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SMURC: High-Dimension Small-Sample
Multivariate Regression with Covariance Estimation

Belhassen Bayar, Nidhal Bouaynaya*, and Roman Shterenberg

Abstract—We consider a high dimension low sample-size mul-
tivariate regression problem that accounts for correlation of the
response variables. The system is under-determined as there are
more parameters than samples. We show that the maximum like-
lihood approach with covariance estimation is senseless because
the likelihood diverges. We subsequently propose a normalization
of the likelihood function that guarantees convergence. Wecall
this method SMURC: Small-sample MUltivariate Regression with
Covariance estimation. We derive an optimization problem and
its convex approximation to compute SMURC. Simulation results
show that the proposed algorithm outperforms the regularized
likelihood estimator with known covariance matrix. We also
apply SMURC to the inference of the wing-muscle gene network
of the Drosophila melanogaster (fruit fly).

Index Terms—High dimension low sample size; Multivariate
Regression; Maximum Likelihood; Gene Regulatory Network.

I. I NTRODUCTION

Many engineering problems are formulated as an inverse
problem. Examples in signal processing include source estima-
tion of electroencephalographic (EEG) and magnetoencephalo-
graphic (MEG) data and inference or reverse-engineering
of genetic regulatory networks from high-throughput gene
expression data. These problems are sometimes referred to
as ill-posedor ill-definedbecause the inverse problem has no
unique solution, and there are infinitely many solutions that are
equally compatible with the data. For instance, in EEG and
MEG source estimation problems, if the source distribution
contains more independent parameters than there is indepen-
dent information in the recorded data, then the sources spatial
distribution cannot be estimated. In genomics, the inference
of genetic regulatory networks also suffers from the limited
number of measurements available to unambiguously estimate
the network connectivity. This problem, known as the “large
p small n” problem, poses a challenge in estimation due to
the identifiability problem, where a large class of solutions
is consistent with the measurements and no unique solution
exists.

The approaches proposed in the literature to tackle inverse
problems can be classified into three groups: (1) the statistical
approach, which finds the most likely solution that fits the
data and any additional constraints that may be imposed; (2)
the minimum norm approach, which finds a solution that is
compatible with the data and satisfies additional constraints,
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e.g., on the amplitudes or covariances of the parameters;
(3) the resolution optimization methods, which estimate the
parameters as independently as possible from each other. It
has been shown in [1] that all these approaches result in the
same solution given the same a priori information. Moreover,
if no a priori information is available, all three methods are
equivalent to the classical minimum norm solution [1].

Let us consider the (under-determined) multivariate re-
gression problem, which generalizes the classical regression
problem of one response onp predictors to regressingq
responses onp predictors. This model has various applications
including genomics [2], neurology [3], imaging [3] and econo-
metrics. Letxi = (xi1, · · · , xip) denote the predictors,yi =
(yi1, · · · , yiq) denote the responses, andǫi = (ǫi1, · · · , ǫiq)
the errors for theith sample. The multivariate regression model
is given by

yi = Axi + ǫi, i = 1, · · · , n, (1)

whereA is a q × p regression matrix andn is the sample
size. We make the standard assumption thatǫ1, · · · , ǫn are
i.i.d Gaussian with zero mean and covariance matrixΣ, i.e.,
ǫi ∼ N (0,Σ). The model in (1) can be expressed in matrix
notation as

Y = AX +E, (2)

whereY is theq × n response matrix with itsith columnyi,
X is thep×n predictor matrix with itsith columnxi andE
is the random error matrix.X is assumed to be full-rank. The
system is under-determined when there are more parameters
than samples, i,e,q > p > n.

The negative log-likelihood function of(A,Ω), Ω = Σ
−1,

can be expressed up to a constant as,

g(A,Ω) = tr

[

1

n
(Y −AX)tΩ(Y −AX)

]

− log |Ω|, (3)

where tr denotes the trace operator. Ifp ≤ n (complete or
over-determined system), the maximum likelihood estimator

for A is simply given byÂ
OLS

= Y XT (XXT )−1, which
is independent ofΩ and amounts to performingq separate
ordinary least-squares.

The multivariate regression problem becomes particularly
challenging when the system is under-determined as it requires
the estimation ofpq parameters fromnq < qp predictors or
n < p. Different approaches were proposed to reduce the num-
ber of parameters by minimizing (3) under various constraints
on the regression matrixA. Reduced-rank approaches restrict
the rank of the estimated matrix of regression coefficients,
rank(A) ≤ r ≤ min(p, q) [4]. The rank can also be reduced by
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imposing a sparsity constraint on the singular values ofA [5].
Sparsity can also be imposed to identify the main predictors
[2], where a combined constraint function that includesl1
and l2 regularization, is used [6]. Thel1 constraint introduces
sparsity in the entries ofA and thel2 regularization identifies
irrelevant predictors (for allq responses) by introducing zeros
for all entries in some rows ofA. However, all of these
approaches do not account for correlated responses.

Exploiting the correlation in the response variables improves
the prediction performance. For under-determined problems,
however, the maximum likelihood (ML) approach with covari-
ance estimation is senseless because there exist solutionssat-
isfying Y = AX andΣ infinitely small. For these solutions,
the negative log-likelihood in (3) tends to−∞. Hence, the
likelihood, as a function of the two variables (A,Ω), diverges.
Observe that the likelihood converges if the covariance matrix
Σ is known (e.g., proportional to the Identity for uncorrelated
measurements) or if the system is over-determined (in this
case, there exists no solution that satisfiesY = AX).

Rothmanet al. [7] proposed a regularized algorithm that
simultaneously infers the regression coefficient matrixA and
the inverse error covariance,Ω = Σ

−1, by imposing sparsity
constraints onΩ. The l1-norm penalty onΩ ensures the
convergence of the regularized likelihood because it excludes
exact solutions, for which the covariance is infinitely small
or equivalently the inverse covariance is infinitely large.
However, in many applications, the assumption of a sparse
inverse covariance matrix may not be reasonable or have any
physical justification. In particular, in the genetic regulatory
network problem, there is no evidence for such an assumption.
Moreover, the solution to the regularized problem in [7] relies
on an iterative procedure that finds the maximum overA

then overΩ. That is because the problem is convex in each
variable,A andΩ, but not convex in the pair(A,Ω). This
iterative procedure is not guaranteed to converge and if it
does converge, then it may not reach the optimal solution.
Additionally, the authors observed that this algorithm may
take many iterations to converge for high-dimensional data.
Subsequently, they proposed an approximate MRCE approach
that prematurely terminates the iterative optimization proce-
dure after two iterations.

Recently, Zhanget al. [8] proposed the sparse Conditional
Gaussian Graphical Model (sCGGM). CGGM formulates the
inference problem as a joint probabilistic graphical model.
sCGGM minimizes the negative log-likelihood of the data
with l1 penalties on the autocorrelation and cross-correlation
precision matrices [8]. The main advantage of CGGM over
MRCE is that CGGM leads to a convex problem, whereas
the MRCE estimation problem is only bi-convex, not jointly
convex. However, as acknowledged by the authors, CGGM
and MRCE are so similar that “MRCE was mistakenly called
a sparse CGGM” [8]. In essence, both algorithms solve an
under-determined linear regression problem by maximizingthe
Gaussian likelihood subject to sparse constraints on the corre-
lation structure. Hence, the open question remains: “How can
we perform maximum likelihood with covariance estimation
for under-determined systems?”

This paper addresses this question, namely the problem of

ML estimation with unknown covariance in under-determined
systems. We present a normalization of the likelihood function
that guarantees convergence while still keeping the exponential
form of the distribution.

In this paper, scalars are denoted by lower case letters, e.g.,
n,m; vectors are denoted by bold lower case letters, e.g.,
x,y; and matrices are referred to by bold upper case letters,
e.g.,A,X. I denotes the identity matrix.xi denotes theith

element of vectorx andaij is the(i, j)th entry of matrixA.
Throughout the paper, we provide references to known results
and limit the presentation of proofs to new contributions.

II. T HE NORMALIZED-L IKELIHOOD

We propose to weight the likelihood function by the “en-
ergy” of the error, in order to guarantee the convergence of
the energy-weighted likelihood function, while still keeping
the exponential form of the density. Specifically, we define the
normalized-likelihood of the under-determined (p > n) mul-
tiple regression model in (2), under the Gaussian assumption,
as

Definition 1.

LN (A,Ω) =
|(Y −AX)TΩ(Y −AX)|

n
2

(2π)
np

2

exp[−
1

2
Tr[(Y

−AX)TΩ(Y −AX)]], (4)

where| · | is the matrix determinant operator.

Obviously, one can propose many possible normalizations
of the Gaussian likelihood as a function of the pair(A,Ω).
Our particular “choice” in Definition 1 is motivated by finding
a function that ensures a finite maximum of the likelihood
while keeping the form of the Gaussian density. This normal-
ization of the Gaussian likelihood avoids exact solutions and
subsequent divergence issues. The pair (A,Ω) can then be
computed to maximize the normalized-likelihood,LN , i.e.,

(A∗,Ω∗) = argmax
A,Ω

LN(A,Ω), (5)

Proposition 1. The solution to (5) is given by

(Y −A∗X)TΩ∗(Y −A∗X) = nI, (6)

whereI denotes then× n Identity matrix.

Proof of Proposition 1: Let Z =
(Y − AX)TΩ(Y − AX). Then, the normalized-likelihood
can be written as the following function of the variableZ,

LN (Z) =
|Z|

n
2

(2π)
nq

2

exp−
1

2
Tr[Z]. (7)

To find the stationary pointZ∗, we set
∂LN (Z)

∂Z
= 0.

∂LN(Z)

∂Z
=

n

2
|Z|

n
2
−1|Z|Z−1 exp−

1

2
Tr[Z]

−
1

2
|Z|

n
2 exp−

1

2
Tr[Z]

=
1

2
|Z|

n
2 [nZ−1 − I] exp−

1

2
Tr[Z]

= 0

⇒ Z∗ = nI. (8)
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Moreover, it can be easily derived that the Hessian at the
stationary pointZ∗ is given by

∂2LN(Z)

∂Z2 |Z=Z∗= −
1

2n
n

n2

2 e−
n2

2 < 0 (9)

There are many pairs (A∗,Ω∗), which satisfy equality
(6) and hence maximize the normalized-likelihood. The non-
uniqueness of the solution is not surprising given that the
problem is under-determined. Among all possible solutions
of (6), we propose to find those that minimize the regularized
error ‖Y −AX‖2F + λ‖Ω‖2F , whereλ is a tuning parameter
and ‖ · ‖F denotes the Frobenius norm. Observe that it is
meaningful to consider the error as the objective function here,
because the set of pairs (A,Ω) satisfying (6) are not exact
solutions, i.e., they do not satisfy the equalityY = AX,
and hence the minimum error is not trivially zero. Thus, an
advantage of the normalized-likelihood is that it avoids con-
sidering exact solutions. In addition, we consider constraints
on the regression matrixA, which reflect prior knowledge
about the nature of the regression model. For instance,A

may be constrained to be sparse. Many applications assume a
sparse regression matrix, e.g., robust face recognition, where
the target can be represented as a sparse linear combinationof
the dataset [9] and structural equation models (SEM) to infer
gene or phenotype networks [10]. For now, let us consider
a general constraint set,A ∈ A ⊂ R

q×p. The constrained
optimization problem, thus, becomes



















min
(A,Ω)

‖Y −AX‖2F + λ‖Ω‖2F

s.t. (Y −AX)TΩ(Y −AX) = nI,
A ∈ A.

(10)

Problem (10) is formulated in terms of the two coupled vari-
ablesA andΩ, which satisfy (6) to maximize the normalized-
likelihood function. The following lemma derives an analytical
expression ofΩ as a function ofA, and hence reduces the
problem to depend on only one variableA. Before stating the
lemma’s result, we need the following definition of the polar
decomposition of matrices.

Definition 2. The polar decomposition of a matrixB ∈ Cp×n

is given by
B = U |B|, (11)

where |B| = (BTB)1/2, (·)1/2 is the principal square root
operator andU : Cn −→ Range(B) is aCp×n isometry such
that UTU = I.

Lemma 1. GivenA, there exist manyΩ satisfying equality
(6). The minimum Frobenius normΩ, for a fixedA, is given
by

ΩA = n U
[

(Y −AX)T (Y −AX)
]−1

UT , (12)

whereU is the isometry of the matrix(Y −AX).

Proof of Lemma 1:Let B = (Y − AX). Consider the
polar decomposition ofB given by

B = U |B|, and |B| = (BTB)1/2. (13)

Then, the equality in (6) becomes

(Y − AX)TΩ(Y − AX) = nI

⇐⇒ BT
ΩB = nI

⇐⇒ |B|UT
ΩU |B| = nI

⇐⇒ UT
ΩU = n|B|−2 (14)

SinceUTU = I, UT restricted to the range ofB is invertible,
i.e., UT ↾Range(B) is invertible. Let us write

C
q = Range(B)⊕ Ker(BT ), (15)

where ⊕ denotes the direct sum of the two subspaces
Range(B) and Ker(BT ). LetPB be the orthogonal projection
onto Range(B). Then, we can decomposeΩ as

Ω = PBΩPB ⊕ PBΩPB⊥ ⊕ PB⊥ΩPB ⊕ PB⊥ΩPB⊥ , (16)

whereP⊥
B is the orthogonal projection onto the orthogonal

space of Range(B), i.e., Ker(BT ). Recall that, by definition
of the isometryU , it satisfies the following properties:

PB⊥U = UTPB⊥ = 0. (17)

Thus, from the decomposition of the matrixΩ in Eq. (16), we
obtain

UT
ΩU = UTPB Ω PBU . (18)

From Eq. (14) and sinceUT ↾Range(B) is invertible, we have

UT
ΩU = UTPB Ω PBU = n|B|−2

⇐⇒

PB Ω PB = n U |B|−2UT . (19)

From the matrix decomposition in (16), for a fixedA,
PB Ω PB is fixed. Thus, the minimum Frobenius norm
matrixΩ results by setting the three other terms in the matrix
decomposition to zero, i.e., the minimum Frobenius norm
matrix is of the form

Ω = PB Ω PB. (20)

The result of Lemma 1 then follows from Eqs. (19) and (20).

Using Lemma 1, the following proposition states the equiv-
alent form of problem (10), where the optimization problem
does not depend on the variableΩ.

Proposition 2. The optimization problem in (10) is equivalent
to 









min
S

Tr(S2) + λ n2 Tr(S−4)

s.t. S = |Y −AX|, A ∈ A

(21)

Proof of Proposition 2: ReplacingΩA in the objective
function of the optimization problem (10) by its expression
obtained in Lemma 1, and lettingB = Y − AX, we obtain

‖Y − AX‖2F + λ‖Ω‖2F = ‖B‖2F + λ‖n2U(BTB)−1UT ‖2F
= Tr(BTB) + λn2

Tr(U (BTB)−1UTU(BTB)−1UT )

= Tr(BTB) + λn2 Tr((BTB)−2)

= Tr(S2) + λn2 Tr(S−4), (22)
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whereS2 = BTB = (Y − AX)T (Y − AX).
Though the objective function in (21) is convex (as a func-

tion of the variableS), the equality in the constraint (assuming
that A is convex) is not affine and thus the optimization
problem (21) is not convex [11]. We will, therefore, relax the
minimization of (21) to a minimization over a convex set that
is included in the original set. In what follows, we show that
if the matrix regressionA is sparse with a bounded norm, i.e.,
A = {A : ‖A‖1 ≤ ǫ}, then (21) can be approximated by a
convex optimization problem. Moreover, this approximation
formulates a much simpler optimization problem than the
initial setting in (21) because it depends only onS and is
independent ofA.

Proposition 3. If A = {A : ‖A‖1 ≤ ǫ}, then the optimization
problem in (21) can be approximated by the following convex
optimization problem










min
S

Tr(S2) + λ n2 Tr(S−4)

s.t. S ∈ Λ = {S ∈ Sn,n : ‖S − |Y |‖F ≤ ǫc∗}

(23)

whereSn,n is the set ofn×n symmetric positive semi-definite
matrices andc∗ is a small term which depends onX , Y but
independent ofǫ.

Proof of Proposition 3: Let

S1 = {S : S = |Y −AX |, ‖A‖1 ≤ ǫ}. (24)

and let

S2 = {S ∈ Sn,n : ‖S − |Y |‖F ≤ ǫc∗}. (25)

We will show thatS2 ⊆ S1. An illustration of these two sets
is provided in Fig. 1. To this aim, we considerS ∈ S2 and
show thatS ∈ S1. Specifically, givenS ∈ S2 we findA, such
thatS = |Y − AX | and‖A‖1 ≤ ǫ.

Fig. 1. Approximation of the optimization problem in Proposition 2 by the
convex optimization problem in Proposition 3. Illustration of the setsS1 and
S2 in the proof of Proposition 3.

Given S ∈ Sn,n, we want to findA such thatS = |Y −
AX|, i.e., for some isometryU we haveUS = Y − AX.
For every isometryU , one can find corresponding matrixA
satisfying the previous identity. We will construct a specific
matrix A. Namely, we fixU = V , whereV is the isometry

from the polar decompositionY = V |Y |. Then, we need to
find A such that

AX = V (|Y | − S). (26)

X is full-rank; hence invertible from the right. Let us define

X̃ =

{

X−1
∣

∣

Range(X)
,

0
∣

∣

[Range(X)]⊥
(27)

From the Definition ofX̃, we haveAXX̃

∣

∣

∣

Range(X)
=

A
∣

∣

Range(X)
and AXX̃

∣

∣

∣

Range(X)⊥
= 0. Therefore, multi-

plying Eq. (26) to the right byX̃, we see thatA defined
by

A =







V (|Y | − S)X̃
∣

∣

∣

Range(X)
,

0
∣

∣

[Range(X)]⊥

(28)

solves Eq. (26). Now we estimate‖A‖1,

‖A‖1 ≤ ‖V ‖(‖|Y | − S‖1)‖X̃‖

≤ n‖V ‖(‖|Y | − S‖F )‖X̃‖ (29)

= C′‖|Y | − S‖F (30)

≤ C′ǫc∗ (31)

where (29) follows from the equivalence of norms and
Cauchy-Schwartz. In (30),C′ = n‖V ‖‖X̃‖, which is a
constant. The inequality in (31) follows from the fact that
S ∈ S2 and ‖S − |Y |‖F ≤ ǫc∗. In (31), by choosing
c∗ ≤ 1

C′ = 1/(n‖V ‖‖X̃‖), we obtainA ≤ ǫ. This ends
the proof thatS ∈ S1.

The optimization problem (23) is convex, hence it admits a
unique global solutionS∗. GivenS∗, the optimal regression
matrix, Â, is found by solvingS∗ = |Y − ÂX|. There
are many possible such solutionŝA. We propose to find the
sparsest matrix, in the sense of minimization of thel1-norm.











min
A,U

‖A‖1

s.t. AX = Y −US∗,

(32)

whereU is an isometry matrix. For every isometryU0, we
can find the minimuml1-norm A(U0). The optimal matrix
A is, thus, found by minimizing overU andA. Let V be
the isometry of the matrixY . Assuming thatA is sparse, we
can choseU to be the isometry ofY . By replacingU by
V in (32), we may increase the minimum but we reduce the
problem to a convex setting in the unique variableA. Finally,
the estimated regression matrix is the unique global solution
of the following convex optimization problem,







min
A

‖A‖1

s.t. AX = Y − V S∗,

(33)

IEEE
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Fig. 2. Approximation error||S − S ∗ ||F /||S||F versusn = 1, · · · , p for p = 40.

SMURC algorithm

The SMURC algorithm is summarized below.

Input: The matricesX ∈ Rp×n andY ∈ Rq×n according to
the multivariate regression model in Eq. (2) withq > n.

Step 1 Solve the convex optimization problem in (23). The
solution of this problem is a p.s.d. matrixS∗ ∈ Rn×n

Step 2 GivenS∗, the optimal regression matrix is obtained
as the solution to the convex optimization problem
in (33).

Steps 1 and 2 can be implemented efficiently using the Matlab
Software for Disciplined Convex Programming,cvx [12], [13].

The following corollary provides an upper bound on thel1-
norm of the optimal connectivity matrix

Corollary 1. The norm of the optimal connectivity matrix,
given by the solution of the convex optimization problem in
(33), is bounded above by

‖A∗‖1 ≤ ‖V (|Y | − S∗)X̃‖1 ≤ ǫ, (34)

whereV is the isometry in the polar decomposition ofY , S∗

is the global solution of the convex optimization problem in
(23) andX̃, defined in (27), is the right inverse of the matrix
X.

Proof: The proof follows from the proof of Proposition
3, and specifically from Eq. (29).

The SMURC algorithm involved an approximation of the
original optimization problem (10) by the convex optimization
problem in (23). It is thus important to assess the effect of
this convex approximation on the final solution. An analytical
derivation to bound this approximation is difficult and cumber-
some. We, therefore, provide a numerical assessment of this
approximation by computing the average error between the
exact solution of (21) and the approximate solution of (23),
||S − S ∗ ||F /||S||F . In synthetic data, the exact solutionS
is known. The error graph, displayed in Fig. 2 shows that
this approximation error decreases to a very small value when
the number of measurementsn approaches the number of
unknownsp.

III. A PPLICATION: GENETIC REGULATORY NETWORKS

An application of interest, which suffers from the high-
dimension, small sample-size problem is the reconstruction,
also calledreverse engineering, of genetic regulatory networks
(GRNs), where only few samples, denoting time points or
tissue samples, are available. Inference of genetic regulatory
networks is important for understanding the dynamics of
genetic interactions and harnessing this understanding into
an educated intervention of the cell. The behavior of the
regulatory network can be modeled by a system of linear
differential equations near a steady-state [14]–[18]:

ẋi(tk) =

N
∑

j=1

aijxj(tk) + biu(tk) + ǫi(tk), (35)

wherei = 1, · · · , p, k = 1, · · · , n, p is the number of genes,
n is the number of experiments or time points,xi(t) is the
expression of genei at time t, ẋi(t) is the rate of change of
expression of genei at time t, aij represents the influence of
genej on genei, bi is the effect of the external perturbation
on genei andu(t) denotes the external perturbation at time
t. ǫi(tk) models the measurement and model error at time
stepk. The goal is to infer the gene interactions{aij}

p
i,j=1,

given a certain number of measurementsn. Introducing the
new variableyi(t) = dxi

dt − biu(t), we can write the ODE
model in vector form for thep genes as

y = Ax+ ǫ, (36)

where y = [y1, y2, · · · , yp]T ,x = [x1, x2, · · · , xp]
T , ǫ =

[ǫ1, · · · , ǫp]T and A = {aij}
p
i,j=1. Performingn different

experiments , we obtainn measurements and can write the
results as

Y = AX + E, (37)

where Y = [y1, · · · ,yn], X = [x1, · · · ,xn] and E =
[ǫ1, · · · , ǫn]. That is, every column ofY , X , andE represents
a single experiment and there aren < p columns representing
n experiments. The goal of reverse-engineering the network
is to estimate the connectivity matrixA given a number of
measurements and in the presence of correlated noise with
unknown covariance matrixΣ.
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Fig. 3. Performance comparison of SMURC with sCGGM and thel1-regularized maximum likelihood (RMLE) with known covariance for different network
sizes with%80 sparsity. Blue: SMURC with unknown covariance; Green: sCGGM with unknown covariance; Red: RMLE withΣ = Σtrue = ρ|i−j|; Purple:
RMLE with Σ = σ2I, whereσ2 is estimated from the data. (a)(p, δ) = (10, 0.15); (b) (p, δ) = (10, 0.25); (c) (p, δ) = (40, 0.15); (d) (p, δ) = (40, 0.25).

A. Simulation results

Before considering a real dataset, we generate synthetic data
and compare the proposed SMURC algorithm with thel1-
regularized maximum likelihood estimator in [14], where an
l1-norm penalty is imposed on the connectivity matrixA. The
regularized MLE finds the optimal connectivity matrix, which
minimizes the following convex function

f(A) =Tr

[

1

n
(Y −AX)(Y −AX)TΣ−1

]

+ ln |Σ|

+ α

p
∑

i=1

p
∑

j=1

|ai,j |,
(38)

whereΣ, the covariance matrix of the data, is assumed to be
known andα is a tuning parameter that controls the sparsity
level of the matrixA.

We generate synthetic gene networks with varying sizep,
varying number of measurementsn < p, and covariance
structureΣ. Gene regulatory networks are known to be sparse:
every gene interacts only with few other genes. Thus, the
connectivity matrixA is sparse. In the presented simulations,
we assume80% sparsity level, i.e.,‖A‖0 = 0.2p2, where‖·‖0
denotes the number of non-zero elements. The performance of
the algorithm is similar for other sparsity levels as long asthe
system is under-determined. The entries of the matrixA are
drawn from a standard normal distribution with zero-mean and
unit variance, i.e.,ai,j ∼ N (0, 1). We use the same covariance
matrix suggested in [14], [19],Σi,j = ρ|i−j| with ρ = 0.7. The
performance of the algorithm is assessed using the following

measure suggested in [19]:

E =

p
∑

i=1

p
∑

i=j

ei,j with

ei,j =

{

1, if |aij − âij | > δ|aij |
0, otherwise,

(39)

whereaij is the(i, j)th element of the true genetic interaction
matrix and̂aij is the estimate ofaij . δ is a threshold parameter.
The percentage error is computed asE/p2.

Figure 3 shows the percentage error versus the number of
measurementsn for p = 10 and p = 40-gene networks,
which are80% sparse. We considered a threshold of error
corresponding toδ = 0.15 andδ = 0.25. Observe that, though
the system is sparse, it is still under-determined, i.e., the
number of “effective” unknowns is larger than the number of
independent observations. We compare the proposed SMURC
algorithm (which assumes an unknown covariance matrix)
with the sCGGM algorithm [8] and the regularized MLE
with the true covariance matrix [14] and with a diagonal
covariance matrixΣ = σ2I, whereσ2 is estimated from the
data. It was shown in [8] that sCGGM outperforms Rothman
et al. MRCE and approximate MRCE. We used the opti-
mized code for sCGGM available at http://www.cs.cmu.edu/
∼sssykim/softwares/softwares.html. We assess the algorithms
with a covarianceΣtrue = ρ|i−j| with ρ = 0.7. Fifty Monte
Carlo simulations were performed for each experiment.

B. Drosophila Melanogaster gene expression data

To assess our algorithm on real data, we tested it on the
Drosophila melanogaster gene expression levels [21]. The data
contains4028 genes in wild-type flies examined during66

IEEE
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(a) (b)

(c) (d)

Fig. 5. Estimated gene regulatory networks of the Drosophila during four developmental phases using the SMURC algorithm. Blue and red edges denote,
respectively, positive and negative interactions. The green edges are interactions reported in Flybase. (a) Embryonic; (b) Larval; (c) Pupal; (d) Adulthood.

Fig. 4. Flybase: The known undirected gene interactions in the Drosophila’s
11-gene wing muscle network [20].

sequential time periods beginning at fertilization and spanning
embryonic, larval, pupal and the first 30 days of adulthood.
Since early embryos change rapidly, overlapping 1-hour peri-
ods were sampled; adults were sampled at multiday intervals.
The time points span the embryonic (samples 1-30; time E01h
till E2324h ), larval (samples 31-40; time L24h till L105h),
pupal (samples 41-58; M0h till M96h) and adulthood (samples
59-66; A024h till A30d) periods of the organism. A list of
known undirected gene interactions is hosted in Flybase [20].

A set of 11 genes that regulate the wing muscle development
has been considered in [22]–[25]. The 11-gene network, with
the interactions reported in Flybase, is depicted in Fig. 4.
We reconstructed the genetic network between these 11 genes
during the four developmental phases using the SMURC
algorithm. In the embryonic and pupal phases, 9 time points,
undersampled from the original time points (30 for embryonic
and 18 for pupal), were used to reconstruct the 11-gene

network during these two developmental periods. In the larval
and adulthood phases, the entire 9 larval and 7 adulthood time
points were used to reconstruct the network during the larval
and adulthood development phases, respectively. In summary,
the connectivity matrix of the 11-gene Drosophila develop-
ment network was estimated using the SMURC algorithm with
9 time points in the embryonic phase, 9 time points in the
larval phase, 9 time points in the pupal phase and 7 time points
in the adulthood phase. Observe that in all four developmental
phases, the system is underdetermined.

The reconstructed networks using the SMURC algorithm
are shown in Fig. 5. The SMURC algorithm was able to
detect six out of the seven Flybase interactions during different
developmental phases of the organism: (up,sls) appears during
the embryonic period; (Actn,sls) and (up,mhc) appear during
the larval phase; (twl,eve) appears during the pupal phase;
(prm,Actn) and (mhc,sls) appear during the adulthood stage
of the development.

We compare the SMURC findings with the results in [22],
[23], [24], [25]. Though these references are not directly
related to the problem of under-determined regression systems
with unknown covariance structure, their work aims at reverse-
engineering the connectivity of genetic regulatory networks.
In particular, they all consider the Drosophila’s 11-gene wing
muscle network. Zhaoet al. [22] infer a single directed
network using the minimum description length principle. They
used all 66 time points to identify a single network that
characterizes the entire Drosophila’s life cycle. In [23],a
time-varying undirected network is learnt using an exponential
random graph model model. A dynamic Bayesian network was
used in [24], and [25] proposed a non-parametric Bayesian
regression approach for gene regulatory network inference.
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Table I shows the detection of the known interactions in
Flybase by the five approaches, E,L,P,A stand, respectively, for
the embryonic, larval, pupal and adulthood phases. Though the
proposed SMURC algorithm relies on fewer time points than
the other approaches, it detected the most number of known
interactions cited in Flybased and reported in FLIGHT web-
site http://flight.icr.ac.uk/search/searchinteractions.jsp. Addi-
tionally, the SMURC algorithm found two directed interactions
(msp 300→ prm) and (msp300→ up) in common with the
works in [22], [23], [24], and three directed interactions during
the embryonic phase in common with [25] (the networks in
the other phases were not reported in [25]) , (up → twi), (up
→ mlc1) and (msp300−→ Myo61F1). It is striking that all
detected interactions that are shared with previous work [22]–
[25] have also the same direction.

IV. CONCLUSION AND DISCUSSION

In this paper, we showed that the Gaussian likelihood, as
a function of the regression coefficients and the covariance
matrix, diverges when the multivariate regression system is
under-determined. We subsequently proposed a normalized
likelihood function that guarantees convergence while still
keeping the Gaussian form of the data. The maximum normal-
ized likelihood, however, admits multiple solutions because the
system is still under-determined. Using the polar decomposi-
tion of matrices, we provided an expression of the covariance
matrix in terms of the regression coefficients. This provided an
equivalent representation of the optimization problem in one
variable only, namely the regression matrix. We then relaxed
the optimization problem into a convex one by considering a
convex set included in the original constraint set. The optimal
sparse regression matrix is found as the global solution to a
convex optimization problem.

We applied the proposed Small-sample MUltivariate Re-
gression with Covariance estimation (SMURC) algorithm to
infer the wing muscle genetic regulatory networks of the
Drosophila melanogaster during the four phases of its de-
velopment: embryonic, larval, pupal and adulthood. Genetic
regulatory networks are known to be sparse and often the
number of measurements is smaller than the number of genes,
which makes the network inference problem unidentifiable.
SMURC was able to detect six out of the seven interac-
tions reported in Flybase. Other algorithms aimed at reverse-
engineering dynamic gene regulatory networks were able to
detect a maximum of three out of the seven interactions.
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