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Abstract—We consider a high dimension low sample-size mul- e.g., on the amplitudes or covariances of the parameters;
tivariate regression problem that accounts for correlation of the (3) the resolution optimization methods, which estimate th
response variables. The system is under-determined as theare parameters as independently as possible from each other. It

more parameters than samples. We show that the maximum like- has b h in 111 that all th h It in th
lihood approach with covariance estimation is senseless tause as been shown in [1] that all these approaches result in the

the likelihood diverges. We subsequently propose a normalation ~Same solution given the same a priori information. Morepver
of the likelihood function that guarantees convergence. Weall if no a priori information is available, all three method® ar
this method SMURC: Small-sample MUIltivariate Regression with equivalent to the classical minimum norm solution [1].
Covariance estimation. We derive an optimization problem ad Let us consider the (under-determined) multivariate re-

its convex approximation to compute SMURC. Simulation resits . bl hich i the classical rei
show that the proposed algorithm outperforms the regularizd gression problem, which generalizes the classical regiess

likelihood estimator with known covariance matrix. We also Problem of one response op predictors to regressing
apply SMURC to the inference of the wing-muscle gene network responses op predictors. This model has various applications

of the Drosophila melanogaster (fruit fly). including genomics [2], neurology [3], imaging [3] and ecen
Index Terms—High dimension low sample size; Multivariate Metrics. Letx; = (x;1,--- , ) denote the predictorgy; =
Regression; Maximum Likelihood; Gene Regulatory Network.  (y;1,--- ,y;,) denote the responses, aad= (€1, ,€iq)
the errors for the sample. The multivariate regression model
|. INTRODUCTION is given by
Many engineering problems are formulated as an inverse y, =Ax;+¢€, i=1,--n, Q)

problem. Examples in signal processing include sourceesti . . . .

tion of electroencephalographic (EEG) and magnetoend)&phé(\{hereA IS &g x p regression matrix gntzb Is the sample

graphic (MEG) data and inference or reverse-engineeriﬁge' we ’T‘a"e _the standard assumonq wat - - ) En Ar€

of genetic regulatory networks from high-throughput gen'é'd Gaussian with zero mean and covariance maﬂ_m.e., :

expression data. These problems are sometimes referredto’ N(O’z)' The model in (1) can be expressed in matrix

asill-posed or ill-defined because the inverse problem has ngotation as

unigue solution, and there are infinitely many solutions e Y=AX+E, @)

equally compatible with the data. For instance, in EEG aRghereY is theg x n response matrix with its" columny;,

MEG source estimation problems, if the source distributiof s thep x n predictor matrix with itsi" columnz; and E

contains more independent parameters than there is inden§Rhe random error matrixX is assumed to be full-rank. The

dent information in the recorded data, then the sourcesapakystem is under-determined when there are more parameters

distribution cannot be estimated. In genomics, the infeeenthan samples, i, > p > n.

of genetic regulatory networks also suffers from the limite  The negative log-likelihood function afd, ), @ = S,

number of measurements available to unambiguously e®imain pe expressed up to a constant as,

the network connectivity. This problem, known as the “large

p small n” problem, poses a challenge in estimation due to,( 4 ) = tr l(y —AX)'Q(Y — AX)| —1log|Q|, (3)

the identifiability problem, where a large class of solusion n

is _consistent with the measurements and no unique solutigfiere tr denotes the trace operatorplf< n (complete or

exists. over-determined system), the maximum likelihood estimato
The approaches proposed in the literature to tackle invegse 4 s simply given byAOLS — Yy XT(xX7)"1, which

problems can be classified into three groups: (1) the statist ;¢ independent of2 and amounts to performing separate

approach, which finds the most likely solution that fits thSrdinary least-squares.

data and any additional constraints that may be imposed; (z)l'he multivariate regression problem becomes particularly

the minimum norm approach, which finds a solution that {,5)jenging when the system is under-determined as it regui
compatible with the data and satisfies additional condBaiNg, o astimation ofpg parameters fromg < gp predictors or
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imposing a sparsity constraint on the singular valueddb]. ML estimation with unknown covariance in under-determined

Sparsity can also be imposed to identify the main predictogsgstems. We present a normalization of the likelihood fimmct

[2], where a combined constraint function that includes that guarantees convergence while still keeping the exgaie

and!, regularization, is used [6]. Thig constraint introduces form of the distribution.

sparsity in the entries ot and thel, regularization identifies  In this paper, scalars are denoted by lower case letters, e.g

irrelevant predictors (for alf responses) by introducing zeros:, m; vectors are denoted by bold lower case letters, e.g.,

for all entries in some rows ofA. However, all of these x,y; and matrices are referred to by bold upper case letters,

approaches do not account for correlated responses. e.g., A, X. I denotes the identity matrixc; denotes the*"
Exploiting the correlation in the response variables impso element of vector: anda;; is the (i, j)™* entry of matrix A.

the prediction performance. For under-determined probjenThroughout the paper, we provide references to known result

however, the maximum likelihood (ML) approach with covariand limit the presentation of proofs to new contributions.

ance estimation is senseless because there exist solgtibns

isfying Y = AX andX infinitely small. For these solutions, Il. THE NORMALIZED-LIKELIHOOD

the negative log-likelihood in (3) tends tecc. Hence, the  We propose to weight the likelihood function by the “en-

likelihood, as a function of the two variabled (Q2), diverges. ergy” of the error, in order to guarantee the convergence of

Observe that the likelihood converges if the covarianceimatthe energy-weighted likelihood function, while still keeg

X is known (e.g., proportional to the Identity for uncorrelét the exponential form of the density. Specifically, we defime t

measurements) or if the system is over-determined (in thisrmalized-likelihood of the under-determined ¥ n) mul-

case, there exists no solution that satisiés= A X). tiple regression model in (2), under the Gaussian assumptio
Rothmanet al. [7] proposed a regularized algorithm thats

simultaneously infers the regression coefficient ma#tixand

the inverse error covarianc€, = X', by imposing sparsity - "

constraints on{2. The /,-norm penalty on{2 ensures the 1. (A ) (Y - AX) QY — AX)|> exp[—%Tr[(Y

Definition 1.

convergence of the regularized likelihood because it eesu (2m)
exact solutions, for which the covariance is infinitely simal —AX)"Q(Y — AX)]], (4)
or equivalently the inverse covariance is infinitely large. _ _ _

However, in many applications, the assumption of a spar\glgere| | 1s the matrix determinant operator.

inverse covariance matrix may not be reasonable or have anpbviously, one can propose many possible normalizations
physical justification. In particular, in the genetic regfioiy of the Gaussian likelihood as a function of the pait, ©2).
network problem, there is no evidence for such an assumpti@ur particular “choice” in Definition 1 is motivated by findjn
Moreover, the solution to the regularized problem in [7]e®l a function that ensures a finite maximum of the likelihood
on an iterative procedure that finds the maximum over while keeping the form of the Gaussian density. This normal-
then overQ2. That is because the problem is convex in eadhation of the Gaussian likelihood avoids exact solutiond a
variable, A and €2, but not convex in the paifA, Q). This subsequent divergence issues. The pair @) can then be
iterative procedure is not guaranteed to converge and ifcibmputed to maximize the normalized-likelihoddy, i.e.,

does converge, then it may not reach the optimal solution. o s

Additionally, the authors observed that this algorithm may (A7, 97) = ari%ax Ln(A, ), )
take many iterations to converge for high-dimensional dai - . S

Subsequently, they proposed an approximate MRCE approtzg:rﬁposnlon 1. The solution to (5) is given by

that prematurely terminates the iterative optimizationger Y - A X)"Q* (Y - A*X) =nl, (6)
dure after two iterations.

Recently, Zhanget al. [8] proposed the sparse ConditionaYv
Gaussian Graphical Model (sSCGGM). CGGM formulates the Proof  of  Proposition 1. Let Z =
inference problem as a joint probabilistic graphical modelY — AX)TQ(Y — AX). Then, the normalized-likelihood
SCGGM minimizes the negative log-likelihood of the dat§an be written as the following function of the variatite

here I denotes the: x n Identity matrix.

with [; penalties on the autocorrelation and cross-correlation Z|3 1
precision matrices [8]. The main advantage of CGGM over Ln(Z) = on® exp—; Tr[Z]. (7)

MRCE is that CGGM leads to a convex problem, whereas
the MRCE estimation problem is only bi-convex, not jointlyrg find the stationary poinZ*, we SetaLN(Z) —o0.
convex. However, as acknowledged by the authors, CGGM 0z

and MRCE are so similar that “MRCE was mistakenly called 9Ln(Z) N, in_y 1 1

a sparse CGGM” [8]. In essence, both algorithms solve an 0Z §|Z|2 1Z|z eXp_§Tr[Z]
under-determined linear regression problem by maximittieg

1 n 1
R . ' - =|Z]|z —=Tr[Z
Gaussian likelihood subject to sparse constraints on the-co 2| |* exp 2 12l

H H H .o 1 n 1
lation structure. Hence,_the_ open question remains: Haw ca — 2|Z|3nZ ! - Iexp—= T¥[Z]
we perform maximum likelihood with covariance estimation 2
for under-determined systems?” = 0
This paper addresses this question, namely the problem of = Z*=nl. (8)
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Moreover, it can be easily derived that the Hessian at thden, the equality in (6) becomes

stationary pointZ™ is given by (Y — AX)TQ(Y — AX) = nI
n2 n2
n2

2
BLgZ) l7ezem _QLH % <0 ©) «— BTQB=nI
0z n . «— |BUTQU|B| = nI
T —

There are many pairsA’*, "), which satisfy equality « U'QU =n|B|"”? (14)
(6) and hence maximize the normalized-likelihood. The nosinceU” U = I, U7 restricted to the range d8 is invertible,
uniqueness of the solution is not surprising given that the., U” lrRangeB) IS invertible. Let us write
problem is under-determined. Among all possible solutions ¢ -
of (6), we propose to find those that minimize the regularized C? =RangeB) © Ker(B"), (15)
error |Y — AX||% + \[|2||%, where) is a tuning parameter where & denotes the direct sum of the two subspaces
and || - || denotes the Frobenius norm. Observe that it RangéB) and Ke(BT). Let P be the orthogonal projection
meaningful to consider the error as the objective functiereh onto RangéB). Then, we can decompose as
because the set of pair#d(Q) satisfying (6) are not exact
solutions, i.e., they do not satisfy the equally = AX, 2= PpQPp ® PpQPp. © PpiQPp ® Pp.QPp., (16)
and hence the minimum error is not trivially zero. Thus, awhere P3; is the orthogonal projection onto the orthogonal
advantage of the normalized-likelihood is that it avoid$1-€o space of RandgeB), i.e., Ker(BT). Recall that, by definition
sidering exact solutions. In addition, we consider comstsa of the isometryU, it satisfies the following properties:
on the regression matrid, which reflect prior knowledge T
about the nature of the regression model. For instante, Pp.U=U" Pp. =0. (7)
may be constrained to be sparse. Many applications assunen@s, from the decomposition of the matfixin Eq. (16), we
sparse regression matrix, e.g., robust face recognititierev gbtain
the target can be represented as a sparse linear combioétion T T
the dataset [9] and structural equation models (SEM) tarinfe U'QU = U PpQPpU. (18)
gene or phenotype networks [10]. For now, let us considefom Eq. (14) and sinc&/” [range) is invertible, we have
a general constraint sed € A C R?*P. The constrained T T Ly
optimization problem, thus, becomes U QU =U Pp Q PgU =n|B|

. —
min ||Y — AX||%Z + \||Q|)?
(A4.9) F r Py Q P =nU|B|"2U”. (19)
st. (Y -AX)TQ(Y — AX) =nl, (10) From the matrix decomposition in (16), for a fixed,
Aec A Py Q Pgpg is fixed. Thus, the minimum Frobenius norm

) ) matrix 2 results by setting the three other terms in the matrix
Problem (10) is formulated in terms of the two coupled varjecomposition to zero, i.e., the minimum Frobenius norm
ablesA and(2, which satisfy (6) to maximize the normalized+4trix is of the form

likelihood function. The following lemma derives an anaigt
expression of2 as a function ofA, and hence reduces the Q2=Pp Q Pp. (20)

problem to depend on only one variable Before stating the g regylit of Lemma 1 then follows from Egs. (19) and (20).
lemma’s result, we need the following definition of the polar -

decomposition of matrices. Using Lemma 1, the following proposition states the equiv-

Definition 2. The polar decomposition of a matri® € CP*" alent form of problem (10), where the optimization problem
is given by does not depend on the varialsie

B=U|B|, (11)  Pproposition 2. The optimization problem in (10) is equivalent

where |B| = (BT B)'/2, (-)}/2 is the principal square root t© , 2 2 —4
operator andU : C* — RangéB) is a CP*™ isometry such st Tr(S7) + A n*Tr(577)
that UTU = I. (1)

. . L . st. S=Y-AX|, Ac A
Lemma 1. Given A, there exist many? satisfying equality

(6). The minimum Frobenius norf, for a fixed A, is given Proof of Proposition 2: Replacings24 in the objective
by function of the optimization problem (10) by its expression
. S obtained in Lemma 1, and lettinB =Y — AX, we obtain
Qi=nU|(Y -AX) (Y — AX U, 12
A=n UL - ax) (v - ax) U2y —AXZ AR = 1B+ AlnUETB) U7
whereU is the isometry of the matrify” — AX). — T(BTB) + \n?
Proof of Lemma 1:Let B = (Y — AX). Consider the (U B'B)'UTUB"B)'U")
polar decomposition oB given by _ Tr(BTB) a2 Tr((BTB)—2)
B=U|B|, and |B|=(BTB)Y2 (13) = Tr(S?) + 2Tr(S™%), (22)



whereS? = BB = (Y — AX)T(Y — AX). m from the polar decompositiok” = V|Y|. Then, we need to
Though the objective function in (21) is convex (as a fundind A such that

tion of the variableS), the equality in the constraint (assuming

that A is convex) is not affine and thus the optimization AX =V([Y|-9). (26)

problem (21) is not convex [11]. We will, therefore, relaxeth _ ) _ )

minimization of (21) to a minimization over a convex set thai is full-rank; hence invertible from the right. Let us define

is included in the original set. In what follows, we show that x-1
if the matrix regressiom is sparse with a bounded norm, i.e., X = ‘Range(x)’ (27)
A= {A:]||A4|1 < €}, then (21) can be approximated by a Ol Range(x) -

convex optimization problem. Moreover, this approximatio
formulates a much simpler optimization problem than therom the Definition of X, we have AX X -
initial setting in (21) because it depends only Shand is Range(X)

independent ofA. Al ongex) aNdAXX Ronge(). 0. Therefore, multi-

Proposition 3. If A = {A : ||A||; < €}, then the optimization Plying Eq. (26) to the right byX', we see thatA defined
problem in (21) can be approximated by the following convéy
optimization problem

V(Y|-8)X

min Tr(S?) + X n? Tr(S~%) A= o Range(X)’ (28)
* (23) [(Ranget1

st SeA={SeSun:[IS-[Y][[r <ec} solves Eq. (26). Now we estimated||;,

whereS,, ,, is the set ofi x n symmetric positive semi-definite

matrices and:* is a small term which depends ox, Y but 1Al < VI =Slojx |
independent of. < V(Y] = S)IX]| (29)
!
Proof of Proposition 3: Let = ClYl= Sl (30)
< (Clec? (32)
Si={S:8=|Y - AX||Ali <¢}. (24 .
where (29) follows from the equivalence of norms and
and let Cauchy-Schwartz. In (30" = n||V]/|X]|, which is a
constant. The inequality in (31) follows from the fact that
S ={S€Sun:IS—Y]|r <ec"}. (25) S € S, and ||S — |Y||r < ec*. In (31), by choosing
¢ < & = 1/(n|V||X]|), we obtainA < e. This ends

[ |
The optimization problem (23) is convex, hence it admits a
unique global solutiorS™. Given S™, the optimal regression
matrix, A, is found by solvingS* = |Y — AX]|. There
are many possible such solutios We propose to find the
sparsest matrix, in the sense of minimization of the@orm.

We will show thatS; C S;. An illustration of these two sets o proof thatS ¢ S;.
is provided in Fig. 1. To this aim, we considér € S, and
show thatS € S;. Specifically, givenS € S, we find A, such
thatS = |Y — AX| and||Al; <e.

Si={s:5=|y—ax], [|All, <}

min [[A]
AU

(32)
So={S € Spn s IS — IYlllr < ec’} st. A X=Y-US",

whereU is an isometry matrix. For every isometiy,, we
can find the minimumi;-norm A(U,). The optimal matrix

A is, thus, found by minimizing ovet/ and A. Let V' be
the isometry of the matriYY. Assuming thatA is sparse, we
can choselU to be the isometry ofY". By replacingU by

V in (32), we may increase the minimum but we reduce the
Fig. 1. Approximation of the optimization problem in Projiims 2 by the problem to a convex setting in the unique variadleFinally,
g‘;”x]efh‘e’pgg:;ag?’;r‘(’)g’:s";irgn'”;r(’pos'“o” 3. lllustratiof the setsSy and 4,0 estimated regression matrix is the unique global spiuti

of the following convex optimization problem,

Given S € S,, ., we want to findA such thatS = |Y —

AX|, i.e., for some isometr§J we haveUS =Y — AX. mﬁnHAnl
For every isometrylU, one can find corresponding matri . (33)
satisfying the previous identity. We will construct a sieci st. AX=Y-VS§7,

matrix A. Namely, we fixU = V, whereV is the isometry

IEEE



Error v.s. Number of measurements n with p = 40 and ¢ = 40
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Fig. 2. Approximation errot|.S — S « ||r/||S||r versusn =1,--- ,p for p = 40.
SMURC algorithm [1l. APPLICATION: GENETIC REGULATORY NETWORKS

The SMURC algorithm is summarized below. An application of interest, which suffers from the high-
dimension, small sample-size problem is the reconstmctio
Input: The matricesX € RP*™ andY € R9*™ according to also calledeverse engineeringf genetic regulatory networks

the multivariate regression model in Eq. (2) with> n. (GRNs), where only few samples, denoting time points or

Step 1 Solve the convex optimization problem in (23). Thdissue samples, are available. Inference of genetic regyla
solution of this problem is a p.s.d. mat# € R™*" networks is important for understanding the dynamics of

Step 2 GivenS*, the optimal regression matrix is obtained€netic interactions and harnessing this understanditw in
as the solution to the convex optimization probleri” educated intervention of the cell. The behavior of the
in (33) regulatory network can be modeled by a system of linear

_ - ) differential equations near a steady-state [14]-[18]:
Steps 1 and 2 can be implemented efficiently using the Matlab

Software for Disciplined Convex Programmirayx[12], [13]. N
i(te) = Y agw;(ty) + biu(te) + €(ts),  (35)
The following corollary provides an upper bound on the j=1
norm of the optimal connectivity matrix

wherei =1,--- ,p,k =1,--- ,n, p is the number of genes,
Corollary 1. The norm of the optimal connectivity matrix,» is the number of experiments or time poinis(t) is the
given by the solution of the convex optimization problem Bxpression of gené at timet, i;(t) is the rate of change of

(33), is bounded above by expression of genéat timet, a,; represents the influence of
gene;j on genei, b; is the effect of the external perturbation
A L < |[V(Y| - S*)XHI <e, (34) on genei and u(t) denotes the external perturbation at time

t. ¢;(ty) models the measurement and model error at time

whereV is the isometry in the polar decompositionyf §*  Stepk. The goal is to infer the gene interactiofs;; }7 ;_;,
is the global solution of the convex optimization problem @lven a certain numbde; of measurementsintroducing the
(23) and X, defined in (27), is the right inverse of the matrieW variabley;(t) = <= — biu(t), we can write the ODE
X. model in vector form for the genes as

Proof: The proof follows from the proof of Proposition y= Az + €, (36)
3, and specifically from Eq. (29). [ ]

The SMURC algorithm involved an approximation of thevhere y = [y1,ya, -+ yplTm = frn, @, 1] e =
original optimization problem (10) by the convex optimipat €1, »€,]" and A = {aj;}},_,. Performingn different
problem in (23). It is thus important to assess the effect 8kPeriments , we obtain measurements and can write the
this convex approximation on the final solution. An analgtic results as

derivation to bound this approximation is difficult and cuenb Y =AX + E, (37)
some. We, therefore, provide a numerical assessment of this

approximation by computing the average error between thdereY = [y, - ,vy,], X = [x1,---,x,] and E =
exact solution of (21) and the approximate solution of (23),-- - , €,]. Thatis, every column oY, X, andE represents

[|S — S «||r/||S||F- In synthetic data, the exact solutidh a single experiment and there are< p columns representing

is known. The error graph, displayed in Fig. 2 shows that experiments. The goal of reverse-engineering the network
this approximation error decreases to a very small valuenwhis to estimate the connectivity matrid given a number of

the number of measurements approaches the number ofmeasurements and in the presence of correlated noise with
unknownsp. unknown covariance matrix.
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Fig. 3. Performance comparison of SMURC with sCGGM andi{Resgularized maximum likelihood (RMLE) with known covanize for different network
sizes with%80 sparsity. Blue: SMURC with unknown covariance; Green: s®B@th unknown covariance; Red: RMLE with = Y4, = pl*~9l; Purple:
RMLE with & = 21, whereo? is estimated from the data. (&), 5) = (10,0.15); (b) (p,d) = (10,0.25); (c) (p,§) = (40, 0.15); (d) (p, §) = (40,0.25).

A. Simulation results measure suggested in [19]:
p p
Before considering a real dataset, we generate synthetic da E = Z Z eij With
and compare the proposed SMURC algorithm with the i=1 i=j
regularized maximum likelihood estimator in [14], where an 1, if Jay — i) > lay]
l1-norm penalty is imposed on the connectivity matdx The €ij = { 0, btherwise (39)

regularized MLE finds the optimal connectivity matrix, whic
minimizes the following convex function wherea;; is the(i, j)'" element of the true genetic interaction
matrix anda,; is the estimate af;;. ¢ is a threshold parameter.
The percentage error is computed iagp?.
f(A) =Tr [l(y —~AX)(Y —AX)TS7 £ In |3 Figure 3 shows the percentage error versus the number of
n measurements, for p = 10 and p = 40-gene networks,
PL (38)  which ares80% sparse. We considered a threshold of error
+ O‘Z Z |ai s, corresponding td = 0.15 anddé = 0.25. Observe that, though
i=1j=1 the system is sparse, it is still under-determined, i.eg, th
number of “effective” unknowns is larger than the number of
whereX:, the covariance matrix of the data, is assumed to l&dependent observations. We compare the proposed SMURC
known anda is a tuning parameter that controls the sparsif§igorithm (which assumes an unknown covariance matrix)
level of the matrixA. with the sCGGM algorithm [8] and the regularized MLE
Wi . . , .__with the true covariance matrix [14] and with a diagonal
€ generate synthetic gene networks with varying gize covariance matrix = 021, whereo? is estimated from the
varying number of measurements < p, and covariance ata. It was shown ;1 ?8] t,hat sC(gGM outperforms Rothman
structureX. Gene regulatory networks are known to be sparse;” . P .
. ; et al. MRCE and approximate MRCE. We used the opti-
every gene interacts only with few other genes. Thus, the

connectivity matrixA is sparse. In the presented simulationsr‘?lzed code for sSCGGM available at http://www.cs.cmu.edu/

we assume0% sparsity level, i.e.]|Allo = 0.2p?, where]|-||o ~.stssgkl:rg\//sa?;‘;vxigs/softxvarlsf;Ptlv\”/ri]tl.hWe_ag iessiftheMmlt
denotes the number of non-zero elements. The performanc%gﬂo simulations vxtlreuree _eprformed forpe_acﬁ éx e)r/iment
the algorithm is similar for other sparsity levels as longlees P P '

system is under-determined. The entries of the matriare ) )

drawn from a standard normal distribution with zero-meam af®- Drosophila Melanogaster gene expression data

unit variance, i.e.q; ; ~ N(0,1). We use the same covariance To assess our algorithm on real data, we tested it on the
matrix suggested in [14], [19Y; ; = pli=ilwith p = 0.7. The Drosophila melanogaster gene expression levels [21]. &te d
performance of the algorithm is assessed using the follpwigontains4028 genes in wild-type flies examined durirt$
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Fig. 5. Estimated gene regulatory networks of the Drosaptiilring four developmental phases using the SMURC algoritBlue and red edges denote,
respectively, positive and negative interactions. Themgredges are interactions reported in Flybase. (a) Emhry@ni Larval; (c) Pupal; (d) Adulthood.
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Fig. 4. Flybase: The known undirected gene interactionfiégnDrosophila’s

11-gene wing muscle network [20].

sequential time periods beginning at fertilization andrsypag

network during these two developmental periods. In thealarv
and adulthood phases, the entire 9 larval and 7 adulthoad tim
points were used to reconstruct the network during the larva
and adulthood development phases, respectively. In sugpmar
the connectivity matrix of the 11-gene Drosophila develop-
ment network was estimated using the SMURC algorithm with
9 time points in the embryonic phase, 9 time points in the
larval phase, 9 time points in the pupal phase and 7 time goint
in the adulthood phase. Observe that in all four developatent
phases, the system is underdetermined.

The reconstructed networks using the SMURC algorithm
are shown in Fig. 5. The SMURC algorithm was able to
detect six out of the seven Flybase interactions duringufit
developmental phases of the organisup,él§ appears during
the embryonic period;Actn,sl3 and (p,mh¢ appear during
the larval phase;tfl,evg appears during the pupal phase;

embryonic, larval, pupal and the first 30 days of adulthoofPrm,Actr) and (mhc,sl$ appear during the adulthood stage
Since early embryos change rapidly, overlapping 1-houir pe@f the development.

ods were sampled; adults were sampled at multiday intervalswe compare the SMURC findings with the results in [22],
The time points span the embryonic (samples 1-30; time EO[4B], [24], [25]. Though these references are not directly

till E2324h ), larval (samples 31-40; time L24h till L105h)related to the problem of under-determined regressiomsyst
pupal (samples 41-58; MOh till M96h) and adulthood (sampleg@ith unknown covariance structure, their work aims at reger
59-66; A024h till A30d) periods of the organism. A list ofengineering the connectivity of genetic regulatory neksor
known undirected gene interactions is hosted in Flybasg [2(h particular, they all consider the Drosophila’s 11-geriagv

A set of 11 genes that regulate the wing muscle developmemtiscle network. Zhacet al. [22] infer a single directed
has been considered in [22]-[25]. The 11-gene network, witletwork using the minimum description length principleeyh
the interactions reported in Flybase, is depicted in Fig. dsed all 66 time points to identify a single network that
We reconstructed the genetic network between these 11 gectlegracterizes the entire Drosophila’s life cycle. In [23],
during the four developmental phases using the SMURne-varying undirected network is learnt using an expaiaén
algorithm. In the embryonic and pupal phases, 9 time pointendom graph model model. A dynamic Bayesian network was
undersampled from the original time points (30 for embrgonused in [24], and [25] proposed a non-parametric Bayesian
and 18 for pupal), were used to reconstruct the 1l-geregression approach for gene regulatory network inference



Table | shows the detection of the known interactions in
Flybase by the five approaches, E,L,P,A stand, respectieely [1]
the embryonic, larval, pupal and adulthood phases. Thaugh t
proposed SMURC algorithm relies on fewer time points than
the other approaches, it detected the most number of knovdl
interactions cited in Flybased and reported in FLIGHT web-
site http://flight.icr.ac.uk/search/searaiteractions.jsp. Addi-
tionally, the SMURC algorithm found two directed interacts (3]
(msp 300— prm) and nsp300— up) in common with the
works in [22], [23], [24], and three directed interactionsidg
the embryonic phase in common with [25] (the networks it
the other phases were not reported in [25])p & twi), (up  [5]
— micl) and sp300— Myo61F]). It is striking that all
detected interactions that are shared with previous wad2k{2 [6]
[25] have also the same direction.

[71
IV. CONCLUSION AND DISCUSSION
8]

In this paper, we showed that the Gaussian likelihood, as
a function of the regression coefficients and the covariangg,
matrix, diverges when the multivariate regression system i
under-determined. We subsequently proposed a normalized
likelihood function that guarantees convergence whildl stj;q
keeping the Gaussian form of the data. The maximum normal-
ized likelihood, however, admits multiple solutions besmathe
system is still under-determined. Using the polar decoriapog 4
tion of matrices, we provided an expression of the covaganc
matrix in terms of the regression coefficients. This prodida [12]
equivalent representation of the optimization problem me o 13,
variable only, namely the regression matrix. We then relaxe
the optimization problem into a convex one by considering a
convex set included in the original constraint set. Theroati
sparse regression matrix is found as the global solution tqia]
convex optimization problem.

We applied the proposed Small-sample MUltivariate Re-
gression with Covariance estimation (SMURC) algorithm ti35]
infer the wing muscle genetic regulatory networks of the
Drosophila melanogaster during the four phases of its de-
velopment: embryonic, larval, pupal and adulthood. GenefiLé]
regulatory networks are known to be sparse and often the
number of measurements is smaller than the number of genes,
which makes the network inference problem unidentifiable.
SMURC was able to detect six out of the seven interac-
tions reported in Flybase. Other algorithms aimed at re@vers, g
engineering dynamic gene regulatory networks were able to
detect a maximum of three out of the seven interactions.
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