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Nonstationary Analysis of Coding and Noncoding
Regions in Nucleotide Sequences
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Abstract—Previous statistical analysis efforts of DNA sequences
revealed that noncoding regions exhibit long-range power law cor-
relations, whereas coding regions behave like random sequences
or sustain short-range correlations. A great deal of debate on the
presence or absence of long-range correlations in nucleotide se-
quences, and more specifically in coding regions, has ensued. These
results were obtained using signal processing techniques for sta-
tionary signals and statistical tools for signals with slowly varying
trends superimposed on stationary signals. However, it can be veri-
fied using statistical tests that genomic sequences are nonstationary
and the nature of their nonstationarity varies and is often much
more complex than a simple trend. In this paper, we will bring to
bear new tools to analyze nonstationary signals that have emerged
in the statistical and signal processing community over the past
few years. The emergence of these new methods will be used to
shed new light and help resolve the issues of i) the existence of
long-range correlations in DNA sequences and ii) whether they
are present in both coding and noncoding segments or only in the
latter. It turns out that the statistical differences between coding
and noncoding segments are much more subtle than previously
thought using stationary analysis. In particular, both coding and
noncoding sequences exhibit long-range correlations, as asserted
by a 1/f3(") evolutionary (i.e., time-dependent) spectrum. How-
ever, we will use an index of randomness, which we derive from the
Hilbert transform, to demonstrate that coding segments, although
not random as previously suspected, are often “closer” to random
sequences than noncoding segments. Moreover, we analytically jus-
tify the use of the Hilbert spectrum by proving that narrowband
nonstationary signals result in a small demodulation error using
the Hilbert transform.

Index Terms—AM-FM signals, empirical mode decomposition,
evolutionary periodogram, Hilbert transform, long-range correla-
tions, nonstationary time-series analysis.

I. INTRODUCTION

VER the past decade, there has been a flow of conflicting
Opapers about the long-range power-law correlations de-
tected in eukaryotic DNA [1]-[21]. The controversy is gener-
ated by conflicting views that either advocate that noncoding
DNA sustains long-range correlations whereas coding DNA be-
haves like random sequences [1]-[12] or maintains that both
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coding and noncoding DNA exhibit long-range power-law cor-
relations [13]-[21]. Disturbingly, not only their results were
contradictory for different gene data but also for the same set
of genes [17]. This issue seems to hamper further progress to-
wards explaining the origins of such correlations and their role
in gene evolution, which can help understand gene-related dis-
eases like cancer and Alzheimer disease. Indeed, understanding
the correlation structure of genes helps recreate the dynamical
processes that led to the current DNA sequences. For instance,
based on the first view of long-range correlations in noncoding
DNA, Li [22], [23], proposed a simple iterative model of gene
evolution. The model incorporates the basic features of DNA
evolution, that is, sequence elongation due to gene duplication
and mutations. Dodin et al. [24] studied the correlations in DNA
sequences to revisit the intriguing question of triplet repeats with
the aim of providing an estimate of the propensity of genes
to lead to possible aberrant structures. Their work examined
Dijian et al. [25] finding that long-range correlations due to the
repeat of identical triplets has proved to be linked with severe
neurological diseases in humans and primates.

The investigation of long-range correlations in DNA se-
quences started with the pioneering works of Peng et al. [1],
Li and Kanenko [26], and Voss [13] in 1992. Peng et al
constructed a 1-D random walk model of the DNA sequence
generated by an incremental variable that associates to position
i the value u(i) = 1 if the i‘" nucleotide of the sequence is
a pyrimidine and u(z) = —1 if it is a purine. An important
statistical quantity characterizing any walk is the root mean
square fluctuation about the average of the displacement,
F(l). F(l) is related to the auto-covariance function, C(1),
through the relation F(l) = Zsz Z;\;l C(j — i), where
C(l) = Elu(lo)u(ly + 1)] — E[u(l)]?, and E[.] denotes an
average over all positions [y in the gene. Independently, Li and
Kineko [26] and Voss [13] took a different approach to investi-
gate the nature of correlations in DNA sequences by studying
their power spectrum. Both the root mean square fluctuation,
F(l), and the power spectrum, S(f) can distinguish between
two or three types of behavior.

1) For white noise, we have C(I) ~ 6(1), F(I) ~ I'/? and

S(f) ~ 1.

2) If the sequence exhibits short-range correlations, such as
a Markov memory, then C(1) ~ exp~!, F(I) ~ 1'/2, and
S(f) ~1/£2.

3) If the sequence exhibits long-range correlations, then
Cl) ~ 177 (v > 0), F() ~ I-7 (8 # (1/2)), and
S(f) ~1/f*(0 < a<?2).

Processes whose sample power spectrum is of the form o2/ 7,
for some finite nonzero o and 3 > 0 are called “1/ f processes.”
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Such processes have been empirically observed in a wide variety
of physical systems such as electronic devices [27], geophysical
records [28], the flood levels of the river Nile [29], sunspot ac-
tivity, financial data [30], network flow [31], image texture [32],
heart-rate variability [33], and many more. Peng ef al. [1] and
Li and Kaneko [26] found that noncoding sequences (intron-rich
genes and nontranscribed regulatory regions) exhibit long-range
power law correlations, whereas coding sequences (cDNA or in-
tron-less genes) sustain short range correlations or behave like
random sequences. Voss [13], however, found that all DNA re-
gions exhibit long-range correlations. Analyzing the same data
set as Peng et al., Chatzidimitriou-Dreismann and Larhammar
[17] found no difference between intron-containing versus in-
tronless sequences. Since then, researchers from different back-
grounds have been searching for long-range correlations in var-
ious DNA sequences using either the fluctuation analysis or the
power spectrum. The availability of large DNA sequences and
complete genomes in public databases did not help resolve the
debate, but rather accentuated it [12]. This raises the question:
What is the cause of all these conflicting results?

Both the fluctuation analysis and the power spectrum tech-
niques implicitly assume that the stochastic process underlying
the distribution of nucleotides is stationary. This assumption
is problematic due to the complex mosaic nature of DNA
sequences, with structures such as isochores, intergenic se-
quences, long and short interspaced repeats, tandom repeats,
exons, introns, etc. Each structure has its own size distribution,
nucleotide frequency and seem to have followed a different
evolutionary path than other structures. Stationary studies
inherently involve averaging over large portions of a sequence,
and so they smear the fine details where important information
might be concealed. Karlin and Brendel [16] first questioned
the stationarity assumption in Peng’s fluctuation analysis. They
argued that most DNA sequence variation can be explained by
compositional patchiness and does not involve the higher order
organization implied by the long-range correlations. Peng’s
group disputed their argument by refining the fluctuation anal-
ysis to determine patchiness arising from the heterogenous
purine-pyrimidine content in the DNA walk [2]. The main idea
consists of an attempt to construct a stationary time-series from
the nonstationary DNA process as follows:

1) divide the DNA sequence into subsequences;

2) estimate and remove the linear trend in each subsequence;
3) compute the variance or fluctuation of each “detrended”
subsequence;
4) the overall fluctuation is then given by the average of these
variances over all subsequences.
The relationship between the detrended root mean square fluctu-
ation, Fy(1), and the window length [ is identical to the standard
fluctuation analysis technique. That is, if only short-range corre-
lations (or no correlations) exist in the nucleotide sequence, then
F4(I) ~ 1'/2, and if there is long-range power-law correlations,
then F;(1) ~ 1™ with & # (1/2). This technique became known
as the detrended fluctuation analysis (DFA). The DFA method
became then the “standard” technique in analyzing correlations
in DNA sequences and other time-series [12], [34]. However,
this method has two drawbacks. 1) The scaling behavior is only
approached asymptotically and so deviations from a straight line

are often observed in the log-log plot for small scales. In partic-
ular, these deviations limit the capability of the DFA to deter-
mine the correct correlation behavior in short records. 2) The
DFA is limited to the very special case of nonstationary signals
consisting of stationary signals with embedded trends, i.e., sig-
nals of the form

X(t) = Xo(t) + c(t) ()

where X((t) is a stationary process and ¢(t) is a deterministic
function. If the trend ¢(t) is continuous on a closed interval
0 <t < T, then by the Weierstrass theorem, it can be uniformly
approximated by polynomials. Therefore, one can assume that
the trend is polynomial, provided its degree is properly chosen.
So, by dividing the sequence into subsequences, estimating the
polynomial trend in each subsequence and subtracting it, we
obtain the underlying stationary process Xg(¢). One can then
apply stationary analysis tools like the fluctuation analysis or
the power spectrum to assess the correlation structure of the un-
derlying sequence. However, our extensive simulations of DNA
sequences showed that they exhibit different forms of nonsta-
tionarities that are more complex than embedded trends. There-
fore, any quest to resolve the nature of DNA correlations should
consider techniques for a wider class of nonstationary signals.

This paper is organized as follows. In Section II, we adopt
a 2-D numerical representation of DNA sequences and show,
using Priestley’s test for stationarity, that genomic sequences
are nonstationary, and the nature of their nonstationarity is more
complex than a simple trend. In Section III, we show, using the
evolutionary periodogram, which is a generalization of the pe-
riodogram to nonstationary signals, that genomic sequences ex-
hibit an evolutionary 1/f spectrum, i.e., a 1/f spectrum with
time-dependent spectral component [3(n). Moreover, our ex-
perimental results show that the spectral curve of noncoding
DNA sequences is usually higher than the corresponding curve
for coding sequences. In Section IV, we affirm this finding and
show that it is not an artifact of the evolutionary 1/ f model by
proposing an index of randomness based on the Hilbert spec-
trum, and showing that coding segments are “closer” to random
sequences than noncoding segments. The Hilbert spectrum is
constructed using the empirical mode decomposition (EMD) to
decompose nonstationary signals into a sum of AM-FM sig-
nals, then estimate their instantaneous amplitude and frequency
using the Hilbert transform. We analytically justify the use of
the Hilbert transform by analyzing AM-FM signals and proving
that the magnitude of the approximation error tends to zero for
narrowband AM-FM signals. Finally, in Section V, we conclude
and outline some extensions of our work.

II. NONSTATIONARITY OF DNA SEQUENCES

A. Two-Dimensional Numerical Representation of DNA
Sequences

In this section, we consider the problem of testing a given
DNA sequence for stationarity. Before doing so, we first need
to map the DNA string into a numerical sequence or a series of
vectors zj, representing the four base types. This might seem an
easy task, but it is actually a critical step, on which the test for
stationarity and the correlation analysis depend heavily. It fact,
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Fig. 1. Two-dimensional walk of the Human gene NOC2L.

embedding any high-dimensional data (here the dimension of
the DNA is equal to 4) into a smaller space introduces corre-
lations. On the other hand, minimizing the embedding dimen-
sion minimizes the computation time. The complementary base
pairing of A with T and C with G suggests a natural embedding
of a sequence into a 2-D space. Berthelsen et al. [35] proposed a
2-D representation of DNA sequences, characterized by a Haus-
dorff dimension (also called fractal dimension) that is invariant
under 1) complementarity, 2) reflection symmetry, 3) compati-
bility, and 4) substitution symmetry of A < T and C < G. The
corresponding embedding assignment is given by A = (—1,0),
T = (1,0), C = (0,—1), and G = (0,1). The DNA walk is
defined as the sequence {y;}, where

i
Yi = E Tk
k=1

Fig. 1 shows the 2-D walk of the Human gene NOC2L using
this 2-D embedding scheme.

@

B. Test Procedure

Priestley and Rao [36], [37] developed a method to test the
stationarity of a given time-series. Their approach is based on
evolutionary (or time-dependent) spectral analysis, and consists
essentially in testing the “homogeneity” of a set of evolutionary
spectra evaluated at different instants in time. An estimate of the
evolutionary spectrum at time ¢ and frequency wo, ht, (wo), is
obtained by bandpass filtering the signal around wg, and then
estimating the local power in a short-time window. The length
of the time window must be long enough so that fairly stable
estimates are obtainable for a reasonable number of spectral
components but not too long so that the occurrence of a funda-
mental change will not be lost in averaging. Suppose now that
we have evaluated the estimated evolutionary spectra over a set
of times ¢1,t9,- -, ¢ and a set of frequencies wy,ws, -+, wy.
Considering

Y; . = log {iLt(w)} 3)

and adopting the notation Y; ; = Y (¢;,w;), the test for station-
arity can be formulated as follows:

“
(&)

where {e; ;} is the estimation error of the evolutionary spec-
trum, with variance o2, the parameters {«;}, {;} may be
interpreted as the “main effects” of the time and frequency
“factors,” respectively, and the {~;;} represent an “interaction”
term between these two factors. If all the {v;;} are zero, then
log{ht(w)} is additive in terms of time and frequency, so
that h¢(w) is multiplicative, i.e., may be written in the form
hi(w) = c*(t)h(w), for some functions c(t), h(w). It is then
not difficult to show that { X ()} must be of the form [36]

X(t) = e(t) Xo(?)

Hy : Y =p+ o + B + vij + eij
Hy Y =p+Bi+e

(6)

where {X((¢)} is a stationary process with spectral density
function h(w). Processes of the form of (6) are called uni-
formly modulated processes. Thus, a test for the presence of
interaction is equivalent to testing whether or not {X (¢)} is a
uniformly modulated process. It is interesting to observe that if
the exponential signal eX®) is uniformly modulated, then the
signal X (¢) has nonstationary trends as defined in (1). The test,
formulated in (4) and (5), is equivalent to a two-factor analysis
of variance procedure. The standard analysis of variance table
for a two-factor design, with the usual notation, is set up in
Table I. The test procedure follows the steps enumerated below.

1) In testing for stationarity, the first step is to test for the
interaction sum of squares, using the result, Sy r/ o2 ~
X%I—l)(]—l) (since we are assuming that o2 is known, all
comparisons are based on x? rather than F-tests.)

2) If the interaction is not significant, we conclude that
{X(t)} is a uniformly modulated process, and proceed to
test for stationarity by testing St using St /02 ~ X%I—l)'

3) If, however, the interaction turns out to be significant, we
conclude that { X (¢)} is nonstationary, and nonuniformly
modulated.

4) Reversing the roles of “times” and “frequencies,” the above
procedure may be used in exactly the same way to test for
“complete randomness.”

Using the same statistical parameters in [37, Chapter 6],
we applied the above test to the gene in Fig. 1 with 95%
confidence. We obtain the following statistics for the expo-
nential signal Sy p/0? = 1404.6 > x2;5(0.05) = 379.74;
Sr/o? = 1.2x10% > x2:(0.05) = 74.46; Sg/0? = 6152.6 >
X2(0.05) = 12.59 The interaction, the between times sum of
squares and the between frequencies sum of squares are highly
significant confirming that the exponential signal is nonsta-
tionary, nonuniformly modulated and nonrandom. Therefore,
this genomic signal is nonstationary and the nature of its
nonstationarity is not associated with a deterministic trend as
described in (1).

III. EVOLUTIONARY 1/f PROCESS

Much of the current evidence for long-range correlations in
DNA sequences stems from the experimentally observed 1/ f
spectrum [9], [13]. Although the power spectrum is valid under

Authorized licensed use limited to: University of Arkansas Litte Rock. Downloaded on July 12,2010 at 21:08:43 UTC from IEEE Xplore. Restrictions apply.



360

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 2, NO. 3, JUNE 2008

TABLE 1
ANALYSIS OF VARIANCE FOR A TWO-FACTOR DESIGN

Sum of squares

Item Degrees of freedom
Between times I—-1
Between frequencies J—-1
Interaction + residual I-1)J-1)

I i
Star= i 1D (Yij = Yi =Y +Y.)?

Sr=JY 1 (Y —Y.)?
Sp = Iijl(Yj -Y.)?
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Fig.2. (a)Evolutionary periodogram of the coding region of the Human MHY6 gene for n = 1000, 2000, 3000, 4000, 5000. The length of the gene is N = 5820.
(b) The scaling exponent 3(n) for the coding and noncoding regions of the Human gene TXNDC9 as a function of log,,(n).

extremely general conditions [38], there are some crucial re-
strictions: the system must be linear and the data must be strictly
periodic or stationary. The periodogram gives an estimate of the
spectrum of a linear and stationary signal, which can be effi-
ciently implemented using the fast Fourier transform (FFT) al-
gorithm. Kayhan et al. [39] defined the evolutionary spectrum
of a nonstationary signal using the Wold—Cramer decomposition
of nonstationary processes as the output of a causal, linear and
time-varying system. They subsequently extended the deriva-
tion of the stationary periodogram in [40] to the nonstationary
case. The evolutionary or time-varying periodogram of a non-
stationary discrete process z(k),k = 0,---, N — 1, is given by

Stn, f) =2 1A, )

N [ N-1 P
= Z Pr(n) Pi(k)z(k)e= 2Tk (7)
i=0 k=0
where * denotes complex conjugate, and {P;(n)}}g" is

an orthonormal basis. The number M (< N) indicates the
degree to which A(n, f) varies with time. For small values
of M, A(n, f) is slowly varying, and for large values of M,
it is rapidly varying. In our simulations, we use the discrete
Legendre polynomials with M = 3. Observe that (7) can be
interpreted as the magnitude squared of the Fourier transform of
x(k) windowed by the sequence v(n, k) = Zf\io_l B (n)B;i (k).
Therefore, the evolutionary periodogram can be efficiently im-
plemented using the FFT algorithm.

Fig. 2(a) shows alog-log plot of the evolutionary periodogram
of the Human gene MHY6 for n = 1000, 2000, 3000, 4000,
5000. Interestingly, we observe a 1/ f-type structure over time;
that is the evolutionary periodogram of the nonstationary process

underlying the DNA sequence is of the form 1/f# (") where
B(n) is the time-dependent spectral exponent. Three important
observations are drawn here: 1) the evolutionary 1/ f structure
is manifested in both the coding and noncoding segments, and,
hence, both regions exhibit long-range correlations; 2) DNA
correlations are much more complex than power laws with a
constant scaling exponent as the stationary analysis suggested;
3) the spectral exponent curve is, on average, higher in noncoding
regions than coding regions. We estimate the function 3(n) by
a linear least-squares fit of the slope of the evolutionary peri-
odogram. For a Brownian motion, it is known that 5(n) = 2,
Vn [41]. Fig. 2(b) depicts the plots of 3(n) versus log10(n) for
the coding and noncoding regions of the TXNDC9 gene. Notice
that the spectral exponent of the noncoding segment is higher,
on average, than its corresponding value for the coding segment.
Next, we will demonstrate that our conclusion that 1) neither the
coding nor noncoding regions are random and 2) the “degree
of randomness” of the coding regions is higher than noncoding
regions, is not an artifact of the evolutionary 1/ f model.

IV. MULTICOMPONENT AM-FM MODEL AND
INDEX OF RANDOMNESS

In the light of observation (3) and to quantify the statistical
processes further, a more sensitive index is needed to give a
quantitative measure of how far the process deviates from a
random walk.

A. Multicomponent AM-FM Model

A prerequisite for such a definition is a method to represent
the data in the frequency-time space. The Fourier transform rep-
resents a signal as a composition of stationary sinusoidal com-
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ponents with constant amplitude and frequency, and so is not ap-
propriate for the analysis of nonstationary signals. An emerging
method for the representation of nonstationary signals relies on
the AM-FM model and often uses the Hilbert Transform for de-
modulation. We use the new method of empirical mode decom-
position (EMD) [42] to decompose the genetic process into a
finite number of adaptive basis functions admitting “well-be-
haved” Hilbert transforms (i.e., resulting in a small demodula-
tion error)
N
X(t) =) enlt) +ralt) @®)

n=1

where {c,,()}_, are called intrinsic mode functions (IMF) and
r,(t) is the residual. We then apply the Hilbert transform to
each IMF (excluding the residual) and construct the energy-fre-
quency-time distribution, designated as the Hilbert spectrum
[42]. The analytic process {Z(t)} can then be expressed as

n
2(t) = 3 ay(t)er [ HOd )
=1

Equation (9) can be considered as a generalization of the Fourier
transform, which corresponds to constant amplitude and fre-
quency components. Thus, it enables us to represent the am-
plitude {a;(t)}7_, and the instantaneous frequency { f;(?)}}_,
as functions of time ¢ in a 3-D plot, in which the amplitude can
be contoured on the frequency-time plane. This frequency-time
distribution of the amplitude is designated as the Hilbert spec-
trum, H(f,t).

The EMD decomposition, essentially defined by an algo-
rithm, has received little work to assess its performance and
limitations [43]. In what follows, we show that the intuition
behind the construction of the intrinsic mode functions is to
decompose the signal into AM-FM components with narrow-
band amplitude, which will result in a small demodulation error
using the Hilbert transform.

A nonstationary real signal z(¢) can be represented as a sum
of multicomponent AM-FM signals

N
= Z ar(t) cos (¢ (t)) (10)
k=1
where ay(t) and ¢ (t) are the amplitude, assumed to be ban-
dlimited, and phase of the k" component, respectively. Equa-
tion (10) can be easily verified by letting N = 1, ¢1(t) = 0
and a;(t) = x(t). We denote by Ay (w) the Fourier transform
of ar(t) and pa, = (1/7) [;* |Ak(w)|dw the spectral absolute
moment of ay(t), assumed to be finite. The Hilbert transform of
x(t) is H[z(t)] = #(t) = =(¢) * (1/7t). The analytic signal of
x(t) is then given by

2(t) = (t) + j2 (1) (1)

Let the quadrature signal of the monocomponent z(t) =
a(t) cos(¢(t)) be defined as

z4(t) = a(t)sin (4()) .

Clearly, if the Hilbert transform of z(t) is equal to its quadrature
signal, then the Hilbert transform estimates of 7(¢) and 6(¢) are
equal to the actual information signals |a(t)| and ¢(¢). However,

= r(t)e??®.

(12)

from the Bedrosian theorem,! we know that H[a(¢)cos[¢(t))] =
a(t)H[cos[p(t)]] only if the amplitude is varying so slowly that
the frequency spectra of the envelope and the carrier waves are
disjoint. This is not true in practice. Thus, there is, in general,
a nonzero error between the Hilbert transform signal and the
quadrature signal. Let e(t) = z,(t) — &(t). The next proposition
provides an upper bound for the approximation error in the case
of a sinusoidal FM modulation.

Proposition 1: (Monocomponent AM-FM Signal With Si-
nusoidal Phase): Consider a nonstationary monocomponent
AM-FM signal z(t) = a(t) cos[¢(t)], where a(t) is bandlim-
ited with bandwidth W, and finite spectral absolute moment
ta, O(t) = wet + Bsin(wnt), with w. > wy,, W, and
B > 0 is the FM index. Let M be the highest integer such that
we > Mw,, + W. Then, we have

i e(t) =0 (13)
le(t)] <2pa Z Tn(B) < 2uae?(72)  (14)
n=M+1

where .J,, is the n'"-order Bessel function of the first kind.

Observe from (13) that an amplitude signal a(t) with a narrow
bandwidth corresponds to a higher value of M and, therefore, a
smaller error.

Corollary 1: (Multicomponent AM-FM Signal With Sinu-
soidal Phase): Consider a nonstationary multicomponent
AM-FM signal z(t) = 22;1 a(t) cos[pr ()], where ag(¢) is
bandlimited with bandwidth W}, and finite spectral absolute
moment fiq, , P (t) = we, t + Bk Sin(wim, t), with we, > Wi,
Wi, and B, > 0 is the FM index of the k" component. Let
W = maxi<g<ny Wi and M be the highest integer such that
Wep > Mwp,,, + W, forall 1 <k < N. Then, we have

i) =0 19
|<2Zum Z Tn(Br)
n=M+1
B B
< ZZuale F(-%) (16)

where J,, is the ntP-order Bessel function of the first kind.

Corollary 2: (Multicomponent AM-FM Signal With a Sum
of Harmonically Independent Periodic Functions Phase): Con-
sider a nonstationary multicomponent AM-FM signal z(¢) =
Zi\;l a(t) cos[pr(t)], where ay(t) is bandlimited with band-
width Wk, and finite spectral absolute moment 14, ; ¢r(t) =
We, t + Zl L BEmE(t), where mF (t) is periodic with angular
frequency wk Assume that w,, > w! , Wy, foralll <[ <
L, and /3[ > 0 LetW = max1<k<N Wk and M be the highest
integer such that w., > M Z = wk , + W. Then, we have

]\}lnl e(t) =0

|<2Zuak Z

ni=M+1

(e}

>

np=M+1

¢ (0F)

7)

kl(ﬂf)

IThe Bedrosian theorem states that the Hilbert transform for the product of
two functions f(t) and A(t) can be written as H[f(t)h(t)] = f(t)H[h(t)]
only if the Fourier spectra for f(¢) and h(t) are disjoint in frequency domain,
and the frequency range of the spectrum for h(t) is higher than that of f(t).
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Fig.3. Row l: Amplitude-frequency-time distribution using the Hilbert transform (amplitudes depicted in alogarithmic scale). Row 2: Index of randomness of the sig-
nalsinrow 1. (c) and (d) display the Hilbert spectrum of the coding and noncoding segments of the Human gene NOC2L (GI:89161185), respectively. (a) sin(27/5);
(b) Gaussian white noise; (c) coding sequence; (d) noncoding sequence; (e) IR of (a); (f) IR of (b); (g) IR of (c); (h) IR of (d).

where ¢k (3F) are the Fourier coefficients of e/ (), for 1 <
k‘SNandlglgL.

Since every nonperiodic signal can be asymptotically approx-
imated by a linear combination of harmonically independent pe-
riodic signals, Corollary 2 can be applied to a wide class of non-
periodic phases. Proposition 1 and Corollaries 1 and 2 show that
narrowband multicomponent AM-FM signals have an asymp-
totically small demodulation error, which decreases exponen-
tially with the FM index. Therefore, narrowband nonstationary
signals can be reliably represented in the frequency-time space
using the Hilbert spectrum. Having established the theoretical
ground for the EMD decomposition, we use the Hilbert spec-
trum to define the index of randomness.

B. Index of Randomness

We define the index of randomness, 7 R(t), of a signal at in-
stant ¢, as the weighted variance or spread of the spectrum at
time ¢. Therefore, for a pure sine wave, the spectrum is a delta
function and the variance is zero, whereas for white noise, the
spectrum is flat and the variance is infinite. Analytically

N Z max{a f7 )} (f_ll'(f))

where a(f,t) is the amplitude of the Hilbert spectrum
at frequency f and time ¢, N is the maximum number
of frequency cells, and u(t) = meangery) {f}, where
I(t) = {f : a(f,t) # 0}.Fig. 3 depicts the Hilbert spectrum
and the index of randomness for different signals. We once again
observe that 1) the coding and noncoding regions are not random,
and 2) the coding regions are more random than the noncoding
regions. The confusion and controversy about the randomness
of coding DNA could be due to the fact that coding segments,
though exhibit long-range correlations, are in fact closer on
average to random sequences than noncoding segments. The
stationary analysis conducted thus far in the literature was unable
to fine-tune this complex nature of the correlations of coding
and noncoding DNA.

(18)

V. CONCLUSION

We have introduced new nonstationary methods to study
the correlation properties in genomic sequences, and defined
a quantitative measure of the degree of randomness. We find
that coding and noncoding DNA sequences exhibit long range
correlations, as attested by an evolutionary 1/f spectrum. So,
DNA correlations are much more complex than power laws with
a single scaling exponent: actually the exponent of such power
laws are different for different scales; thus, a clear scaling does
not seem to exist at all. Furthermore, to quantify the statistical
processes further, an index is introduced to give a quantitative
measure of how far the process deviates from a random white
noise. The higher the index value, the more random is the process.
We find that coding segments are “closer,” on average, to random
sequences than noncoding segments. We have also investigated
the theoretical foundations of the empirical mode decomposition,
which became an effective tool for frequency-time analysis.

APPENDIX

Proof of Proposition 1
a(t) =a(t) cos (¢(1))
=a(t) cos [w.t + Fsin(w,t)]
a(t)R I:ejw,tejﬁ Sin(u)mt):|

+oo
edwet Z I, (ﬂ)ejnwmt

n=—oo

=a(t)R

+oo

=a(t) Y Ju(B)cos[(we + nwm )]

. W
= |— /A(w)ej“tdw
2m

W

+oo
x| D Tul)

cos [(we + nwpm)t]
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where R(z) denotes the real part of z. After developing the
above expression using Euler formula and exhanging the order
of the summation and the integral, we obtain

Hia®)] =alt) S Tu(B)sin[(we + nwn)

n=—0oo

—(M+1)

— 2a(t) Z Jn(B) sin [(we + nwpy, )t]
= a(t) sin (4(t))

—(M+1)
—2a(t) Y Ju(B)sin [(we + nwm)t].
Therefore
—(M+1)
le(t)] <2a(t) Y [a(B)]
=2a(t) Y |Ju(B)]
n=M+1
<24 Z |Jn(ﬂ)|
n=M+1

Since the series >.7°° _J, () converges, we obtain (13).
Equation (14) can be easily verified as follows:

= e ()
n:%,:ﬂ ) = n:%:ﬂ ,CZ:; (k=) K

e e g2k+n
5 e (i)

n=M+1 k=0
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The proofs of Corollaries 1 and 2 can be obtained directly
from the proof of Proposition 1.
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