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Abstract— We explore the hypothesis of muscle synergies to
estimate the neural drive from the surface myoelectric signal.
Once estimated, the neural drive can be used to control upper-
extremity myoelectric prosthesis. Commonly employed pattern
classification systems have certain limitations, e.g., inherent
discrete nature, finite movement classes and limited degrees-
of-freedom. We propose a novel framework based on the state
space modeling and the hypothesis of muscle synergies. The
problem is formulated in the state space framework in a novel
way, where the neural drive is modeled as the hidden state of
the system. A continuous stream of the neural drive (the hidden
state) is estimated using a modified form of the Kalman filter.
Preliminary experimental results are promising and confirm
the applicability of the proposed framework.

I. INTRODUCTION

The pattern classification algorithms have been success-
fully employed for upper-extremity myoelectric prosthesis
control problem [1]. Such algorithms are based on the
assumption that there exist distinguishable and repeatable
signal patterns among different types of muscular activations
[2]. Myoelectric signals are recorded from relevant upper-
extremity muscles and segmentation is performed to form
analysis windows. Representative features are extracted from
analysis windows and a classification algorithm is trained
using supervised learning. Once trained, the classification
algorithm is ready to be used in real-time for movement
classification [3]. Most of the classifiers reported in the
literature are capable of performing classification of more
than four movements with classification accuracies in the
range of 90% or more [4]. However, the clinical viability of
pattern classification schemes do not commensurate with the
reported classification accuracies [2], [5].

The central nervous system (CNS) employs complex cir-
cuitry of spinal cord pathways to activate or relax relevant
muscles in a continuous fashion to generate smooth and
accurate movements. It is important to note that all quantities
of interest related to such movements (i.e., the myoelectric,
kinematic and kinetic signals) are continuous quantities.
However, when the problem is formulated in the pattern
classification domain, a discrete decision scheme results,
i.e., based on the training and available myoelectric data,
the classification algorithm provides a single decision about
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the movement (may be called “neural drive”) at discrete
time steps. Therefore the decision about the movement is
subsequently passed on to the control mechanism at discrete
time points resulting in an unnatural and jerky movement
[2]. Similarly for the training of the classification algorithm,
a finite set of movements is identified by the experimenter.
At the most, 12 movements are reported in the literature
[4]. The classification algorithm will be able to classify
only movements for which it has been trained. Therefore,
the prosthesis will be able to perform only a limited set
of movements for which the classification algorithm was
trained. Number of classes can be increased at the expense
of a complex and computationally expensive classifier. How-
ever, the limitation of real-time decision making limits the
applicability of such an approach. Furthermore, a single de-
cision from the pattern classification system activates only a
single degree-of-freedom (DOF) movement, i.e., the scheme
implements a sequential control rather than simultaneously
activating multiple DOFs. This is in contrast to human motor
control where multiple DOFs are simultaneously activated as
a routine [2].

How the CNS generates, coordinates, controls and exe-
cutes voluntary movements has been a long-standing ques-
tion. It is hypothesized that the CNS may employ certain
building blocks to generate complex movements, called
the “Muscle Synergies”. Specifically, muscle synergies have
been proposed as discrete elements which can be combined
to produce original motor solutions [6]. By definition, muscle
synergies are fixed relative levels of activation of different
muscles [7]. We propose to use the hypothesis of muscle
synergies to estimate the neural drive in upper-extremity
voluntary movements.

This paper presents preliminary results of our ongoing
research, focused on the investigation of the hypothesis of
muscle synergies and state space modeling for estimation of
neural drive using the surface myoelectric signal.

II. STATE SPACE MODEL OF THE PROBLEM

We propose to model the “neural drive” as the unknown
hidden state in our state space scheme. Systems dynamics are
modeled using the random walk model, while the hypothesis
of muscle synergies is used to find the system observation
model. Subsequently, we employed a modified form of the
Kalman filter to estimate the hidden state, i.e., the neural
drive. A non-negativity constraint was forced on the estima-
tion algorithm due to physiological reasons, i.e., the neural
drive is a nonnegative quantity.



A. State Space Model

For a discrete linear system, we have

x(k + 1) = Fx(k) +Gu(k) + w1(k), (1)
y(k) = Hx(k) + w2(k), (2)

where, F , G and H are known matrices of appropriate
dimensions and represent linear system dynamics, input-state
coupling, and output-state coupling respectively, x(k) is the
state, u(k) is the input, y(k) is the output, w1(k), and w2(k)
are system and observation noise respectively.

1) System Dynamics Model: The system dynamics model
captures the future evolution of the state. We assume no
a priori knowledge about evolution of system state and
therefore propose a random walk model. From (1), we get

x(k + 1) = x(k) + w1(k). (3)

2) System Observation Model: The observation model is
derived from the hypothesis of muscle synergies. The muscle
synergy matrix W is a m×n matrix whose columns are the
muscle synergies with m number of muscles and n number
of synergies. By definition, we have

v(k) = W × h(k), (4)

where the vector v(k) specifies activation levels of all m
muscles, h(k) is an n-element neural drive vector at time k
and ‘×’ represents the matrix product. The muscle synergy
matrix defines a linear mapping between the state (neural
drive) and the output (myoelectric data). The non-negative
matrix factorization (NMF) algorithm is used to estimate
the muscle synergy matrix W from the processed surface
myoelectric data [8]. Once the muscle synergy matrix W is
known, we use it as an observation matrix in our state space
representation. From (2), we get

y(k) = Wx(k) + w2(k). (5)

B. The Kalman Filter

Kalman filter is the minimum mean-square estimator for
linear systems with additive Gaussian noise, where state
estimate is found by propagating the mean and variance of
the state [9]. For the problem under investigation, we propose
to model system noise w1(k) and observation noise w2(k)
with a Gaussian process. This assumption seems reasonable
as the evolution of the system state and observations over
time are centered around a mean value. Some relevant
assumptions about the system noise w1(k) and observation
noise w2(k) are,

w1(k) ∼ N (0, Qk),

w2(k) ∼ N (0, Rk),

E[w1(k)w1(j)] = Qkδkj ,

E[w2(k)w2(j)] = Rkδkj ,

E[w1(k)w2(j)] = 0, (6)

where δ is the Kronecker delta function with δkj = 1 for
k = j and zero otherwise.

The Kalman filter performs recursive estimation of the
unknown state and is there much suited for real-time ap-
plications, such as the neural drive estimation. Kalman filter
recursion can be described by the prediction and the filtering
part [9]. Using system dynamics and observation models
given in (3) and (5), we have

[Prediction]
x(k|k − 1) = x(k − 1|k − 1),

V (k|k − 1) = V (k − 1|k − 1) +Qk. (7)
[Filtering]
K(k) = V (k|k − 1)WT

k [WkV (k|k − 1)WT
k +Rk]−1,

x(k|k) = x(k|k − 1) +Kk[y(k)−W (k)x(k|k − 1)],

V (k|k) = [I −K(k)W (k)]V (k|k − 1), (8)

where K(k) is the Kalman gain and V (k|.) is the state
covariance matrix. Given initial conditions, i.e., x(0|0) and
V(0|0), the Kalman filter recursively estimates the state
vector.

C. The State-Constrained Kalman Filter

In its original form the Kalman filter does not incorporate
any prior available information about the unknown state into
its estimate. However, the filter can be modified to do so
[10]. In our proposed framework, there is a physiological
constraint of non-negativity on the state vector x(k), i.e.,
the neural drive cannot be a negative quantity. Various
approaches have been adopted to include constraints into
the state estimation problem, i.e., model reduction, perfect
measurement, probability distribution function truncation and
the estimate projection [10]. We used the estimate projection
approach and projected the estimated state vector onto a non-
negative sub-space. Given the state estimate x̂, we project it
onto a non-negative space to get x̃.

x̃ = argmin
x̃

(x̃− x̂)T (x̃− x̂) such that x̃ � 0, (9)

where � implies element-wise inequality. The problem in (9)
is a convex optimization problem and standard optimization
routines can be used to find the optimal solution.

III. METHODS

The study received approval from the Institutional Review
Board (IRB) of the University of Arkansas at Little Rock.
We identified two distinct groups of movements for our
data collection experiment, i.e., movements performed by
the hand, and by the wrist. Hand movements included three
types of grasps, i.e., lateral grasp, cylindrical grasp, and
tripod grasp, and two other movements which included hand
open and index finger point [4]. While the wrist movements
included wrist pronation and supination, ulnar and radial
deviation, and wrist flexion and extension. Keeping in view
the selected set of movements, we identified physiologi-
cally relevant muscles for myoelectric data recording which
included muscle pronator teres (PT), muscle flexor carpi
radialis (FCR), muscle palmaris longus (PL), muscle flexor
carpi ulnaris (FCU), muscle brachioradialis (BR), muscle
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Fig. 1. Placement of electrodes around the forearm on anterior and posterior
sides.

extensor carpi radialis (ECR) muscle extensor digitorum
communis (EDC), and muscle extensor carpi ulnaris (ECU).
Fig. 1 shows locations of these muscles in the forearm from
both anterior and posterior sides.

A. Myoelectric Data Collection

A Noraxon (Noraxon U.S.A. Inc, Scottsdale, Arizona)
TeleMyo Direct Transmission System (DTS) was used to
record the myoelectric data. Eight wireless probes were
used to record and transmit data at a sampling rate of
1500 Hz. Eight disposable, self-adhesive silver/silver chlo-
ride (Ag/AgCl) snap electrodes with two circular conductive
areas is of 1 cm each and an inter-electrode distance of 2
cm were used. Muscle identification was performed using
palpation and electrodes were placed over the belly of the se-
lected muscle. Quality of myoelectric signals was monitored
to ensure correct muscle identification. Myoelectric signals
were recorded using the Noraxon software (MyoResearch
XP) and stored on the hard disk for later processing. All off-
line data processing was done in Matlab (Version 7.12.0.635,
R2011a, The MathWorks, Natick, MA).

B. Experimental Protocol

Before start of the data collection experiment, the partici-
pant was sitting comfortably on a chair. Initial/rest position of
the arm was defined as: the dorsopalmar axis pointing inside
parallel to coronal plane (palm facing to the medial side of
the body with forearm parallel to the ground), elbow flexed
at 90o and arm abducted 10o. Forearm was supported at two
places, i.e., under the styloid process of the ulna and the
distal end of the humerus (the elbow joint). A graphical user
interface (GUI) based software was used to provide visual
and auditory clues to participants for guiding through the data
collection process. A single trial consisted of one repetition
of each movement for a duration of 5 seconds. There was a
short break of 4 seconds between consecutive movements.
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(a) Cross-validation results.
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(b) Muscle synergies.

Fig. 2. (a) The coefficient of determination R2 for cross-validation in order
to select adequate number of muscle synergies. Four muscle synergies were
sufficient to explain more than 90% variability in the data. (b) A set of four
representative muscle synergies extracted from the myoelectric data.

Between every two trials, there was an additional break,
duration of which was left at the discretion of the participant.
Participants were instructed to start the movement from
defined initial (rest) position, stay in the prescribed posture
(shown in the GUI) and then return back to initial position
upon visual and auditory clue.

C. Myoelectric Data Processing

Root mean square (RMS) of the reocrded myoelectric data
was calculated for each 250 ms window. This value repre-
sented activation level of all muscles under investigation, i.e.,
v(k) in (4). The matrix V was formed by placing v(k) as
columns of V for k = 1, . . . ,K, where K is the total number
of windows. Once matrix V is formed, the NMF algorithm
was used to estimate the muscle synergy matrix W [8].

IV. EXPERIMENTAL RESULTS

In this section we present preliminary experimental results.
First we present results related to extraction of muscle
synergies and later for the state-constrained Kalman filter.

A. Extraction of Muscle Synergies

We used the NMF algorithm and a five-fold cross-
validation scheme for extraction of muscle synergies from
the myoelectric data. Cross-validation was performed using
modified NMF algorithm, where the extracted muscle syn-
ergies matrix W is supplied to the NMF algorithm with
new data Vnew (not used to extract muscle synergies) and
an estimate of Hest is found. The newly estimated matrix
Hest is used with already extracted muscle synergy matrix
W to find the estimated data matrix Vest using the relation
Vest = W ×Hest. For reporting the cross-validation results
we use the coefficient of determination R2,

R2 = 1−

∑
i

(yi − ŷi)2∑
i

(yi − ȳ)2
, (10)

where ŷi is the estimate of yi and ȳ = 1
n

∑
i

yi. It is evident

from Fig. 2(a) that four muscle synergies explain more than
90% data variability. Fig. 2(b) presents four extracted muscle
synergies.
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Fig. 3. Neural drive estimation using the state-constrained Kalman filter.
The ground truth and estimated neural drive are normalized.

B. The State-Constrained Kalman Filter

The state-constrained Kalman filter was employed to es-
timate the hidden state, i.e., the neural drive. The NMF
algorithm was used to extract muscle synergies matrix W and
the neural drive matrix H from the processed myoelectric
data, the matrix V . The synergy matrix W was used as the
observation matrix in (5), while the neural drive matrix H
was stored as the ground truth. As we have four muscle
synergies, the state vector consists of four variables, i.e., one
coefficient for each of the four synergies. Processed myoelec-
tric data was provided to the state-constrained Kalman filter
for estimation of the state. In Fig. 3, we provide estimated
neural drive for 100 time-points (each time point represents
a 250 ms window) and the ground truth. The state vector was
reconstructed with R2 = 97.17%. After estimating the neural
drive using the state-constrained Kalman filter, we estimate
muscle activations also, using the estimated neural drive and
muscle synergy matrix. In Fig. 4, we present reconstruction
of normalized activations of all eight muscles for 200 time-
points with R2 = 97.07%.

It is evident from Fig. 3 and Fig. 4 that the state-
constrained Kalman filter has successfully been able to
estimate the neural drive and reconstruct muscle activations.
However, the whole data processing was done in off-line
mode. The next goal of the research is to perform the state
tracking (i.e., neural drive estimation) in real time.

V. CONCLUSION

We proposed a novel framework for estimation of neural
drive from the surface myoelectric signal in the case of
upper-extremity movements. The whole problem was mod-
eled in the state space framework with the system dynamics
given by the random walk and observation dynamics by
the hypothesis of muscle synergies. Modified form of the
Kalman filter with non-negativity constraint was successfully
employed to find an estimate of the neural drive. Preliminary
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Fig. 4. Reconstruction of normalized muscle activations using the neural
drive estimate from the state-constrained Kalman filter.

results were also presented which confirmed the applicability
of the proposed scheme.
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