk(m)) is
the nz×3 leadfield matrix, also called forward matrix, for the
mth dipole; sk(m) is a 3×1-dimensional moment of the mth

dipole at time k, and vk is a white Gaussian model noise with
covariance Cv. The components of the leadfield matrix Lm

are non-linear functions of the dipole localization, electrodes’
positions and head geometry [33]. Note also, from equation
(9), that the EEG measurements zk are linear with respect
to the dipole moments sk and non-linear with respect to their
spatial locations xk. Though we are assuming that the number
of dipoles M is known, it can be estimated by analysing
the structure of the covariance matrix of the observations and
using information-theoretic criteria, as presented in [36].

Equation (9), which takes into account M dipoles, can be
written in the following concise form:

zk = L(xk)sk + vk, (10)

where xk = [xk(1), · · · ,xk(M)]t is a 3M × 1 vector,
representing the 3D location coordinates of the M dipoles at
time k, L(xk) = [L1(xk(1), · · · ,LM (xk(M)] is a nz × 3M
lead field matrix of the M dipoles at time k, and sk =
[sk(1), · · · , sk(M)] is the 3M × 1 vector of brain source
signals in the three directions for the M dipoles. From Eq.
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(10), we can compute the likelihood of each measurement as:
L(zk|(xk, sk)) ∝

exp

[
− (zk −L(xk)sk)

t
C−1

v (zk −L(xk)sk)

2

]
, (11)

where ∝ denotes “proportional to”.

B. The EEG State Transition Model

We assume no a priori knowledge of the source locations.
This is in contrast to other studies where a prior information
may be available from other brain imaging modalities like
Magneto resonance Images (MRI) or functional MRI. We
therefore, assume the state transition to be a random walk
(first-order Markov chain) in the source localization space:

xk = xk−1 +wk, (12)

where wk is a zero-mean, Gaussian white noise sequence with
covariance σ2

wI . The process wk is assumed to be independent
of past and current states. The Gaussianity of the system and
measurement noise is justified by the Central Limit Theorem,
because of the numerous sources of noise introduced in EEG
measurements: (i) environmental noise, which comes from the
power line and bad electrode contacts; (ii) physiological noise,
which arises from artifacts like the heart rate or eye blinks;
and (iii) background noise, which is the result of the constant
brain activity.

The state-space model of the dipole source localization
problem is then given by:{

xk = xk−1 +wk, state transition model
zk = L(xk)sk + vk, observation model. (13)

In the above model, the source waveforms sk are not known
and they are estimated by the beamforming filter.

IV. MULTI-CORE BEAMFORMING FOR CORRELATED
SOURCE LOCALISATION

The Beamforming (BF), originated in radar and sonar field,
is a well-known spatial filter for EEG source estimation
[24], [37]–[43]. The BF estimates the source moments sk by
applying the following linear operator:

sk = W tzk, (14)

where W t is an nz × 3M weighting matrix. The ideal filter
transmits the signals from the location of interest with a unit
gain, while nulling signals from elsewhere (i.e., insensitive to
the activity from other brain regions). Among a number of
criteria for choosing the optimal matrix W , the eigenspace-
projected linearly constrained minimum variance (LCMV)
BF gained much interest [39], [44]. The LCMV formulation
allocates spatial nulls so as to minimize the contribution to the
filter output from sources at locations other than the estimated
source [28]. Under the assumption that source moments asso-
ciated with different sources are temporally uncorrelated, the
solution to this minimization problem is given by [10]

W ∗ = argmin
W

Tr
[
W tCvW

]
(15)

subject to W tL(xk) = I.

The optimal solution is derived by constrained minimization
using Lagrange multipliers,

W ∗ = C−1
v L(xk)

[
L(xk)

tC−1
v L(xk)

]−1
. (16)

The conventional (single-core) LCMV Beamformer, described
above, has an important limitation when spatially distinct
yet temporally correlated sources are present in the EEG
signal [10], [24]. Its main assumption is that the activity
at the target location is not linearly correlated with activity
at any other location. However, several studies of functional
connectivity have suggested that temporal correlation relates to
the communications among cortical areas. For example, such
high correlations occur during evoked sensory responses in
which the sensory information is transmitted to both left and
right auditory cortices simultaneously, which result in almost
perfectly correlated activities in the two hemispheres [41].
Correlated activities can also be observed in symmetric regions
of the left and right hemispheres of the motor cortex [45], [46].

Different modifications of the single-core BF attempt to
compensate for this limitation. The temporal correlation
Mi,j(f) of a pair of (i, j) dipoles is quantified by the
magnitude-squared cross spectrum Si,j(f) divided by the
power spectra of both dipole moments Si,i(f) and Sj,j(f):

Mi,j(f) =
|Si,j(f)|2

Si,i(f)Sj,j(f)
. (17)

The correlation is bounded between 0 and 1, where Mi,j(f) =
1 indicates a perfect linear relation between dipoles di and dj
at frequency f .

Dynamic imaging of coherent sources (DICS) is proposed
in [9] where the spatial filter weighting matrix explicitly takes
into account the estimated correlation quantified by equation
(17). The authors of [47] conclude that high coherence results
in a large error in the estimation of the dipole location. Low
SNR additionally deteriorates the estimation of spatially close
and temporally correlated dipoles. Correlated dipoles can be
reliably localized if the distance between them is sufficiently
high. DICS computes the cross spectral densities for any given
location (from a dense grid of points) and all pair combinations
of grid dipoles.
Inspired by the methodology of Diwakar et al. [26] we have
developed an adaptive beamformer based on the LCMV al-
gorithm with multiple constraints in the potentially correlated
source locations. The optimization problem is solved using the
method of Lagrange multipliers with multiple constraints:

minW Tr
[
W tCvW

]
(18)

subject to W tL(d1) = I.

W tL(d2) = 0.

...
W tL(dM ) = 0.

The conventional beamformer (BF) is characterized with high
computational costs due to the scanning solution over a
3D source grid with thousands of nodes (potential source
locations). The BF modifications to account for correlated
sources increase even more the computational burden because
of the additional cross correlation estimation for all pair
combinations of grid dipoles. Moreover, the limited number



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 5

of EEG channels restricts the degree of freedom and limits
the number of constrains that can be considered.

We propose to deal with this problem by the iterative
multi-core BF-PF procedure where starting from randomly
generated assumption for the dipole spatial coordinates of the
active dipoles (uninformed prior) the PF converges to a small
number of dominant sources. The multi-core BF reconstructs
the moments of each identified dominant source considering
null constrains with respect to the others identified by the PF.
The advantage of this combined solution is that the number
of constrains in (18) is kept low and no a priory information
for the expected spatial localization of the correlated sources
is required. We rely on the estimation properties of the PF to
converge to the actual active dipoles.

V. THE MULTI-CORE BEAMFORMER-BASED PARTICLE
FILTER

The Multi-core Beamformer Particle Filter (Multi-core BPF)
is a hybrid (statistical-deterministic) framework for reconstruc-
tion of correlated source. The PF provides estimates of the
location of fixed temporally correlated brain sources in a three
dimensional space within the head defined by a grid of points.
The ability to simultaneously and recursively estimate the
source locations and waveforms lies in the BF spatial filter that
is embedded within the particle filter framework to estimate
the dipole moments for a given PF estimation of the dipole
location. The Multi-core BPF algorithm is summarized below.

Multi-core Beamformer Particle Filter for Correlated
Source Localization

1) Offline computation
Compute and store the forward matrices L for all points
of the grid by solving the Maxwell equations in [33].

2) Initialization
a) k = 0, for l = 1, · · · , N , where N denotes

the total number of particles, generate samples
x
(l)
0 ∼ p(x0) and set initial weights π

(l)
0 =

1/N .
b) for k = 1, 2, · · ·

3) Prediction step
for l = 1, · · · , N , generate samples accoprding to the
state transition model in Eq. (12):
x
(l)
k = x

(l)
k−1 +w

(l)
k , where w

(l)
k ∼ N (0, σ2

wI) (19)

4) Multi-core Beamforming

a) Find the lead field matrix L(x
(l)
k ) for each

predicted dipole from the offline calculation.
b) Find the optimal spatial filter weights using

(18). Consider the location of each estimated
dipole di(i = 1, · · · ,M) as the targeted direc-
tion and the other M − 1 dipoles as correlated
with di to compute the weighted vector associ-
ated with it.

c) Compute the source waveforms s
(l)
k according

to (14).

Fig. 1. The head model: (a) depiction of a realistic EEG experiment (left);
(b) spatial scalp location of the EEG electrodes (right).

5) Measurement update
Evaluate the particle weights

a) for l = 1, 2, · · · , N , on the receipt of a new
measurement, compute the weights

w
(l)
k = w

(l)
k−1 L

(
zk |

(
x
(l)
k ,L(x

(l)
k ), s

(l)
k

))
.

(20)
The likelihood L

(
zk |

(
x
(l)
k ,L(x

(l)
k ), s

(l)
k

))
is

calculated using (11).
b) for l = 1, 2, · · · , N , normalize the weights,

π
(l)
k = w

(l)
k /

N∑
l=1

w
(l)
k . (21)

6) Evaluate the posterior mean as the estimate of the state
at iteration k

x̂k = E[xk|Z1:k] =
N∑
l=1

π
(l)
k x

(l)
k . (22)

7) Compute the effective sample size Neff =

1/
∑N

l=1(π
(l)
k )2.

8) Selection step (resampling) if Neff < Nthresh: multi-
ply/suppress samples {x(l)

k } with high/low weights π(l)
k ,

in order to obtain N new random samples approximately
distributed according to the posterior state distribution.

Resampling is performed when the efficient number of
particles Neff is below a fixed threshold Nthresh.

VI. SIMULATION RESULTS

The performance of the proposed approach is assessed
by simulation experiments assuming the EEG signals are
generated by a limited number of focal sources. A three-shell
spherical head model (Figure 1) was created based on the
following assumptions:

• The head model consists of three concentric spherical
shells with the enclosed space among them representing
the scalp, skull and brain. The model dimensions are
scaled to a realistic human head with an outer shell radius
of 10 cm, scalp radius of 9.2 cm and skull radius of 8.7
cm.
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Fig. 2. Robustness of the proposed beamformer-based particle filter under
varying SNR.

• Each layer is considered as homogeneous and isotropic,
i.e., conductivity is constant and with no preferred direc-
tion. The conductivity values used for the head model
were selected from studies on electrical impedance to-
mography (EIT) aiming to create an electrical conductiv-
ity map of a volume [48]: scalp 0.33 S/m, skull 0.0165
S/m and brain 0.33 S/m.

• The distribution of the electrodes on the scalp follows the
standard 10/20 International system with an array of 30-
electrodes: Fp1, AF3, F7, F3, FC1, FC5, C3, CP1, CP5,
P7, P3, Pz, PO3, O1, Oz, O2, PO4, P4, P8, CP6, CP2,
C4, FC6, FC2, F4, F8, AF4, Fp2, Fz, Cz.

• The coordinates are defined with respect to a reference
frame whose origin is located at the centre of the sphere:
the x−axis pointing in the direction of the right-ear, the
y−axis pointing in the front of the head and the z−axis
is taken to be vertical.

White noise was added into the generated EEG signals
representing the effect of external sources not generated by
brain activity, but by some disturbance (e.g., movements of
muscles). The noise power was defined for different signal-to-
noise ratios (SNR). The SNR is defined in the sensor domain
as the total power of the signal divided by the total power of
the noise added to the signal. The total searchable head volume
is simulated with a fixed uniform grid model of 21012 points
(potential dipoles). The leadfield matrix is computed off-line
for each grid dipole. The experiments were done on a PC Intel
Core with CPU 2 GHz, RAM 8GB, 64 bit OS, Windows 8.1.

A. Dipole Localization Results

Sinusoidal waveforms with amplitudes 0.1 and frequencies
10 Hz and 15 Hz are assumed to be the brain signals origi-
nating from the two dipoles (d1 and d2 ). Observe that the di-
mension of the state vector xk = [x1k, y1k, z1k, x2k, y2k, z2k]

t

is 6, corresponding to three space coordinates per dipole.
For the initial state vector, N=500 samples are randomly
generated from a uniform distribution in the interval x0 ∈

[min(D),max(D)] with D is the coordinates of a grid of
dipoles, i.e., D = {di = [xi, yi, zi]}.

The PF finds the brain source coordinates xk within the
head geometry as presented in Figure 1.

In the simulations, the sources are randomly generated and,
therefore, they may or may not coincide with the dipole grid
that describes the head model. We consider three cases: (i)
the two brain sources are located on the dipole grid; (ii) only
one brain source coincides with a dipole grid, and (iii) none
of the brain sources is located on the dipole grid. Figures
3, 4 and 5 show the absolute estimation error for the three
cases with all simulations running for 200 iterations or time
points. For display quality, we only show the first iterations
after which the algorithm converges. We observe that the
absolute estimation errors with respect to the space coordinates
(x, y, z) converge almost to zero after 10 iterations if the
original brain sources are located on the grid head model.
The ground truth dipoles are d1 : (0.0116, 0.0767, 0.019)m
and d2 : (−0.0116,−0.0767, 0.0095)m.

The estimation of the locations of non-grid-dipoles ends
with a small steady-state error. The ground truth dipoles are
now close but do not coincide with any grid point d1 :
(0.01, 0.075, 0.02)m and d2 : (−0.01,−0.075,−0.01)m. This
error can be reduced if the grid model is more dense. However,
including very closely spaced sources lead to ill-conditioned
null-constrains in [28], [49]. Tt is worth pointing out that in
Figs. 3-5 the differences in the convergence behavior between
the two dipoles are mainly due to the small number of particles
(N = 500). If the number of particles increases enough, the
convergence behavior of the two dipoles (in every scenario)
would be statistically similar.

The robustness of the proposed Multi-core BPF to the noise
in the EEG dataset was also studied. Specifically, we generated
EEG data with different noise powers according to Eq. (9).
Figure 2 shows the spatial mean-square error (MSE), for
different signal-to-noise ratios (SNR), computed as follows

MSE =
(√

(x̂− x)2 + (ŷ − y)2 + (ẑ − z)2
)
, (23)

where (x, y, z) are the ground truth coordinates and (x̂, ŷ, ẑ)
are the estimated positions. We observe that, as long as the
signal power is higher than the noise power (SNR > 0 dB), the
MSE converges close to zero steady state error. MSE degrades
for EEG corrupted with severe noise (SNR ≤ 0 dB).

B. Multi-Core BPF versus Single-Core BPF and Full PF

In order to validate the Multi-core BPF, we compare it with
the two alternative techniques, single-core BPF and the full PF,
from which the proposed method originated. The experiments
were performed with the following control conditions: the
neural activity from a-pair of correlated dipole sources with
95% (M = 0.95) and 30% correlation (M = 0.3) were
simulated as sinusoidal base waves with amplitudes 0.1 and
frequencies 3Hz and 5Hz over 0.5 sec. The performance was
evaluated at low SNRs (3dB and 8dB). The target dipoles
(ground truth) were taken from the predefined grid with
the following (x, y, z) coordinates: d1 : (0.01, 0.075, 0.02)m
(right frontal cortex) and d2 : (−0.01,−0.075,−0.01)m (left
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Fig. 3. Absolute estimation error of the dipole locations when the two brain sources are located on the dipole grid and SNR= 3 dB.

Fig. 4. Absolute estimation error of the dipole locations when only the
second brain source coincides with a dipole grid and SNR= 3 dB.

Fig. 5. Absolute estimation error of the dipole locations when none of
the brain sources is located on the dipole grid and SNR= 3 dB.

occipital cortex), with a dominant direction of propagation
along the x−axis for d1 and along the y−axis for d2 defined
by the following vectors: dir1 : (0.8, 0.1, 0.1) and dir2 :
(0.1, 0.8, 0.1). The rational behind this choice is to generate
sources located on opposite brain hemispheres; and thus they
are spatially distinct but temporally correlated.

First, the effect of the dipole correlation (expressed by M )
on the beamformer was evaluated (see Figs. 6, 7 and 8). Note
that the simulation of dipole correlation changes the sine shape
of the base signal. The single-core BF and the multi-core BF
provide very similar estimations for uncorrelated dipoles. The
higher the correlation level (M = 0.95), the more biased are
the estimations of the single-core BF as can be seen in Fig.
8. This is due to the filter weight matrix that was computed
assuming the source time-courses come from uncorrelated
generators.

The results of the spatial location estimation by the three
methods are depicted in Figure 10 for M = 0.3 (low
correlation) and in Figure 11 for M = 0.95 (high correlation).
For low correlation levels (relatively independent sources) the

estimations of the three methods are very similar. The Multi-
core BPF clearly outperforms the other methods in the case
of highly correlated dipoles. Figure 10 and 11 partially show
the volume dipole grid over which the particle filter conducts
the search.

Table I summarizes the spatial MSE under varying SNR and
varying correlation levels M for 500 particles, 200 time steps,
across 10 Monte Carlo simulations. Even from very noisy EEG
data (SNR= 3 dB) and without any prior assumption about
the true location of the dipoles, the Multi-core BPF provides
estimation within 3-5 mm error distance. The single-core BPF
can achieve competitive accuracy, but only for dipoles with
low or none temporal correlation. The full PF is less sensitive
to dipole correlation and noise. The PF estimation error is
relatively high, however if the number of the particles is higher
(only 500 in the present scenario) it has the potential to recover
better the dipole location. However, a significant amount of
memory and computational power are needed, especially when
the number of estimated dipoles increases.

Figure 9 presents the normalized weights computed over
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Fig. 6. Source waveform estimation by beamforming for uncorrelated
dipoles: the original (dotted line) and the estimated curve (bold line) for
dipole 1 (left) and dipole 2 (right) using the Multi-Core BF (top plots),
the Single-Core BF (middle plots) and the full PF (bottom plots) with
SNR= 3 dB.
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Fig. 7. Source waveform estimation by beamforming for M = 0.3
(low correlation): the original (dotted line) and the estimated curve (bold
line) for dipole 1 (left) and dipole 2 (right) using the Multi-Core BF
(top plots), the Single-core BF (middle plots) and the full PF (bottom
plots) with SNR = 3 dB.

TABLE I
SPATIAL MEAN SQUARED ERRORS (MSE) IN MILLIMETRES UNDER VARYING SNR AND CORRELATION LEVELS M FOR N = 500 PARTICLES AND 200

ITERATIONS.

Method

SNR = 3 dB SNR = 8 dB

Dipole 1 Dipole 2 Dipole 1 Dipole 2

M = 0.95 M = 0.3 M = 0.95 M = 0.3 M = 0.95 M = 0.3 M = 0.95 M = 0.3

Full PF 8.2 8.3 7.3 7.6 6.9 6.7 5.8 5.3

Single-Core BPF 12.2 3.95 9.97 3.3 11.5 3.3 8.7 3.1

Multi-Core BPF 3.4 5.42 1.8 4.41 2.8 4.1 1.5 3.6
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the recursive PF estimation for some of the iterations k. Note
that based on the current likelihood value at each iteration
only few of the particles (from N = 500 particles in total) are
pointed out as the most probable candidates for the location
of the dipoles. This reduces significantly the computational
efforts associated with the exhaustive search over the complete
dipole grid conducted by the full beamforming approach or
other deterministic parametric methods for brain source local-
ization. In addition, the computational gain of the proposed
Beamformer-Particle filter (BPF) is exponential as compared
to the full PF. The main computational burden, both in the
hybrid approach and in the full PF approach, comes from the
PF. The power of the PF in handling nonlinear systems comes
at a computational cost. The approximation error of the PF
grows exponentially in the dimension of the state vector. It
has been shown that the PF collapses unless the number of
particles grows super-exponentially in the system dimension
[50]. This phenomenon has rendered the PF of limited use in
high-dimensional problems. In the proposed BPF approach,
the PF estimates the location of the dipoles, whereas the
beamformer estimates the dipole waveforms. In the full PF
algorithm, both the location and the waveform are estimated
using the PF. In particular, the dimension of the state vector

in the full PF framework is double the dimension of the state
vector in the BPF approach. In our preliminary simulations
(not shown here for space limitations), we found that the full
PF is able to converge to a near-zero error for one dipole.
However, for two or more dipoles, the full PF converges
to a non-zero error that increases as the number of dipoles
increases (i.e., the number of the state dimension increases).
These results are in accordance with the known “curse of
dimensionality” issue in Particle Filtering. By reducing the
dimension of the state vector that must be estimated by the
PF, the proposed Beamformer-PF exponentially reduces the
computational burden of the problem.

The computer simulations demonstrate the efficiency of
the proposed method for localizing and reconstructing highly
correlated sources brain sources from noisy EEG data. A
spherical model that approximate the head by three concentric
spherical shells representing the brain, skull and scalp is
used as in most of the references cited. However, this is a
simplification because knowledge of the electrical conductivity
map of the head is important since it is known that the solution
to the source localization problem is highly dependent on the
values taken by the scalp, skull, and brain conductivities [51].
Realistic head modelling of both geometry and anisotropy can
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truth (black) for high correlation, M = 0.95, SNR= 3 dB.

further improve the performance of the beamformer for low
SNR.

C. Results on Real EEG Data

In this section, we demonstrate the estimation accuracy
of the proposed algorithm with real EEG data. The data
corresponds to Visually Evoked Potential (VEP) signals ex-
tracted from thirteen female subjects (20-28 years old). All
participants had normal or corrected to normal vision and no
history of neurological or psychiatric illness. Different facial
expressions (neutral, fearful and disgusted) of 16 individuals
(8 males and 8 females) were selected, giving a total of 48
different facial stimuli. Images of 16 different house fronts
were superimposed on each of the faces. This resulted in a
total of 384 grayscale composite images (9.5 cm wide by 14
cm high) of transparently superimposed face and house.

Participants were seated in a dimly lit room, where a com-
puter screen was placed at a viewing distance of approximately
80 cm coupled to a PC equipped with software for the EEG
recording. The images were divided into two experimental
blocks. In the first, the participants were required to attend
to the houses (ignoring the faces) and in the other they were
required to attend to the faces (ignoring the houses). The
participants task was to determine, on each trial, if the current
house or face (depending on the experimental block) is the
same as the one presented on the previous trial. Stimuli were
presented in a sequence of 300 ms each and were preceded by
a fixation cross displayed for 500 ms. The inter-trial interval
was 2000 ms.

EEG signals were recorded from 20 electrodes (Fp1, Fp2,
F3, F4, C3, C4, P3, P4, O1, O2; F7, F8, T3, T6; P7,
P8, Fz, Cz, Pz, Oz) according to the 10/20 International
system. Electrooculogram (EOG) signals were also recorded
from electrodes placed just above the left supra orbital ridge
(vertical EOG) and on the left outer canthus (horizontal EOG).
VEP were calculated off-line averaging segments of 400 points
of digitized EEG (12 bit A/D converter, sampling rate 250 Hz).
These segments covered 1600 ms comprising a pre-stimulus
interval of 148 ms (37 samples) and post-stimulus onset

interval of 1452 ms. The EEG signal was visually inspected,
prior to processing, and those segments with excessive EOG
artifacts were manually eliminated (see Fig. 12 where epoch
2 was manually discarded). Only trials with correct responses
were included in the data set. The experimental setup was
designed by Santos et al. [52] for their study on subject
attention and perception using VEP signals.

Figure 13 represents 18 trials of four channels enhanced
by Principal Component Analysis (PCA). In the reconstructed
signals, it is possible to identify a positive peak in the range
of 100 - 160 ms, known as P100. P100 corresponds to the per-
ception of the sensory stimulus, a brain activity that is known
to happen in the primary visual cortex. The occipital channels
(O1, Oz) that measure the brain activity around the visual
cortex present the largest peak. We apply the proposed beam-
forming particle filter to estimate the two strongest sources (d1
and d2) that may have produced the P100 peak. The results of
the estimation are summarized in Figs. 14 and 15. The dipole
reconstruction from real EEG data took more iterations than
with synthetic data, about 1300 iterations for dipole 1 and 480
iterations for dipole 2. After that the PF weights converged to
fixed values and therefore the identified spatial coordinates
reached steady states. It is very interesting to observe that the
final coordinates of d1 : (0.71mm,−6.3mm,−1.9mm) and
d2 : (6.8mm,−2mm,−6.14mm) correspond to the zone of
the primary visual cortex as illustrated in Fig. 16. Therefore,
the proposed beamformer-based PF successfully estimated the
space coordinates of the two strongest brain sources, producing
the P100 peak, as located in the zone of the primary visual
cortex.

VII. CONCLUSIONS

This paper proposes a multi-core Beamformer Particle
Filter (multi-core BPF) for solving the ill-posed EEG
inverse problem. The method combines a particle filter
(statistical approach) for estimation of the spatial location
and a multi-core beamformer (deterministic approach) for
estimation of temporally correlated dipole waveforms in a
recursive framework. As a result the estimation accuracy is
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Fig. 12. EEG signals (channels 1-20) and EOG signals (channels 21-
22). Horizontal axis [ms], vertical axis [EEG channels]. Fig. 13. Superposition of 18 PCA enhanced Visually Evoked Potentials

(VEP) recorded by four electrodes: a) O1; b) O2; c) Pz; d) Oz. The
bold trace represents the average of all trials used to test the particle
filter.

Fig. 14. Estimation of the source location (Dipole 1) that produced the
P100 peak.

Fig. 15. Estimation of the source location (Dipole 2) that produced the
P100 peak.

Fig. 16. Primary visual cortex: axial view. The estimated active zones are
depicted in white circles.

improved. This general framework comprising the multi-core
BF allows to cope with the main challenges of the EEG brain
source recovering with particular emphases upon temporally
correlated dipoles. We conducted extensive simulations, based
on generated and real EEG experiments, in order to study
the accuracy and robustness of the proposed algorithm. The
multi-core BPF guarantees convergence to the correct spatial-
temporal source coordinates as long as the power of the
signal is higher than the power of the noise within the EEG
measurements. We have also conducted EEG experiments
where subjects were exposed to visual stimuli. The multi-core
BPF localized the two strongest brain sources that have
produced the recorded EEG signal within the expected visual
cortex zone. Numerous challenges still remain for an objective
assessment of the relative performance of inverse algorithms
and the statistical significance of different solutions computed
from simulated and experimental data. Additional research
efforts are needed to come up with a real-time solution of
the inverse problem. Our recent ongoing work suggests that
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the proposed methodology can be transferred from the “fixed
dipoles” case (as in the present work) to the ”moving dipoles”
case with encouraging results.
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