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Abstract—Gliomas are malignant brain tumors that are as-
sociated with high neurological morbidity and poor outcomes.
Patients diagnosed with low-grade gliomas are typically followed
by a sequence of measurements of the tumor size. Here, we
show the promise of Long Short-Term Memory Neural Networks
(LSTMs) to address two important clinical questions in low-
grade gliomas: 1) classification and prediction of future behavior;
and 2) early detection of dedifferentiation to a higher grade or
more aggressive growth. We use a system of partial differential
equations (PDEs), from our earlier work, to generate simulated
growth of low-grade gliomas with different clinical parameters.
We design an LSTM network to solve the inverse problem of
PDE parameter estimation. We find that accuracy increases as a
function of the number of tumor measurements and perplexity
can also be used to detect a change in tumor grade. These findings
highlight the potential usefulness of LSTMs in solving inverse
clinical problems.

I. INTRODUCTION & RELATIONSHIP TO THE
STATE-OF-THE-ART

Gliomas are malignant brain tumors that continue to be
associated with significant neurological morbidity and poor
outcome. The World Health Organization (WHO) classifies
adult gliomas into low-grade (grade 2), anaplastic (grade 3),
and glioblastoma multiforme (GBM, grade 4). Each group
is further characterized by pathological and radiological fea-
tures [1]. Brain invasion (motility), Angiogenesis (new blood
vessel formation) and proliferation are characteristic features
of gliomas [1]–[4]. Brain invasion by glioma cells leads
to neurological morbidity. Glioma motility is believed to
be mediated by two mechanisms. The first, concentration-
driven motility (dispersion), drives invasive cells from high
to low concentrations; its rate being variable between tumors
[2], [3]. The second mechanism, hypoxia-driven motility, is
associated with increased motility under hypoxic conditions
[4]. We recently reported a nonlinear mathematical model of
glioblastoma multiforme growth, angiogenesis, and invasion
at the scale of clinical magnetic resonance imaging (MRI)
that includes both concentration-driven and hypoxia-driven
motility [5], [6]. The type and rate of motility are associated
with distinct progression patterns and survival times when
the patients are treated with bevacizumab [5]. Furthermore,
computational trials have replicated the overall survival times
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of GBM patients treated with bevacizumab or by Tumor
Treating Fields [6]. The mathematical model also replicates
the biological behavior, radiological and pathological features
of grades 2-4 gliomas and transition to a higher grade [7].

Clinicians caring for patients with low-grade gliomas are
confronted with two important problems; the first is the future
growth potential of a particular tumor. The second is the
early detection of a change in tumor grade that leads to more
aggressive growth. Typically, these patients are followed by
serial magnetic resonance imaging (MRI) that permits the
measurement tumor mass. A novel methodology is needed
to help classify the long-term behavior of these tumors and
uncover a change in grade. Such advancements will improve
patient outcomes by optimizing the timing of therapy.

The mathematical model of gliomas is a coupled system that
includes a partial differential equation (PDE) [5]. Translation
of the model to the care of patients diagnosed with gliomas,
requires solving the inverse problem of parameter estimation
given a time-series set of measurements from clinical tumors.
Classical methods for parameter estimation of PDEs include
proper orthogonal decomposition (POD). POD was initially
presented by Kari Karhunen and Michel Loéve independently
of one another in the 1940s, and therefore, it is also known as
the Karhunen-Loéve Expansion (KLE) [8]. Lawrence Sirovich
later developed the method of “snapshots,” or observations,
to the KLE, which reduces the number of eigenvectors by
excluding eigenvectors with eigenvalues less than a certain
value [9]–[11]. The goal of the POD method is to produce
a reduced-order model of a system, which can then be used
to solve the inverse problem of parameter estimation in a set
of differential equations [12]–[16]. An important limitation of
the POD method is that it is computationally intensive.

Artificial neural network modeling has been applied in many
areas, including signal processing, pattern recognition, system
identification and control [17]. Although the study of recurrent
neural networks (RNNs) for parameter estimation in dy-
namical systems, notably state-space models, was established
before the hype of deep learning [18], [19], its application
to large clinical datasets is very recent [20], [21]. To our
knowledge, there is no literature on estimating parameters
of PDE models using recurrent neural networks nor their
applications to brain tumor modeling. In this contribution, we



propose a Long Short-Term Memory (LSTM) recurrent neural
network as a novel solution to the inverse problem associated
with modeling gliomas. Our solution has the potential of
classifying low-grade gliomas by estimating their rates of
growth, migration, and angiogenesis. Furthermore, through
simulations, we find that perplexity can be applied to detect a
change in tumor growth potential.

II. MODELING TUMOR GROWTH

A. Model Description

The model and numerical methods are detailed in our recent
publication [5]. Briefly, several cellular types are considered;
proliferative cells, denoted by P , are glioma cells that are
actively dividing and do not move. Invasive cells, I , migrate
but do not divide. Brain matter cells, B, begin at an initial fixed
concentration; they do not divide or migrate. If the hypoxia
is severe, cancer cells P and I , as well as brain cells B,
eventually die; this is called necrosis N . The total number of
cells, C, is taken as the sum of P , I , B, and N (see Equation
(5)).

Hypoxia causes P cells to stop dividing and switch to I
cells, which can leave the core of the tumor and invade the
brain. After traveling in the brain and reaching a favorable
local environment, I cells stop their movement and become
proliferative again, leading to tumor growth. These assump-
tions are called the ”go-or-grow” phenotype [7]. We allow the
available oxygen/nutrient supply to vary indirectly with the
total concentration of cells C (Equations (5)-(6)); furthermore,
angiogenesis elevates a key local hypoxia threshold, which
varies directly with P (Equation (9)).

The local hypoxic state H (Equation (6)) in any specific
brain location is a function of C, and we identify two main
critical thresholds: Chyp (hyp for hypoxia), when cells begin
slowing their growth rate and switching from one phenotype
to another, and Cltm, when cells begin to die. The mitotic rate
M varies spatially depending on C (i.e., hypoxia, Equation
(7)). P cells divide at their maximal rate when C < Chyp.
The mitotic rate decreases and is inversely proportional to the
local hypoxic state when Chyp ≤ C < Cltm; and it eventually
vanishes when C exceeds Cltm, which triggers necrosis (γF ,
Equation (8)). Angiogenesis elevates the thresholds Chyp

and Cltm as a function of P (see Equations (9)-(10)), thus
supporting a denser tumor before the death rate reaches its
maximum γ.

The concentration of P cells is modeled by Equation (1),
which corresponds to our assumptions: P cells divide, switch
to an invasive phenotype (P → I) or die as a function of
the level of local hypoxia (γFP ). Furthermore, they appear
and subsequently divide when invasive cells switch back to
the proliferative phenotype (I → P ), ie when I cells reach
new regions of low cellular density (and hence higher levels
of nutrients). When the hypoxic state is high, i.e., H is close
to 1, the transition of P to I (P → I) occurs at the maximum
rate α. Conversely, I → P occurs at a rate β(1−H), which
is elevated when hypoxia is low, (1−H) ≈ 1, and depressed
when hypoxia is high, (1−H) ≈ 0.

I cells are only produced by proliferative cells under
hypoxic conditions. The first migration term, δ∇ · (D∇I),
describes passive diffusion (PD) or concentration-driven motil-
ity. Another parameter, D, varies spatially to replicate the
increased rate of movement of cancer cells along white matter
tracks in the brain. The second migration term, η∇ · (I∇B),
reflects the preferential movement of cells in the direction
towards areas with the highest number of healthy brain cells
(Active Transport, AT); the speed of migration is proportional
to the concentration of I cells and the gradient of B, ∇B.

B. Model Equations

Proliferative Cells:

∂tP = MP︸︷︷︸
Net production

of P cells

− αHP︸ ︷︷ ︸
Conversion of

P cells to I
during hypoxia

+ β(1−H)I︸ ︷︷ ︸
Conversion of

I cells to P
during normoxia

− γFP︸ ︷︷ ︸
Necrosis of

P cells
during hypoxia

(1)

Invasive Cells:

∂tI = δI∇ · (D∇I)︸ ︷︷ ︸
Passive diffusion

of I cells

− η∇ · (I∇B)︸ ︷︷ ︸
Active transport

of I cells

+ αHP︸ ︷︷ ︸
Conversion of

P cells to I
during hypoxia

− β(1−H)I︸ ︷︷ ︸
Conversion of

I cells to P
during normoxia

− γFI︸︷︷︸
Necrosis of

I cells
during hypoxia

(2)

Brain Cells:
∂tB = −γFB︸ ︷︷ ︸

Necrosis of
brain cells

during hypoxia

(3)

Necrotic Cells:

∂tN = γF (B + I + P )︸ ︷︷ ︸
Conversion of P, I, and B

to necrotic cells
during hypoxia

(4)

Total cell concentration:

C = P + I +B +N (5)

Measure of Local Hypoxia:

H =


0, if C < Chyp.

1− Cltm−C
Cltm−Chyp

, if Chyp ≤ C ≤ Cltm.

1, if C ≥ Cltm.

(6)

Mitotic Rate:
M(H) = τ(1−H) (7)

Rate of necrosis:

γF (C) = γ
1− tanh(30(Cltm − C))

2
(8)



Hypoxic threshold:

Chyp = σ[log(1 + P )] + Ω, (9)

where σ = 1.5 to simulate angiogenesis, and σ = 0 to simulate
anti-angiogenesis.
Necrotic threshold:

Cltm = Chyp + Φ (10)

A description of the parameters is as follows: α and β
represent the transition rates from P → I and I → P ,
respectively. τ is the mitotic rate of P cells. δ is the diffusion
coefficient of I cells. D is the diffusion tensor in the brain. γ
is the rate of necrosis. η represents the rate of active transport
(hypoxia-driven motility) of I cells. Ω is the initial hypoxic
threshold. σ represents the rate of angiogenesis. Φ is the fixed
difference Cltm − Chyp.

C. The Inverse Problem and Parameter Estimation

We have two objectives; the first objective is to estimate the
parameters of the system of equations when it models grade 2
gliomas; simulations of tumor mass were generated by titrating
the rates of proliferation (τ ), concentration-driven motility (δ),
and angiogenesis (σ), as shown in Table II, such that they are
associated with the pathological and radiological features and
the survival times of grade 2 gliomas. We assume that η = 0
since hypoxia-driven motility (active transport) is a hallmark of
higher grade tumors, (i.e., GBM). This analysis sets the stage
for future work on parameter estimation using clinical data.
Nonetheless, an important and fundamental question arises:
how many measurements are needed to obtain a high degree
of confidence that the parameter estimation is accurate?

The second objective is to derive a method that detects a
change in model parameters. The rationale is based on the fact
that some grade 2 gliomas dedifferentiate to a higher and more
malignant grade. This progression is typically associated with
a change in the rates of proliferation, motility or angiogenesis
(i.e., parameters). The application of this objective is earlier
detection of a change in grade and therefore timely therapeutic
intervention.

III. IMPLEMENTATION AND RESULTS

In this section, we discuss how the data are collected, pre-
processed and learned by an LSTM recurrent neural network
for the parameterization problem presented in Section II.

A. LSTM Implementation

In this section, we briefly review the LSTM model and
how it relates to the task of modeling tumor growth and
parameterizing the dynamical system. Our objective is to solve
the inverse problem that will identify the parameter of the
PDE given a sequential set of measurements of a patients
brain tumor size. This inverse problem can be solved using an
LSTM recurrent neural network, which has been shown to be
good at capturing long-term dependencies between historical
input and current input data [22], [23]. The basic unit of
LSTM network is the memory block as shown in Figure 2

TABLE I
MATHEMATICAL NOTATIONS.

Symbol Meaning

w Sequence length

xd
i ith element in the dth sequence

Xd The sequence {xd
1, . . . ,x

d
w}

Xt LSTM input vector at time t

yd class label for the dth sequence

ŷd RNN prediction for the dth sequence

∆t Sampling period

W,H,Q RNN weight matrices

PPL Perplexity

QW

H

h

X1
d

!

Xw
d

ŷd

Fig. 1. Visualization of a generic recurrent neural network. W,H,Q
represent the weight matrices and h presents a hidden layer of the network, the
output label ŷd depends on the dependencies between each elements of input
sequence {xd

1, . . . ,x
d
w}, which are captured by the recurrent connection (the

circle at the middle of the figure).

as opposed to a standard neuron that is used in an RNN
and the memory cell containing the information over a longer
period than a standard neuron. The input to an LSTM block
is the signal coming from the input sequence Xt and the
recurrent feedback from the hidden layer ht−1, which are
added together after a projection with matrices Wz and Hz ,
respectively. A nonlinear function g(·) is applied to this value
(see Equation (11)). Gates are a unique structure of the LSTM
that are can to (optionally) let information through. A gate is
made up of a sigmoid activation function σ(·) and a point-
wise multiplication operator. Furthermore, the output of the
gates are nonlinear transforms of the input Xt, recurrent
feedback ht−1, and the cell state feedback Ct/Ct−1 (Equation



(12)-(13) and (15)). Given that the output of the sigmoid is
between zero and one then nothing passing through the gate
would correspond to a value of zero. Thus, the input gate
it determines the parts of scaled input zt that will be stored
in the new cell state Ct, and the forget gate ft determines
what parts of old information in the last cell state Ct−1
should be removed. It is the input and forget gates together
that update the current cell state Ct (see Equation (14)). The
final output of the LSTM cell is a function of Ct, ot and an
output activation function h(·) (see Equations (15)-(16)). Our
implementation uses a vanilla LSTM recurrent neural network,
whose memory block consists of a single memory cell, three
gates, activation functions, and peephole connections (see
Figure 2). The LSTM computes the hidden output sequence
ht at time t by following iterations:
Block input:

zt = g(WzXt + Hzht−1 + bz) (11)

Input gate:

it = σ(WiXt + Hiht−1 + Hci �Ct−1 + bi) (12)

where � denotes a pointwise multiplication.
Forget gate:

ft = σ(WfXt + Hfht−1 + Hcf �Ct−1 + bf ) (13)

Memory cell:

Ct = zt � it + ft �Ct−1 (14)

Output gate:

ot = σ(WoXt + Hoht−1 + Hco �Ct + bo) (15)

Block output:
ht = ot � h(Ct) (16)

In this classification problem, the class label of the input
sequence is predicted after the last element of sequence
was processed. For example, the label ŷd of dth sequence
{xd

1, . . . ,x
d
t } was generated from the last hidden output hd

t

by:
ŷd = Qhd

t + by (17)

where the by term denotes bias vector. The input and output
activation functions g(·) and h(·) are tangent functions give
by:

g(x) = h(x) =
ex − e−x

ex + e−x
(18)

Finally, the recurrent activation function σ(·) is a logistic
sigmoid function:

σ(x) =
1

1 + e−x
(19)

This memory cell also allows LSTM RNN to avoid the
vanishing error problem when trained by Backpropagation
Through Time (BPTT) algorithm [24]. One of the key ad-
vantages of the LSTM RNNs modeling the behavior of the
gliomas is that the LSTM can remember dependencies within

Fig. 2. Visualization of one LSTM memory block. As described in Equation
11-16, X denotes the input vector of LSTM network at the current time, the
recurrent inputs from last time step are presented by the dashed arrow. z is the
scaled block input, c is the cell state, and h the output of the block. i, o, and
f are the output value of input gate, output gate and forget gate, respectively.
g(·), h(·), and σ(·) indicate input, output and sigmoid activation function,
respectively. The cyan lines indicate the peephole connections between gates,
with the dash lines recurrently connect back to input gate and forget gate at
next time step, and solid line connects to output gate at current time step.

the sequence to determine the set of PDEs that the tumor
is categorized. We show in the experimental results that the
LSTM can capture these dependencies.

B. Data Preprocessing and Conditioning

We originally generated 5000 curves that model the brain
tumor growth, as described in Equations (1)-(9). We then
selected 20 and 100 curves, such that they are relatively
evenly spaced (Figure 3). Figure 3a shows an example of
the 20 curves that were selected and Table II shows the PDE
parameters for the different experiments.

The time step of the original simulations, ∆t = 2.18 hrs,
is too small to reflect clinical reality. For example, an LSTM
that is trained to model ∆t = 2.18 hrs means that the medical
practitioner is sampling the patient’s growth every 2 hrs, which
is not realistic. Therefore, we downsampled to ∆t = 30 days
and ∆t = 60 days (i.e, one and two months, respectively).

We consider the simulation curves as the ground truth. Be-
cause real patient data typically includes noise from a variety
of sources, like variations in tumor segmentation and quality
of images, we add zero-mean Gaussian noise (N (0, 0.01)) to
the input signal while keeping the output signal the same. This
procedure prevents overfitting and loss of generalization and
makes our modeling more stochastic. This type of stochastic
addition to the learning problem has been shown to be quite
successful with denoising autoencoders [25]. Figure 3 shows
the 20/100 curve experiments with the noise added to the
signals.

Next, we consider the number of measurements or the
number of elements in the sequence. For training, we used



TABLE II
PARAMETERIZATION OF THE PDES FOR EXPERIMENTS USING A

DIFFERENT NUMBER OF CURVES WITH THE LSTM MODEL.

20 Curve Experiments

angiogenesis rate 0.001

mitotic rate 0.25

motility rate range (1− 100, step = 5)× 0.0025

100 Curve Experiments

angiogenesis rate 0.001

mitotic rate 0.25

motility rate range (1− 100, step = 1)× 0.0025

a sequence of 20 measurements. The sequences are randomly
partitioned into an 80/20 split for training/testing. To address
the question of the optimal number of samples needed to
achieve high accuracy, we varied the number of measurements
in the testing sequences (w).

We evaluate the performance of the LSTM on different
length testing sequences: w = 2 to w = 20 in two-step
increments. This practice is applied to the 20- and 100-
curve experiments. The classification label of each curve was
assigned based on one-hot coding. Note that a sequence on
the dth curve of length w, given by {xd

1, . . . ,x
d
w−1,x

d
w}, has

the single label yd since all of the samples lie on the same
curve.

To address the problem of detecting a change in tumor
grade, we experiment with abrupt transitions from one curve
to another on a sequence of mass measurements. A piecewise
curve test set is designed to mimic the problem where tumor
growth trends would change from one curve to another. To
synthesize this, we first divide the data into subintervals, then
randomly choose one piece of a curve from each subinterval,
as shown in Figure 4(b). The design of piecewise growth
curves allows us to evaluate the performance when growth
trends transition from one curve to another. We considered
20 measurements for each piecewise curve, where the first ten
samples belong to a curve d, while the last ten samples belong
to another curve d′.

C. Figures of Merit

There are two figures of merit that we use to base the
performance of the LSTM for our task. First, we consider
the accuracy of the LSTM to identify the correct curve for
a sequential prediction task. Nevertheless, because both the
parameter space and the number of curves are infinite, we need
another test of the closeness of the approximation. Therefore,

we consider the perplexity, which is formally given by

PPL = 2−
1
N

∑
log2 qyd (X

d), (20)

where N is the number of sequences and qyd
(Xd) is the

probability output of the LSTM for the correct class yd given
a sequence Xd. Note that yd is not the class that the LSTM
outputs.

The perplexity better captures the LSTM’s ability to report
a high probability for the correct class. Perplexity is often
applied for language modeling tasks, where there could be
a large number of classes [26], [27]. Therefore, an incorrect
classification, while incorrect, could still be close to the correct
output. For example, the LSTM could predict the wrong curve
since our model will choose the class with the largest estimated
posterior probability; however, the curve it predicted is the next
one below the correct curve, and the correct curve was also
predicted with a high posterior probability (though not the
largest). Since we expect a large number of classes moving
forward, we have decided to include perplexity as a figure of
merit.

D. Experimental Results

Our experiments were implemented using Keras [28] with a
Tensorflow back-end [29], and run on a NVidia GeForce GTX
950. The LSTM is configured with W ∈ R1×50, H ∈ R50×50

and Q ∈ R50×20 for 20 curves, Q ∈ R50×100 for 100 curves.
The hidden-layer nodes were selected via a small grid search.
In our experiments, we observed a limit in the perplexity and
accuracy of the LSTM after 50 nodes. Therefore, we only
report the figures of merit for an LSTM with 50 nodes. The
training window size (i.e., length of the training sequence) was
set to 20 for all experiments after some experimental consid-
eration about the physical interpretation between each sample
(e.g., one month between samples). Finally, the experiments
were run using ten different random seeds, then averaged to
smoothen the randomness in the experiments.

Figure 5 shows the predictive accuracy for LSTMs that
are trained on sequences sampled every 30 days and 60 days
intervals with some measurements ranging from 2 to 20. First,
we observe that the predictive accuracy of the two-months
samplings is easier to classify. This should not come as a
surprise since with ∆t60 there is a larger change in the values
of the curve, thus rendering the classification easier. This
observation is true for both the 20- and 100-curves simulations.
A second observation is that the accuracy is an increasing
function of the number of measurements, w. It takes the LSTM
approximately 11 samples to distinguish between the patients’
curves. This is observed in both the accuracy and perplexity
tests (see Figure 5-6).

Finally, we study the problem of change in tumor grade
by considering piecewise growth curves, where curves d and
d′ are randomly sampled (see Figure 7). The experiment is
designed to simulate a clinical case, whereby the treating
physician is monitoring the tumor size on serial scans then
tumor undergoes molecular events that lead to a change in
grade after the 10th measurement of tumor size (Figures 4(b),



(a) 20 curves (b) 100 curves

Fig. 3. Two different experiments that use a different number of tumor growth curves. Figure 3(a) has 20 curves that are generated as described in Section
III-B. The curves a chosen such that they are approximately evenly spaced. Figure 3(b) shows a similar experiment, but with 100 curves.

(a) Randomly choose one curve from each interval (b) Detail of piecewise curve, 10 measurements downsampled
from each interval

Fig. 4. Two example sequences that show a continuous transition in tumor growth and an abrupt series of changes in the tumor growth. The x-axis is the
time step and the y-axis is the mass of the brain tumor. Each curve represents a different set of PDE parameters. The shaded region of Figure 4(a) shows the
regions of the curve that are used for testing the LSTM.
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Fig. 5. Accuracy of the LSTM as a function of the number of tumor measurements (window size). The red and blue curves represent simulations where the
MRI measurements are obtained at intervals of 1 and 2 months, respectively.
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Fig. 6. Perplexity of the LSTM as a function of the number of tumor measurements (window size). The red and blue curves represent simulations where the
MRI measurements are obtained at intervals of 1 and 2 months, respectively.
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Fig. 7. Perplexity of the LSTM as a function of number of tumor measurements. The network is tested on piecewise curves and the experiment is designed
such that the shift of the growth occurs after the 10th measurement of tumor size (Figure 4(b)). The results shown in (a) and (b) reveal an abrupt increase
in the perplexity of the PDEs at sample 12. The red and blue curves represent simulations where the MRI measurements are obtained at intervals of 1 and 2
months, respectively.

and 7). We hypothesize that perplexity can be applied to
detect the change in tumor grade, i.e., growth potential (growth
curves).

We observe a sharp increase in the perplexity at tumor
measurements 12 due to the change in the growth curves as
shown in Figure 7. Furthermore, we know from the previous
experiment that the accuracy and perplexity are expected to
improve over time if all of the samples belong to the same
curve; thus demonstrating the promise of LSTMs to solve the
parameterization problem for the glioma model.

IV. CONCLUSION

In this work, we addressed two problems that are of interest
to clinical studies that involve malignant brain tumors. First,
understanding and modeling the classification and prediction
of future behavior of a tumor as it evolves. Second, clinicians
are interested in the early detection of dedifferentiation to a
higher grade or more aggressive growth. This work addresses
these problems by using an LSTM recurrent neural network to
solve an inverse problem of parameter estimation for a PDE
that describes the tumor. Our results highlight the usefulness
of RNN in estimating the parameters of nonlinear PDEs.
Savings in computational time are significant because results
can be obtained instantaneously once the model is trained. By
estimating the parameters of a glioma model, LTSM has the

potential of 1) classifying low-grade gliomas by predicting
future behavior and 2) detecting a change in tumor growth
through the measure of perplexity. We identified perplexity as
a figure of merit because of a large number of classes (i.e., the
number of PDE parameters that can collect from simulations).
Perplexity will become a more meaningful measure of success
moving forward since it is a better measurement for a large
number of classes, which can become quite large in the
context of the inverse problem for tumor modeling. Our
results underline the potential use of RNN in solving clinical
problems and in aiding clinicians.

Our future work includes incorporating a change detec-
tor based on a statistical hypothesis test that checks for a
significant decrease in the performance of LSTM [30]–[32].
Furthermore, we will also pursue change detection based on
changes of the uncertainty of the LSTMs output.
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