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Abstract—We propose a new non-parametric level set model
for automatic image clustering and segmentation based on non-
negative matrix factorization (NMF). We show that NMF: (i)
clusters the image into distinct homogeneous regions and (ii)
provides the local spatial distribution of each region within
the image. Furthermore, NMF has a controllable resolution
and can discover homogeneous regions as small as one pixel.
Coupled with the level-set approach, NMF is an efficient method
for image segmentation. The proposed model is unsupervised
and relies on local histogram modeling to define an energy
functional, whose optimization leads to the final segmentation.
A unique and desirable feature of the proposed method is that
it does not incorporate any spurious model parameters; hence,
the optimization is performed only w.r.t level set functions. We
apply the proposed Non-parametrIc Unsupervised SegmentatioN
approach (geNIUS) to synthetic and real images and compare
it to three state-of-the-art parametric and non-parametric level
set approaches: the localized Gaussian distribution fitting model
(LGDF) [1], the local histogram fitting (LHF) model [2], and
our recent work: NMF-LSM in [3]. The proposed geNIUS model
results in a superior accuracy and more efficient implementation,
which is a result of its free-model parameter feature.

I. I NTRODUCTION

Image clustering and segmentation is a vital problem in
many applications, including biomedical imaging, biotechnol-
ogy, visualization and computer vision. The aim is to delineate
and separate the homogeneous regions (or objects) in the
image for the purpose of extracting or further studying the
objects of interest. The level set method (LSM), based on
partial differential equations, is considered state-of-the-art in
image segmentation. LSM evolves a contour like a rubber
band until the contour stops at the desired object boundaries.
This contour is defined as the zero-level set of a higher-
dimensional function, thelevel set function, that can be easily
computed and evolved in the image domain. Specifically, LSM
constructs a function of the contour, calledfunctional, whose
optimization leads to the final segmentation of the image.
Coming up with an appropriate functional, and deriving an
optimization approach to find a minimizer of that functional,
is a challenging problem.

Traditionally, functionals were defined based on the gradient
of the image, so that the contour stops at the image edges.

However, “edge-based” segmentation is very sensitive to noise
and other artifacts in the image, such as blurring. In order
to obtain more robust segmentation, gradient-free functionals
were proposed, which essentially define a clustering of the
image [4], e.g.,k-means clustering [5]. Most LSM approaches
proposed parametric clustering approaches, where the regions
are clustered based on (global or local) intensity fitting ener-
gies [1], [4], [6], [7]. The parameters of the fits are simultane-
ously estimated with the level set functions. The introduction
of these “nuisance parameters” decreases the accuracy of the
segmentation, especially when using ad-hoc or sequentially
alternating optimization techniques, which optimize overone
parameter at a time.

Li et al. [5] proposed a clustering approach that locally
modeled pixel intensities in each region using a Gaussian dis-
tribution with the same variance but different local means.This
work was extended in [1] by considering different variances
for the regions. In both [1] and [5], the parameters of the
Gaussian distribution (means and variances of the regions)
were estimated iteratively along with the main parameter of
interest, namely, the level set functions. In [8], Niet al.
proposed a non-parametric level set model that computed
a local histogram of pixel intensities in a patch, and then
decided whether the pixel belongs to the inside region or
outside region by computing the Wasserstein distance of the
local histogram and the histogram inside and outside the
closed curve. Liuet al. [2] re-examined Ni’s work in a local
framework by considering a small neighborhood around each
pixel. Both [2] and [8] assumed that the image consists of
only two regions (object and background). Such an assumption
is not practical in many applications, such as MRI brain
segmentation. Moreover, the model histograms inside and
outside the evolving curve are estimated iteratively alongwith
the level set functions. In our recent work [3], we proposed
a parametric level set approach based on non-negative matrix
factorization (NMF). NMF factors the image into non-negative
matricesV ≈ W H . We showed that theW factor provides
the mean and variance intensity levels of the distinct regions
in the image. We subsequently proposed an external energy
functional that relies only on the factor matrixW . However,



this work did not consider the information provided by the
other factor matrixH . Taking into account the information
encoded by both factor matricesW andH would lead to more
accurate segmentation.

In this paper, we describe a novel non-parametric level set
segmentation approach that uses non-negative matrix factor-
ization (NMF) for clustering and region discovery. We show
that the factor matrices encode the regions’ characteristics:
mean intensity, variance, and spatial distribution withinthe
image. The NMF parameters are then used to define the local
histogram inside a window centered at each pixel. In particular,
no nuisance parameters are introduced. This non-parametric
model is integrated within the level set framework to form an
energy functional in terms of level set functions (LSFs). The
segmentation is achieved by minimizing the energy functional
w.r.t. the LSFs. The proposed Non-parametrIc Unsupervised
Segmentation, termed geNIUS, is applied to synthetic images
as well as multiple sclerosis MRI scans. We compare geNIUS
with two state-of-the-art level set approaches: a parametric
approach: the localized Gaussian distribution fitting (LGDF)
model [1], and a non-parametric approach: the local histogram
fitting (LHF) model [2]. This paper is different from [3] in
at least three aspects: First, this paper takes into accountthe
clustering information provided by the two factor matrices
W and H . Second: the proposed model is non-parametric
and does not assume any specific model or Gaussianity.
Third, whereas the model in [3] encompasses one nuisance
parameter, the bias term due to intensity inhomogeneity, the
proposed geNIUS approach has no additional model parameter
as it relies on non-parametric histograms. In particular, the
optimization of the contour evolution is performed solely w.r.t.
the level set functions.

The main contributions of this paper are as follows: (i)
describes the NMF algorithm as a clustering technique for im-
ages with a controllable resolution; (ii) proposes the geNIUS
method, which is a non-parametric unsupervised segmentation
approach of the image based on NMF and the LSM. A unique
and attractive feature of geNIUS is that no nuisance parameters
are introduced and the optimization is fully achieved with re-
spect to the level set functions, which define the segmentation
contours. As we will see in the simulations, this unique feature
explains the superior accuracy and higher speed of geNIUS
compared to other parametric and non-parametric level set
approaches.

II. RELATED WORK

A. Local Gaussian Distribution Fitting (LGDF) Model [1]

In the LGDF model [1], Chenet al. consider a neighborhood
Oy of every pixely and characterize the local distribution
of the intensities in this neighborhood using a Gaussian
distribution. Specifically, the intensity of regionΩi inside the
neighborhoodOy is assumed to follow a Gaussian distribution
with mean intensityb(y)ci and varianceσi (see Fig. 1), where
b(y) is the bias field at pixely, assumed to be constant within
the neighborhoodOy. The bias field accounts for intensity
inhomogeneity within the image, which manifests as smooth

Fig. 1: Illustration of the local Gaussian distribution fitting
(LGDF) model [1].

spatial variation of the intensity values across the image.
The segmentation is achieved by maximizing the posterior
probability of the regions given the image. The image model
is given byI = b ∗ J +n whereI is the given image,b is the
bias field,J is the true (hidden) image andn is an additive
noise.

Let pi,y(I) = p(Ωi ∩ Oy|I) be the posterior probability
of the subregionΩi ∩ Oy given the observed imageI. Using
Bayes’ rule, we havep(Ωi ∩ Oy|I) ∝ p(I|Ωi ∩ Oy) p(Ωi ∩
Oy). Assuming that the prior probabilities of all partitions
are equal, and the pixels within each region are independent,
the maximum a posteriori (MAP) estimate can be achieved
by finding the maximum of

∏

i

∏

x∈Ωi∩Oy
pi,y(I(x)). It can

be shown that the MAP formulation can be converted to the
minimization of the following energy functional in the level
set framework [1]:

F(φ, b, c,σ2) =
∫ N
∑

i=1

∫

−K(y − x) log pi,y(J(x) ∗ b(y))Mi(φ)dxdy,

(1)

wherepi,y(J(x)∗b(y)) is a Gaussian distribution with meanci
and varianceσi, K(y−x) is a Gaussian kernel function, and
Mi(φ) is the membership function of regioni. In the LGDF
model, the intensity meansc = {ci}ki=1 and variancesσ2 =
{σ2

i }ki=1 of the k regions are simultaneously and iteratively
estimated with the level set functionφ, and the bias fieldb.

B. Local Histogram Fitting (LHF) Model [2]

In [2], Liu et al. rely on histograms rather than parametric
(Gaussian) densities to characterize the distribution of pixel
intensities. They similarly consider a local analysis and define
a neighborhoodOy around each pixely. The intersection of
this neighborhood with the object or foreground has histogram
Py
i and its intersection with the background has histogramPy

o .
Consider now a pixel,x, inside neighborhoodOy, and define
a window, also called a patch,Px

r , centered atx. Based on



the distances betweenPx
r and the histogramsPy

o and Py
i ,

it is decided whether pixelx belongs to the foreground or
background. This idea is illustrated in Fig 2.

The local histogram fitting energy is defined as a weighted
distance of the local histogramPx

r to the fitting histogramsPy
i

and Py
o . The weight assigned to each local histogramPx

r at
pixel x inside neighborhoodOy is given by the kernelK(y−
x). The local histogram fitting energy can be formulated in
terms of the level set functions as follows [2]:

F(φ, Py
i , Py

o ) =

∫

Ω

∫

Ω

H(φ)K(y − x)D(Py
i , Px

r )dxdy

+

∫

Ω

∫

Ω

(1 − H(φ))K(y − x)D(Py
o , Px

r )dxdy, (2)

where H(φ) is the heaviside function. In this model, the
histograms of the object and background,Py

i and Py
o , re-

spectively, are simultaneously and iteratively estimatedwith
the level set functionφ.

Fig. 2: Illustration of the local histogram fitting (LHF) model
[2].

III. NMF- BASED CLUSTERING

We first divide the image into (potentially overlapping)
blocks or moving windows, and compute the histogram of ev-
ery block. These histograms are then arranged as the columns
of the data matrixV . Figure 3 shows the local histograms of
three selected windows at different positions for a synthetic
gray-scale image. Ifm is the number of blocks in the image
andn is the number of intensity bins considered, thenV is of
sizen×m. Specifically, the(i, j)th entry,vij , is the number of
pixels in blockj having intensity range in bini. Applying the
NMF decomposition to the non-negative data matrixV using
the “multiplicative update rules” in [9], we obtain two non-
negative matricesWn×k andHk×m, wherek < min(n, m) is
the number of regions to be detected in the image.

In order to understand the interpretation of the NMF factor
matrices, consider the synthetic image shown in Fig. 4. We
used a7 × 7 moving window. We chosek = 3, corre-
sponding to the three regions in the image with intensity
values0, 178, 299. As we can see in Fig. 4a, the matrixW
induces a clustering of the image intok “basic histograms”,

Fig. 3: Building the histogram data matrix using a moving
window.

which characterize the regions. On the other hand, the row-
normalized entries of the matrixH represent the percentage
or fraction of the area of the region that is included in each
moving window. In other words,H renders the local spatial
distribution of the regions.

IV. N ON-PARAMETRIC ENERGY FUNCTIONAL

A. Building the Energy Functional

We consider both matricesW and H in the NMF fac-
torization V ≈ W H to build an energy functional whose
minimization leads to the optimal segmentation. Recall that the
matrix W provides the histogram of each region in the image,
and the row-normalized entries of the matrixH provide the
fraction of the area of each regionΩi that is included inside
block Sj , i.e., the normalized entry hij∑

m
i=1

hij
represents the

fraction of regioni inside blockSj. For instance, in Fig. 4,
the yellow and blue windows do not intersect the black region
in the image; hence, the entries ofH in the row corresponding
to the black region (1st row) and columns corresponding to
these two windows are zero. In other words, the black region
is not locally present in these two windows. On the other hand,
the green window is entirely included in the black region. We
can manually check that0.000515% of the area of the black
region is included inside the green window. This value matches
the row-normalized entry ofH in the row corresponding
to the black region and column corresponding to the green
window. Furthermore, we can show (not provided here for
space constraints) that the smallest region that can be detected
by NMF clustering has the same size as the windows used to
form the data matrixV . In particular, the resolution of NMF-
based clustering can be tuned by the window size parameter,
and can be as small as one pixel.

We propose to model the (local) histogram of regionΩi

inside a windowSj by the weighted histogram ofΩi as
provided in the matrixW . The weight is given by the fraction
of the area ofΩi inside windowSj , i.e., the row-normalized



(a) column-normalizedW matrix.

(b) Row-normalizedH matrix.

Fig. 4: NMF clustering:V ≈ W H for a synthetic image using7 × 7 window size.

entry of the matrix H for the corresponding region and
window. Analytically, we have

∫

Ωi∩Sj

I{I(y)=z} dy =
hij
∑

l hil

PW
i (z), (3)

whereI{U} is the indicator function ofU , i.e.,

I{U} =

{

1, U is true;
0, U is false.

(4)

andPW
i denotes the histogram of regionΩi extracted from the

matrix W . The left hand-side of Eq. (4) provides the number
of pixels inside regionΩi and windowSj having intensity
value z, which is the histogram ofΩi ∩ Sj evaluated at bin
z. The right-hand side of Eq. (4) is the weighted histogram
of regionΩi as provided by the matrixW , where the weight

is the fraction of the area ofΩi that is included insideSj .
Summing over all regions and all blocks, we obtain:

E =

k
∑

i=1

m
∑

j=1





∫ L

0

∣

∣

∣

∣

∣

∫

Ωi∩Sj

I{I(y)=z} dy −
hij

∑m

j=1 hij

PW
i

∣

∣

∣

∣

∣

2

dz



 ,

(5)

The energy functionE is combined in the level set for-
mulation by representing the disjoint regions with a number
of LSFs φ. We first start with the two-phase formulation.
The regionsΩ1 andΩ2 can be represented, respectively, with
their membership functions defined byM1(φ) = H(φ) and
M2(φ) = 1 − H(φ), where H is the Heaviside function.
For more than two regions, two or more level set functions
are defined. The energy in Eq. (5) can then be equivalently
expressed as the following level set energy functional:



E(φ) =
k
∑

i=1

m
∑

j=1





∫ L

0

∣

∣

∣

∣

∣

∫

Ω

eij(y, z)Mi(φ)dy −
hijPW

i
∑m

j=1 hij

∣

∣

∣

∣

∣

2

dz



 ,

(6)

whereeij(y, z) = kj(y)I{I(y)=z}, kj(y) is the kernel func-
tion indicating block Sj , and Ω denotes the entire image
domain. We add the geometric constraints to form the total
energy functional of the LSF,

F(φ) = αE(φ) + βR(φ) + γL(φ), (7)

whereR(φ) andL(φ) are regularization terms (to be defined),
and α, β and γ are weighting parameters. The energy term

R(φ), defined byR(φ) = 1
2

∫

Ω
(|∇φ| − 1)2dx, is a distance

regularization term that is minimized when|∇φ| = 1, a
property of the signed distance function. The second energy
term, L(φ) =

∫

Ω
|∇H(φ(x)|dx, computes the arc length of

the zero level set contour and therefore serves to smooth the
contour by penalizing its arc length during propagation.

B. Energy Minimization and Segmentation

Segmentation is achieved by minimizing the total energy
functional F in Eq. (7) w.r.t. the LSFsφ. The minimization
is achieved by solving the gradient flow equation:

∂φ
∂t

= −
∂F

∂φ
. (8)

By calculus of variations, we com-
pute the derivative ∂F

∂φ
as follows:

∂φ
∂t

= −α
k
∑

i=1

m
∑

j=1

∫ L

0

eij(y, z)M ′
i(φ)

(

∫

Ω

eij(y, z)Mi(φ)dy −
hijPW

i
∑m

j=1 hij

)

dz + β(∇2φ − div(
∇φ

|∇φ|
)) + γδ(φ) div(

∇φ
|∇φ|

).

(9)

In the implementation, the Heaviside function is approxi-
mated byHǫ(x) = 0.5 sin(arctan(x

ǫ
)) + 0.5, and the dirac

delta function,δǫ(x), the derivative of the Heaviside function,
is estimated byδǫ(x) = 0.5 cos(arctan(x

ǫ
)) ǫ

ǫ2+x2 .

V. SIMULATION RESULTS AND DISCUSSION

We evaluate the performance of the proposed non-
parametric histogram-based NMF model by segmenting syn-
thetic images and real brain MRI images for diagnosing mul-
tiple sclerosis (MS) disease. Specifically, we are interested in
delineating the gray matter, white matter, deep gray matterand
cerebrospinal fluid (CSF) regions in the brain. The objective
of the segmentation of the MS brain is to demonstrate the
existence of loss of brain volumes in patients diagnosed with
MS.

We compare the proposed geNIUS method to NMF-LSM
[3], localized Gaussian distribution fitting (LGDF) model [1]
and local histogram fitting (LHF) model [2]. We also study the
robustness of the algorithm to different levels of noise in the
image. The segmentation accuracy is quantitatively assessed
using the root mean square error (RMSE). We set all weights
in Eq. (7) to be equal, i.e.,α = β = γ = 1.

Figures 5 and 6 show the segmentation results of geNIUS,
NMF-LSM, LGDF and LHF models on the same synthetic
images of multiple objects and single object corrupted with
different levels of noise. We applied Gaussian and salt and
pepper noise. In the first column of Figs 5 and 6, the images
are corrupted with Gaussian noise with standard deviation
equals9 and salt and pepper20%. In the second and third

columns, the images are corrupted with Gaussian noise with
standard deviations equal3 and 4.5, respectively, and salt
and pepper25% and 35%, respectively. The first row in
these figures shows the original image with the different
levels of noise. The second, third, fourth and fifth row show,
respectively, the segmentation results of geNIUS, NMF-LSM,
LHF and LGDF. Notice that geNIUS is more robust to noise,
which may be attributed to two main factors: First, we solely
rely on histograms rather than intensity values, and secondwe
only optimize over the level set functions as all other clustering
information is provided by the NMF. In LHF and LGDF, the
contour locks onto the noise in the image. Moreover, in Figs
5and 6, the LHF model segments all objects in the image as
one object, since it is built for segmenting one object in the
image, which is not very suitable for many applications. The
LGDF model is able to segment multiple objects in the image.
However, because the contour is very sensitive to noise, we
cannot tell which contour segments which object.

Figure 7 shows the root mean square error of the four
models: geNIUS, NMF-LSM, LHF and LGDF applied to
10 synthetic images. Moreover, the CPU times in seconds
(s) were recorded for Matlab programs on a Asus K53E
laptop with Intel(R) Core(TM)i5-2450M CPU, 2.50 GHz, 8
GB RAM, with Matlab R2013a on Windows 7. geNIUS:
29.0162 s; NMF-LSM: 48.2418 s; LHF: 104.3604 s; and
LGDF: 224.9146 s. In particular, geNIUS appears to have the
fastest running time, which can be explained by the fact that
it does not optimize over additional model parameters.



Fig. 7: Comparison based on RMSE values between the three methods, the proposed geNIUS, the LHF [2] and the LGDF
methods [1], of 10 synthetic images corrupted by Gaussian and salt and pepper noise.

A. Application to Real Brain MRI Images

The proposed geNIUS method is applied to real brain MRI
images of a 45 year old female with relapsing remitting
multiple sclerosis (MS), obtained in 2004 and 2014. The MRI
is obtained from the University of Alabama at Birmingham
School of Medicine. Brain atrophy is a sensitive measure
of the neurodegenerative component of MS. Furthermore,
brain volume measurements appear to be useful in clinical
trials evaluating potential anti-inflammatory, remyelinating or
neuroprotective therapies. Figure 8 shows the segmentation
result on a T1-Weighted MRI scan of a normal patient in the
first row and a patient diagnosed with MS in the second row.
The blue contour in Figs. 8b, 8g indicates the white matter,
the red contour in Figs. 8c, 8h indicates the gray matter, the
cyan contour in Figs. 8d, 8i indicates the deep gray matter
and the yellow contour in Figs. 8e, 8j indicates the CSF. The
segmentation measurements reveal a sizable decrease in the
mass of gray matter, white matter, and deep matter associated
with an increase in the size of CSF for the MS brain. The
percent changes in brain volume of the patient brain in 2004
versus 2014 are shown in Table I.

VI. CONCLUSION

In this paper, we described the use of non-negative matrix
factorization (NMF) for region discovery and clustering.We
showed that NMF provides a global and local characterization
of the regions in the image. We subsequently proposed a
new local histogram model for image segmentation. The
segmentation is achieved by minimizing an energy functional
that models the local distribution of the regions in the image as
discovered by NMF. Unlike other non-parametric approaches
in the level set framework, no additional spurious parameters,
such as the histograms of the regions, need to be estimated.
Moreover, the proposed approach is robust to noise because
it models the local histograms around each pixel in the image
rather than relying on the pixel intensities. Application of the
proposed segmentation to an MRI brain with multiple sclerosis

(MS) demonstrated that MS causes loss of brain volumes
(superficial gray matter, deep gray matter, white matter, and
CSF). This application looks promising to the development of
efficient and successful monitoring, treatment, and prevention
strategies in the clinical setting.
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Fig. 5: Performance evaluation of the proposed geNIUS
method, NMF-LSM [3], the LGDF model in [1], and the LHF
model in [2] on the same synthetic image of multiple objects
corrupted with various levels of noise. The first row shows
the original image with the levels of noise. The second row
displays the segmentation of geNIUS, and the third, fourth and
fifth rows show, respectively, the output of NMF-LSM, LHF
and LGDF.

Fig. 6: Performance evaluation of the proposed geNIUS
method, NMF-LSM [3], the LGDF model in [1], and the LHF
model in [2] on the same synthetic image of multiple objects
corrupted with various levels of noise. The first row shows
the original image with the levels of noise. The second row
displays the segmentation of geNIUS, and the third, fourth and
fifth rows show, respectively, the output of NMF-LSM, LHF
and LGDF.



Gray Matter White Matter Deep Gray Matter CSF
2014 v.s. 2004 −23% −18% −30% +38%

TABLE I: Percent changes in gray matter, white matter, deep gray matter, and CSF in a patient with relapsing-remitting MS
over a period of 10 years. The segmentation is shown in Fig. 8.

Fig. 8: Segmentation of a T1-Weighted MRI Segmentation of anMS patient, obtained in 2014 (a)-(e) and 2004 (f )-(j). (b)-(e)
and (g)-(j) are the binary representations of the segmentation. (b) and (g) show the gray matter. (c) and (h) show the white
matter. (d) and (i) show the deep gray matter. (e) and (j) showthe CSF.


