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Abstract—Data plenitude is the bottleneck for data-driven
approaches, including neural networks. In particular, Convolu-
tional Neural Networks (CNNs) require an abundant database
of training images to achieve a desired high accuracy. Cur-
rent techniques employed for boosting small datasets are data
augmentation and synthetic data generation, which suffer from
computational complexity and imprecision compared to original
datasets. In this paper, we intercalate prior knowledge based
on spatial relation between images in the third dimension by
computing the gradient of subsequent images in the dataset to
remove extraneous information and highlight subtle variations
between images. The approach is coined “Inverted Cone” because
the volume of brain images below the level of the eyes is ordered
to form an inverted cone geometry.

The application explored in this work is deboning, or brain
extraction, in brain magnetic resonance imaging (MRI) scans.
The difficulty of obtaining ground truth for this application
prevents the ability of obtaining a large quantity of training
images to train the CNN. We considered a limited dataset of 23
patients with and without malignant glioblastoma. Deboning was
performed by employing an optimized CNN architecture with and
without the Inverted Cone processing. The classic CNN without
prior knowledge achieved a validation accuracy of 77%, while
the Inverted Cone CNN model achieved a validation accuracy of
86% in a dataset of 451 brain MRI slices.

I. INTRODUCTION

Deep learning has been widely utilized in object detection
and recognition. Convolutional neural networks (CNNs) allow
processing and analyzing large sets of image data into clas-
sification of predefined classes. Beginning with the AlexNet
architecture developed in 2012 by the SuperVision group [1],
CNNs have been proven to outperform classical modeling for
the purpose of object detection. AlexNet ranked in the top-
5 models for the ImageNet Large Scale Visual Recognition
Challenge with only 15.3% error by classifying 1.2 million
images into 1,000 categories [1]. Since then, deep learning
for object recognition has been expanded into many different
applications, such as pothole detection for intelligent trans-
portation systems [2] and medical brain tumor segmentation
as an aide for medical diagnoses [3], [4]. Image segmentation
is a concentrated application of object detection that distills an
image into a series of patches. Each patch is then processed
by the network in order to classify the central pixel of that
patch. Ultimately, every pixel in an image could be classified
to divide a single image into multiple classes.

The Multimodal Brain Tumor Segmentation (BRATS) com-
petition [5] strives to improve the brain tumor segmentation
application by evaluating a set of image segmentation models,
both classical and deep learning, to determine which technique
produces the highest accuracy. The task is to develop a model
that detects and classifies 5 distinct regions in a brain magnetic
resonance imaging (MRI) scan (normal tissue, necrosis,edema,
non-enhancing, and enhancing tumor). A CNN model was
awarded first place in the 2015 BRATS challenge with Dice
Similarity Coefficients of 0.88, 0.83, and 0.77 in the complete,
core, and enhanced regions, respectively, as computed by the
BRATS organization [4].

A vital issue that arises in specific applications such as brain
MRI segmentation or pothole detection is the requirement
of a large database of images to train the network. The
BRATS competition employed a training dataset comprising
276 patients’ four modalities MRIs with each MRI modality
containing approximately 150 images. Often times, especially
for medical image applications, image datasets are limited with
a small number of images available for training the network,
which can result in overfitting of the model to the images in
the training database and not being able to generalize well on
unseen images.

Several preprocessing techniques have been developed to
alleviate some of the issues that arise with the limited datasets.
Data augmentation is one way to artificially increase the size
of a database by duplicating and performing transformations
on the original dataset [6], [7] and [8]. For example, one could
perform a series of 90◦, 180◦ and 270◦ rotations on each image
to effectively quadruple the size of their database [4]. Further-
more, these transformations would make the model rotation-
ally invariant, allowing accurate object detection regardless of
how the object is oriented within the test images. However,
data augmentation increases the computational complexity,
which is undesirable especially for medical image analysis
intended for diagnosis purposes. Additionally, a database can
be expanded through synthetic data generation [9]. Originally
proposed as a solution to imbalanced classes, the Synthetic Mi-
nority Over-sampling technique has been utilized to increase
the amount of training data in an underrepresented class [10],
[11]. Each training class could be manipulated through this
technique until all classes contain an equal quantity of training
images. This concept could then be expanded to the dataset



as a whole; generating synthetic data to increase the total size
of the database. However, medical images are usually very
difficult to imitate and include critical information that need
to be extracted. By synthesizing these medical images, we may
be loosing some information that might help in diagnosis and
treatment.

Although CNN architectures are robust for general object
recognition with large and diverse training data, faults arise
when specific applications lack a suitable database. The stan-
dard approach to dealing with this deficiency would be to
artificially expand the training data through data augmenta-
tion and synthetic data generation. Both of these techniques
involve adding additional data points to the database in the
preprocessing step that do not truly exist in the reality of the
problem. The solution proposed in this paper is to impose a
constraint on the dataset in both preprocessing and during the
testing of the CNN architecture based upon prior knowledge
of the dataset.

The application explored in this paper is the deboning pro-
cess for brain MRI scans. Prior to diagnoses, skull structures
that are unrelated to the illness under evaluation must be
removed from each image. Currently, this process is performed
either by hand or by manually adjusting a single variable
within preprocessing software, such as FSL [12]. This variable
must be readjusted for every image in each MRI set, thus
increasing the time and labor for each diagnosis. The proposed
modification, named the Inverted Cone Method, utilizes the
known order of images in an MRI dataset to remove the most
complex skull structures prior to processing by the CNN.

II. THE INVERTED CONE CNN
A. The Inverted Cone Method

The Inverted Cone method relies on a sequentially ordered
dataset, such as in a stream of video or a series of MRI scans,
in order to isolate relevant information in more complex im-
ages. In the deboning application, all images in an individual
patient’s MRI scan are ordered in layers from the base to the
top of the skull and separated by a constant thickness per slice.

MRI scan slices that are taken from the top to the middle
of the skull are easily segmented by both visual inspection
and through CNN processing (Fig. 1(a)). At these locations,
the skull is present in a well-defined ring around the brain.
As the scans descend further into the skull, sinus cavities
begin to appear in the skull structure as the area occupied
by the brain shrinks (Fig. 1(b)). MRI slices that have been
taken closer to the base of the skull introduce highly irregular
areas and deviate greatly from the typical central slice in Fig.
1(a). In these lower images, the sinus cavities and eye sockets
create more complex structures to classify. An example of a
complex MRI slice containing eye sockets can be seen in Fig.
1(b). The ordered and related nature of the brain MRI images
allows the use of preprocessing to remove the most difficult
to classify sections of the skull. By working from the central
slices outward, the MRI images with the largest area of brain
can be leveraged to remove extraneous skull structures in the
more complex scans.

The difference is taken between each image with a larger
area of brain and the next image in the dataset to highlight
the relevant area of analysis in that next image. The skull
structures that result from this difference can be removed from
the subsequent images to reduce presence of the most difficult
to classify areas.

B. The Inverted Cone CNN

To construct the Inverted Cone CNN, a preprocessing sys-
tem was created that must be applied during both the training
and the testing phases of the CNN. The training set is prepared
with this system prior to training the CNN, and then applied
in a feedback loop during the testing of the network model.
A block diagram depicting the overall process for the Inverted
Cone CNN can be seen in Fig. 2.

First, the training set of images must be preprocessed
through the Inverted Cone method. The preprocessing was
performed by finding the MRI slice for a specific patient with
the largest area of brain in the ground truth. The resultant
image would be from the central area of the MRI volume,
and the difference would then be taken between this image and
the subsequent image for that patient’s MRI. This difference
would include all irrelevant skull structures that fall outside the
immediate area surrounding the brain. This process was then
performed upon all of the following images; thereby, the MRI
sets for each patient were simplified based on a central slice
for each patient. A CNN architecture would then be trained
upon this modified dataset.

During the testing phase, the Inverted Cone method was
applied in a similar fashion. When classifying a new set of
MRI scans, the scans were input into the system starting with
the slices that are taken at the top of the skull. The area
of the brain that is identified in each slice will be stored
and compared to the area in the subsequent slice, until the
central slice with the largest area of brain is discovered. This
central slice would then be utilized to identify extraneous skull
structures in the following image. Once these structures are
removed from the slice, the image would be processed as
an input to the network. The segmented result is then fed
back as an input to the network to compare with the next
image in the set, thus creating a gradient of change around
the immediate area of the brain. This process is performed on
each subsequent image until the entire MRI set for a patient
is classified and deboned.

III. APPLICATION TO BRAIN MRI DEBONING

A. Database

The Inverted Cone CNN was applied to a database of
anonymized gadoliniumenhanced T1-Weighted MRI images
of human brain with and without malignant glioblastoma
multiforme, a malignant brain tumor. The database, provided
by the University of Alabama at Birmingham School of
Medicine, was comprised of patient files containing a series
of MRI scan slices for each patient. Patient files which held
MRI scans that did not equal the common size of 256x256
were removed from the database. The resulting size of the



Fig. 1: (a) Central slice of MRI scan; (b) Lower slice of MRI scan

Fig. 2: Block diagram of Inverted Cone CNN

dataset that was utilized in the training of this system was
23 patients with 17-38 slices per MRI scan. Ultimately, the
system was trained with 451 MRI slices.

B. Preprocessing

Segmentation is performed to classify multiple objects or
classes within a single image. In the deboning application,
segmentation could be formulated as a binary classification
problem of skull vs. brain. The process of segmentation
involves patching to be applied to the dataset to extract local
regions of a specified size from a variety of areas. An equal
amount of patches are extracted from the training set of images
for each of the two classes. Each patch is classified by the
central pixel in that patch. Once a balanced library of patches
is derived from the dataset, the network is then trained on that
library. The weights in the network are adjusted after each pass
through the library of patches until all epochs are completed.

After training has been completed, testing can be performed
on images that the network has not yet seen in the training set.
The input images to the system are decomposed into patches
of a specified size and input into the network. Each patch

would then be analyzed by the network to classify the central
pixel of that patch into one of the predefined classes of the
training set. Image segmentation is complete once all pixels
have been classified by the network.

For the application of deboning, a library of 300,000 patches
were created for a data set consisting of 23 patients and
between 17-38 slices per MRI scan. The total number of
images in the dataset was 451 MRI slices. Patch sizes of 33x33
and 15x15 were investigated in this model. Larger patch sizes
allow for a larger region of features to be analyzed around the
pixel being classified which makes the network more robust
to local structures, yet increases computational complexity and
overfitting due to a loss of resolution. Ultimately, a patch size
of 15x15 was chosen for the final model.

The Inverted Cone method was applied to the deboning
dataset during preprocessing to remove complex skull struc-
tures at the base of the skull. The ground truth for each image
following the central slice was used to filter the subsequent
slice for that patient. Once the difference was taken between
the area of the brain in the previous image with the second



Fig. 3: Brain MRI scans preprocessed by Inverted Cone

Fig. 4: Segmentation Results: 1st column: Original MRI scans; 2nd column: Ground truth deboning; 3rd column: Segmentation
of the standard CNN; 4th column: Segmentation of the Inverted Cone CNN; 5th column: Deboning of the FSL software.

image, that difference could then be removed from the second
image as extraneous skull structures. A series of brain MRI
slices preprocessed using the Inverted Cone method can be
seen in Fig. 3.

C. Deboning Application

The architecture utilized in the Inverted Cone CNN was
a three-layer convolutional network followed by two densely
connected layers and a classification layer at the output. Three
hidden layers in this network were able to extract a better
feature-set from the data then a shallow network with only a
single layer. An increase in the number of layers past three
resulted in a decrease of overall accuracy due to overfitting.
A standard ReLU activation function was used in each layer
along with batch normalization to prevent overfitting. Batch
normalization ensures that the mean activation of the previous
layer is close to zero and the standard deviation is close to one.
The full list of hyperparameters for this network is displayed
in Table 1.

Kernel sizes were chosen to be cascading in size from 7x7
for the first layer, 5x5 for the second layer, and 3x3 for the

TABLE I: Hyperparameters for the Inverted Cone CNN

Hyperparamter Value

Patch dimensions 15x15

Patch quantity 300000

Kernel dimensions 7x7, 5x5, 3x3

Kernel quantity 8, 8, 8

Learning rate 0.001

Decay 0.01

Momentum 0.9

Epochs 10

Batch size 256

Database size 451

third layer. Smaller kernel size allowed for a three hidden layer
design with a small patch size of 15x15. Larger kernels were
employed at the outer layers to extract features with more
locality information. The kernels decrease in size in the two
subsequent layers in order to reduce the number of weights



Fig. 5: Validation accuracy for standard and inverted cone CNN

TABLE II: Resultant Loss, Accuracy, and Validation Accuracy
for Standard and Inverted Cone CNN

Measurement Standard CNN Inverted Cone CNN

Loss 0.5112 0.4333

Accuracy 0.8204 0.8431

Validation Accuracy 0.7748 0.8567

and deter overfitting.

The architecture described in Table 1 was trained with and
without using the Inverted Cone method to process the inputs.
The results from the Inverted Cone CNN deboning were
compared to a standard CNN as well as the widely used FSL
deboning software. The accuracy measurements for the FSL
software was acquired by manually adjusting the parameter for
the central slice of each test MRI set and using this parameter
for all other slices in the set. Accuracy, validation accuracy,
and loss measurements for the two CNN techniques are shown
in Table 2. The Inverted Cone CNN outperformed the standard
CNN model and the FSL software on this dataset. Accuracy
and validation accuracy were plotted for both CNN models
over the 10 epochs, as seen in figure 5.

The Inverted Cone CNN outperformed the standard model
in validation accuracy. The results show that utilizing the
ordered nature of the brain MRI scans during preprocessing
can reduce the complexity of the dataset and provide the
system with a greater capacity to learn the data. Figure 4
contains both simple and complex images segmented using the
standard CNN model and the modified Inverted Cone CNN. As
can be observed, the Inverted Cone CNN was able to segment
the validation set more accurately as compared to the ground
truth than the standard CNN architecture for both complex
and simple MRI slices. In the complex image, the Inverted
Cone model was able to identify skull structure immediately
bordering the brain more readily than the standard model.

IV. CONCLUSION

Modifications to training data for a convolutional neural
network is vital in situations where the quantity of that data
is limited. In the past, data augmentation has been used to
multiply the size of the database through duplicating and
transforming available images. Synthetic data generation has
also been employed to create additional, artificial images to
the dataset. Knowledge of intrinsic attributes for a set of
images can be leveraged in the training and testing of a
network through specific preprocessing operations to increase
the overall accuracy of the system. Two such attributes, order
and spatial relation, were incorporated into the preprocessing
for the application of deboning brain MRI scans.

Since MRI scans are oriented from the top to the base of
the skull in sequential order, each scan is a slight gradient
from the previous scan. As you descend further into the slices
of a scan, the area of the brain occupying the slice grows.
Knowledge of the ordered nature of the data along with the
relationship between subsequent images allows the Inverted
Cone preprocessing method to be employed. Once the slice
with the largest area of brain is determined, which will be a
central slice in the scan, each slice afterwards can be filtered
by the previous slice. The only area of interest – the brain –
decreases in size from the central slice to the base of the skull
while the size and complexity of the skull structures increase.

By ignoring the skull structures that fall outside of the area
occupied by the brain in the previous slice, the classification
problem becomes much simpler for the neural network to
learn. The most difficult to classify images, which contain
sinus cavities, become more similar in shape and relative area
of each class when the inverted cone processing is applied;
thereby increasing the overall accuracy of the system.
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