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Abstract—In this paper, we develop a spatially-variant (SV) mathematical morphology theory for gray-level signals and images in the

Euclidean space. The proposed theory preserves the geometrical concept of the structuring function, which provides the foundation of

classical morphology and is essential in signal and image processing applications. We define the basic SV gray-level morphological

operators (that is, SV gray-level erosion, dilation, opening, and closing) and investigate their properties. We demonstrate the ubiquity

of SV gray-level morphological systems by deriving a kernel representation for a large class of systems, called V-systems, in terms of

the basic SV gray-level morphological operators. A V-system is defined to be a gray-level operator, which is invariant under gray-level

(vertical) translations. Particular attention is focused on the class of SV flat gray-level operators. The kernel representation for

increasing V-systems is a generalization of Maragos’ kernel representation for increasing and translation-invariant function-processing

systems. A representation of V-systems in terms of their kernel elements is established for increasing and upper semicontinuous

V-systems. This representation unifies a large class of spatially-variant-linear and nonlinear systems under the same mathematical

framework. The theory is used for analyzing special cases of signal and image processing systems such as SV order rank filters and

linear-time-varying systems. Finally, simulation results show the potential power of the general theory of gray-level SV mathematical

morphology in several image analysis and computer vision applications.

Index Terms—Spatially variant mathematical morphology, gray-level morphology, upper semicontinuous functions, adaptive order-

statistic filters, linear-time-varying systems.

Ç

1 INTRODUCTION

ORIGINALLY, the mathematical morphology theory was
developed for translation-invariant transformations of

binary images (or two level), that is, operators, which are
invariant under the Euclidean group of translations [1], [2].
The theory has subsequently been extended to translation-
invariant transformations of gray-level (or multilevel)
images by Sternberg [3], Serra [2], and Maragos [4], [5]. A
translation-invariant gray-level transformation is defined to
be invariant under horizontal (space or time in 1D)
translations and vertical (gray-level or signal values)
translations. In mathematical morphology, sets are used as
mathematical representations of binary signals and images,
whereas functions represent gray-level signals. This char-
acterization induces a similar classification for systems1 into

either function-processing (FP) systems, which accept as
inputs and produce as outputs multilevel signals, or set-
processing (SP) systems, whose inputs and outputs are
binary signals [5]. The extension of translation-invariant
binary morphology to the gray-level case was first derived
based on the set representation of functions. There are two
different but equivalent approaches to represent a function
by a set or an equivalent class of sets: the umbra approach
and the threshold sets approach. The umbra approach,
which was introduced by Sternberg [3], relies on the fact
that the points on and below the graph of a function
correspond to a set representation of the function in a higher
dimensional space. The threshold sets method, introduced
by Serra [2], represents a function by an equivalent class of
sets, called cross sections or threshold sets, by thresholding
it at successive levels. Although the umbra approach has a
nice geometrical interpretation of the morphological gray-
level operations in terms of their binary counterparts, it may
be the source of many mistakes if it is not handled properly
[6], [7]. The problem with the umbra approach is that, in
general, the union of a collection of umbras is not an umbra
and, consequently, the binary dilation of two umbras is not
necessarily an umbra again [7]. However, these technical
difficulties vanish if we restrict the space to the set of
umbras of upper-semicontinuous functions.2 Both Serra [8]
and Maragos and Schafer [9] restrict their presentation of
the extension of set operators to function operators to upper-
semicontinuous functions. This restriction is not necessary if
one wants to construct gray-level operators from set
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1. In this paper, we will use interchangeably “operator” and “system” to
denote processes that accept as inputs and produce as outputs multi-
dimensional signals.

2. Upper-semicontinuity is a property of functions that is weaker than
continuity. f is upper-semicontinuous if for all x0 2 E, lim sup

x!x0

fðxÞ� fðx0Þ.
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operators by thresholding. However, the threshold sets
method is limited to systems, which commute with thresh-
olding (for example, flat structuring functions).

The extension of Matheron’s kernel representation theo-
rem for translation-invariant set-processing systems [1] to
function-processing systems was carried out by Maragos [4],
[5]. He showed that every increasing and translation-
invariant function-processing system can be represented as
the supremum (respectively, infimum) of function-proces-
sing erosions (respectively, dilations). Furthermore, Maragos
showed that the kernel representation of function-processing
systems is redundant in the sense that a smaller subset of the
kernel is sufficient for the representation of the system.
Subsequently, he provided sufficient conditions for transla-
tion-invariant function-processing systems to admit a basis
representation [4], [5]. Heijmans [7], [10] relaxed the transla-
tion-invariance assumption by studying function-processing
systems that are invariant under horizontal translations, the
so-called H-operators. However, so far, no comprehensive
mathematical framework has been presented to establish the
foundations of spatially-variant (SV) gray-level mathemati-
cal morphology in the Euclidean space.

Following Serra’s work in [2, Chapters 2, 3, and 4], we
elaborated in [11] on the general theory of spatially-variant
mathematical morphology in the Euclidean space for binary
signals. This theory captures the geometrical interpretation of
the structuring element (SE), which is crucial in signal and
image processing applications. This paper extends the theory
of spatially-variant mathematical morphology presented in
[11] to the gray-level case. Specifically, we consider the class of
V-systems, which are function-processing systems that are
spatially-variant and spatially invariant under gray-level
translations. In other words, the structuring function varies in
space independently of the signal values. V-systems have
been used extensively in adaptive filtering applications [12],
[13], [14], [15], [16], [17], [18], [19], [20]. Moreover, morpho-
logical V-systems have an elegant geometric interpretation,
which is consistent with their translation-invariant counter-
parts. In this paper, we define the basic spatially-variant
function-processing (SVFP) morphological operators (that is,
SVFP erosion, dilation, opening, and closing) and investigate
their properties. We show that the basic properties of
translation-invariant function-processing morphological sys-
tems [21] can be transposed to SVFP systems. Special focus is
devoted to the class of V-systems, which commute with
thresholding. The class of translation-invariant systems,
which commute with thresholding, has been extensively
studied in the literature, under many different names.
Heijmans [7] calls them flat operators, Maragos [4], [5] refers
to them as function-set-processing systems, and Wendt et al. [22]
denote themby stack filters. Inourpresentation,wewill refer to
V-systems, which commute with thresholding, as spatially-
variant function-set-processing (SVFSP) systems, as this
nomenclature is more appealing to the signal and image
processing community. We demonstrate the ubiquity of the
basic SVFP and SVFSP morphological systems by providing a
SVkernelrepresentationforV-systems.Specifically,weprove
that every increasing V-system can be represented as the
supremum (respectively, infimum) of SVFP erosions (respec-
tively, SVFP dilations). The latter kernel representation is a
generalization of Maragos’ kernel representation for increas-
ingandtranslation-invariant function-processingsystems[4],
[5]. Furthermore, based on Maragos’ development of the basis

representation for translation-invariant FP systems [4], [5], we
provide sufficient conditions for the existence of a basis
representation for V-systems. Examples, which are provided
throughout the paper, demonstrate that the proposed SV
gray-level mathematical morphology unifies different meth-
ods in adaptive gray-level morphology such as adaptive
neighborhood morphology [18], [19] and vertically invariant
morphology[17]. Ourgoal is to provide asoundmathematical
framework to unify current and future research in spatially-
variant morphological signal processing and to provide the
mathematical tools needed for the design and analysis of
spatially-variant morphological filters in image analysis and
computer vision applications.

This paper is organized as follows: In Section 2, we define
the basic SVFP and SVFSP morphological systems. Their
properties are investigated in Appendix A. In Section 3, we
establish a kernel representation for increasing V-systems
and a basis representation for increasing and upper-semi-
continuous V-systems. Section 4 illustrates the theory
through the study of two adaptive systems: SV order-statistic
filters and linear-time-varying (LTV) systems. Simulation
results, in Section 5, show the power of the proposed theory of
spatially-variant gray-level morphology in denoising, multi-
scale filtering, and segmentation. Finally, a summary of the
results of this paper is provided in Section 6.

The proofs of all theoretical results that are new contribu-

tions in this paper have been inserted in the Appendix.

2 SPATIALLY-VARIANT FUNCTION-PROCESSING

BASIC MORPHOLOGICAL SYSTEMS

2.1 Preliminaries

In this paper, we consider the space E ¼ IRm or ZZm for some
m � 1. The power set of E will be denoted by PðEÞ. A gray-
level signal is a function from E to a gray-level space T ,
where T ¼ IR, or ZZ. The collection of such functions is
denoted as FuncðEÞ. The least and greatest elements of
FuncðEÞ are denoted by O and I : These are the functions
that are identically equal to �1 and þ1, respectively. An
important subset of FuncðEÞ is the collection of upper-
semicontinuous functions [23], [9], denoted by USCðEÞ. In
this paper, we will only consider upper-semicontinuous
functions. Elements of USCðEÞ will be denoted by lower-
case letters, for example, f and g. Set-processing systems
will be denoted by lowercase Greek letters, for example,  
and �, whereas function-processing systems will be denoted
by uppercase Greek letters, for example, � and �. “¼),(),
8, 9” denote respectively “implies,” “if and only if,” “for
all,” and “there exist(s).” The support of a function f is
defined as SptðfÞ ¼ fx 2 E : fðxÞ 6¼ �1g. The umbra U ½f �
of a function f is defined by

U½f� ¼ fðx; yÞ 2 E� T : y � fðxÞg: ð1Þ

The threshold set of the function f at level t is given by

X tðfÞ ¼ fx 2 E : fðxÞ � tg: ð2Þ

The reflected function �f of a function f is defined as
�fðxÞ ¼ fð�xÞ, 8x 2 E. The horizontal (or spatial) translate
fa of a function f by a 2 E is defined as faðxÞ ¼ fðx� aÞ,
8x 2 E. The vertical translate f þ b of the function f by b 2 T
is defined by ðf þ bÞðxÞ ¼ fðxÞ þ b, 8x 2 E. The translation of
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a function f by the vector ða; bÞ 2 E� T is defined as
fða;bÞðxÞ ¼ fðx� aÞ þ b, 8x 2 E. The counterpart of the set
complementation for functions is the function negation,
defined by f�ðxÞ ¼ �fðxÞ, 8x 2 E. An order is imposed on
USCðEÞ by setting f � g if and only if fðxÞ � gðxÞ, 8x 2 E.
The latter order induces an order on the class of FP systems by
setting �1 � �2 if and only if �1ðfÞ � �2ðfÞ, 8f 2 USCðEÞ._
and ^ denote the supremum and infimum operations,
respectively. The counterpart of the dual operator for an FP
system � is the negative function-processing system ��,
defined by ��ðfÞ ¼ ��ð�fÞ, 8f 2 USCðEÞ. In this paper, we
consider only nondegenerate FP (respectively, SP) systems;
that is, �ðIÞ ¼ I (respectively,  ðEÞ ¼ E), and �ðOÞ ¼ O
(respectively,  ð;Þ ¼ ;).

2.2 Spatially-Variant Function-Processing
Morphological Systems

The spatially-variant structuring function � is a mapping
from E to USCðEÞ, which associates to each point x 2 E a
upper-semicontinuous structuring function �ðxÞ. The trans-
posed structuring function mapping is given by

½�0ðxÞ�ðuÞ ¼ ½�ðuÞ�ðxÞ; 8x; u 2 E: ð3Þ

In the translation-invariant case, the structuring function
mapping is the horizontal translation operator of a fixed
structuring function g; that is, �ðxÞ ¼ gx, 8x 2 E. Then,
½�0ðxÞ�ðuÞ¼½�ðuÞ�ðxÞ¼ guðxÞ ¼ gðx� uÞ ¼ �gðu� xÞ ¼ �gxðuÞ,
8x, u 2 E. Thus, �0ðxÞ ¼ �gx, 8x 2 E. That is, the transposed
structuring function mapping reduces to the translation of the
reflected function �g. Therefore, the definition of the SV
structuring function is consistent with the translation-
invariant case. This analogy might give the impression that
the structuring function mappings �and�0 are the same up to
a symmetry. This is not true in general. For example, consider
the structuring function mapping, which associates to each
point in space a line through the origin, with varying slope.
Then, the transposed structuring function mapping assigns a
hyperbola function at each point in space.

An order on the mappings from E to USCðEÞ is induced
by the order on the space USCðEÞ; that is, �1 � �2 if and
only if �1ðxÞ � �2ðxÞ for every x 2 E. We say that the
mapping � is continuous if for every convergent sequence
fxngn2IN 2 E with limit point x 2 E, the sequence of upper-
semicontinuous functions f�ðxnÞgn2IN converges toward
the upper-semicontinuous function �ðxÞ in the sense
specified by Serra [2, Theorem XII-2, p. 429]. In the
remainder of this paper, the structuring function mapping
� is assumed to be continuous from E to USCðEÞ, and the
support of �0ðxÞ is assumed to be compact for every x 2 E.3

Definition 1. The spatially-variant function-processing (SVFP)
erosion is given by

E�ðfÞðxÞ ¼ ^
u2Sptð�ðxÞÞ

ffðuÞ � ½�ðxÞ�ðuÞg ð4Þ

¼ _fv 2 T : �ðxÞ þ v � fg; ð5Þ

if Sptð�ðxÞÞ � SptðfÞ, and �1 otherwise.

Definition 2. The spatially-variant function-processing dilation
is given by

D�ðfÞðxÞ ¼ _
u2SptðfÞ\Sptð�0ðxÞÞ

ffðuÞ þ ½�0ðxÞ�ðuÞg ð6Þ

¼ ^fv 2 T : ��0ðxÞ þ v � fg; ð7Þ

8f 2 USCðEÞ, 8x 2 E.

The SVFP erosion and dilation can be derived from their
SVSP counterparts by characterizing the upper-semicontin-
uous functions in terms of their umbras [24].

The SVFP opening and closing are defined in the
following obvious way:

Definition 3. The spatially-variant function-processing mor-

phological opening is given by

��ðfÞ ¼ D�ðE�ðfÞÞ ¼ _f�ðuÞ þ v � f ; ðu; vÞ 2 E� T g: ð8Þ

The spatially-variant function-processing morphological clos-

ing is given by

��ðfÞ ¼ E�ðD�ðfÞÞ¼^f�0ðuÞþv � f ; ðu; vÞ 2 E�T g: ð9Þ

Observe that (8) and (9) have a geometric interpretation that
is analogous to their translation-invariant counterparts [8].

The properties of the SVFP erosion, dilation, opening,
and closing are investigated in Appendix A. In particular,
we show that they satisfy the main properties of their
translation-invariant counterparts [10], [21].

2.3 Spatially-Variant Function-Set-Processing
Systems

Given a set A 2 PðEÞ, we denote by CA the characteristic
function of A; that is, CAðzÞ ¼ 1 if z 2 A, and CAðzÞ ¼ 0 if
z 62 A. To each function-processing system �, we associate its
set-processing (SP) system �, defined as �ðCAÞ ¼ C�ðAÞ. We
say that � obeys the threshold superposition principle if [5]

½�ðfÞ�ðxÞ ¼ _ft 2 T : x 2 �½X tðfÞ�g ðf 2 USCðEÞÞ: ð10Þ

Thus, a function-processing system satisfying (10) transforms
a function f by decomposing it into its cross sections and
transforming each cross section by the corresponding SP
system. Such a system is called a spatially-variant function-
set-processing (FSP) system by Maragos [5]. A sufficient
condition for an FSP system to obey the threshold super-
position property is to commute with thresholding [5], that is,

�½X tðfÞ� ¼ X t½�ðfÞ�; ðt 2 T ; f 2 USCðEÞÞ: ð11Þ

The above condition allows us to analyze an function-
processing system by looking at it as a set-processing
system, which is simpler to analyze.

The following proposition shows that if E�ðXÞ (respec-
tively, D�ðXÞ) is the SVSP erosion (respectively, dilation) of
the set X 2 PðEÞ by the SV SE mapping � : E! PðEÞ [11],
and f 2 USCðEÞ, then the sets E�ðX tðfÞÞ (respectively,
D�ðX tðfÞÞ) satisfy the conditions to be the threshold sets of a
function E�ðfÞ (respectively, D�ðfÞÞ, defined as the SVFSP
erosion (respectively, dilation) of f by the SE mapping �:

E�ðfÞðxÞ ¼ ^
u2�ðxÞ

fðuÞ ðf 2 USCðEÞ; x 2 EÞ; ð12Þ

and

D�ðfÞðxÞ ¼ _
u2SptðfÞ\�0ðxÞ

fðuÞ ðf 2 USCðEÞ; x 2 EÞ: ð13Þ

BOUAYNAYA AND SCHONFELD: THEORETICAL FOUNDATIONS OF SPATIALLY-VARIANT MATHEMATICAL MORPHOLOGY PART II: GRAY-... 3

3. If Sptð�Þ is compact, and Sptð�ðxÞÞ is compact for all x 2 E, then
Sptð�0ðxÞÞ is compact for all x 2 E.



Proposition 1. We have

E�ðX tðfÞÞ ¼ X t½E�ðfÞ� ðf 2 USCðEÞÞ ð14Þ

and

D�ðX tðfÞÞ ¼ X t½D�ðfÞ� ðf 2 USCðEÞÞ: ð15Þ

Notice that if the mappings � and �0 have finite range (that
is, j�ðxÞj <1, and j�0ðxÞj <1, 8x 2 E, where jXj denotes
the cardinality of the set X), then the SVFSP erosion and
dilation, as defined in (12) and (13), respectively, corre-
spond to the adaptive minimum and maximum operators.

The SVFSP erosion and dilation of f by the SV structuring
element mapping � are special cases of the SVFP erosion and
dilation, as defined in (4) and (6), corresponding to the choices
of the structuring element mapping ½�ðxÞ�ðuÞ ¼ 0, 8u 2
Sptð�ðxÞÞ, 8x 2 E. In this case, we say that the structuring
function mapping � is flat. Observe that a flat structuring
function mapping � is represented by its region of support
�ðxÞ ¼ Sptð�ðxÞÞ, 8x 2 E.

2.4 Examples

2.4.1 Translation-Invariant Gray-Level Morphology

[21], [25]

Consider a function g 2 USCðEÞ. We showed in Section 2.2
that the translation-invariant gray-level morphology corre-
sponds to a structuring function mapping �ðxÞ ¼ gx and
�0ðxÞ ¼ �gx, 8x 2 E. In particular, Sptð�0ðxÞÞ is compact if and
only if SptðgÞ is compact [9]. The SVFP erosion and dilation, as
defined in (4) and (5), and (6) and (7), respectively, reduce to

f 	 gðxÞ ¼ ^
u2SptðgÞþx

ffðuÞ � gðu� xÞg ð16Þ

¼ _fv 2 T : gx þ v � fg; ð17Þ

and

f 
 gðxÞ ¼ _
u2½SptðfÞ\Sptð�gÞþx�

ffðuÞ þ gðx� uÞg ð18Þ

¼ ^fv 2 T : �ð�gÞx þ v � fg: ð19Þ

Equations (16) and (17), and (18) and (19) are the well-known
translation-invariant gray-level erosion and dilation, respec-
tively [9], [10]. A similar derivation can be used for showing
that the SVFP opening and closing, as defined in (8) and (9),
also reduce to their translation-invariant counterparts. There-
fore, the translation-invariant gray-level morphology is a
special case of the proposed spatially-variant gray-level
morphology.

2.4.2 Gray-Level Adaptive Neighborhood Morphology

[18], [19]

Consider E ¼ IR2. Let h : IR2 ! IR be a criterion mapping
such as luminance, contrast, and thickness. Let m > 0. For
each x 2 E, define the connected set V h

mðxÞ by V h
mðxÞ ¼

fy : jhðyÞ � hðxÞj � mg. Choose the flat structuring function
mapping � with the following region of support �:

�ðxÞ ¼
[
z2E

fV h
mðzÞ : x 2 V h

mðzÞg: ð20Þ

One can easily verify that the transposed region of support
�0 ¼ � (that is, �0ðxÞ ¼ �ðxÞ, 8x 2 E). Then, the SVFSP
erosion and dilation in (12) and (13) become

E�ðfÞ ¼ ^
u2�ðxÞ

fðuÞ; ðf 2 USCðEÞÞ; ð21Þ

and

D�ðfÞ ¼ _
u2�ðxÞ

fðuÞ; ðf 2 USCðEÞÞ: ð22Þ

Equations (21) and (22) are, respectively, the adaptive
neighborhood erosion and dilation presented in [18] and
[19]. Therefore, the adaptive neighborhood gray-level mor-
phology framework is a special case of the proposed spatially-
variant gray-level mathematical morphology theory.

2.4.3 Vertically-Invariant Morphology [17]

Given a structuring function mapping K : E! USCðEÞ,
choose the structuring function mapping � such that
½�ðxÞ�ðuÞ ¼ ½KðxÞ�ðu� xÞ, 8x, u 2 E. Observe that the local
structuring function �ðxÞat pointx, which is evaluated atx, is
equal to the local structuring functionKðxÞ at point x, which
is evaluated at the origin; that is, ½�ðxÞ�ðxÞ ¼ ½KðxÞ�ð0Þ. For
instance, consider the following structuring function map-
ping K [17]:

½KðxÞ�ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � u2
p

; if juj � r;
�1; if juj > r:

�
ð23Þ

Then,

½�ðxÞ�ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðu� xÞ2

q
; if ju� xj � r;

�1; if ju� xj > r:

(
ð24Þ

The local structuring function KðxÞ at the point x is a circle
with radius r centered at the origin, whereas the local
structuring function �ðxÞ at the point x is a circle with the
same radius r but centered at the point x. This property of
having the local structuring function �ðxÞ, which is centered
at x, may be desired in some practical applications such as
adaptive signal smoothing [17]. In this case, the SVFP erosion
and dilation, as defined in (4) and (6), reduce, respectively, to

EK ½f�ðxÞ ¼ ^
z2SptðKðxÞÞ

ffðxþ zÞ � ½KðxÞ�ðzÞg; ð25Þ

and

DK ½f�ðxÞ¼ _
z2½Sptð �fÞþx�\½Sptð �K0ðzÞÞþx�

ffðx� zÞ þ ½Kðx� zÞ�ðzÞg;

ð26Þ

8f 2 USCðEÞ, 8x 2 E.
Equations (25) and (26) coincide with the vertically invariant
erosion and dilation defined in [17] and are used for adaptive
signal smoothing. Therefore, the vertically invariant mathe-
matical morphology provides another special case of the
proposed spatially-variant gray-level morphology.

3 SPATIALLY-VARIANT KERNEL AND BASIS

REPRESENTATIONS

3.1 SV Kernel Representation

Definition 4. A function-processing system � : USCðEÞ !
USCðEÞ is called a V-system if �ðf þ yÞ ¼ �ðfÞ þ y for all
f 2 USCðEÞ and y 2 T .

In particular, a V-system is invariant with respect to DC
biases. Examples of V-systems are given by the SVFP erosion,
dilation, opening, and closing, as defined in Section 2.2, the
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adaptive neighborhood morphological systems defined in
(21) and (22), the adaptive amoeba morphological systems
presented in [20], and the vertically invariant morphological
systems defined in (25) and (26). Moreover, one can easily
verify that the class of V-systems is closed under duality; that
is, if � is a V-system, then its dual �� is also a V-system.

We extend Maragos’ kernel representation theorem to
V-systems as follows: Let � be a V-system and consider its SV
umbra processing system  u, defined as  uðU½f�Þ ¼ U ½�ðfÞ�,
for every f 2 USCðEÞ. From the definition of the kernel of
SVSP systems in [11], the proof of the following proposition
derives a one-to-one correspondence between the kernel of a
V-system and the kernel of its umbra processing system.

Proposition 2. The kernel of a V-system �, Kð�Þ, is given by the
following collection of mappings:

Kð�Þ ¼ f� : E! USCðEÞ : �½�ðxÞ�ðxÞ � 0; 8x 2 Eg: ð27Þ

In this paper, we use K to denote the kernel of an SVFP
system, and Ker to denote the kernel of an SVSP system
[11]. The one-to-one correspondence between the kernel of a
V-system and the kernel of its SV umbra SP system will
allow us to transpose the results of the kernel representation
obtained for SVSP systems in [11] to V-systems. In
particular, since the kernel of SVSP systems is nontrivial
and unique [11, Propositions 1 and 2], it follows that the
kernel of V-systems is also nontrivial and unique.

Using (2), (10), and the definition of the kernel of SVSP
systems in [11], we obtain the kernel of a SVFSP system �
from the kernel of its SP system � as follows:

Kð�Þ ¼ f� : X 0½�ðxÞ� 2 Kerð�Þ; for all x 2 Eg: ð28Þ

The following establishes the kernel representation for
increasing V-systems.

Theorem 1. A spatially-variant function-processing system � :
USCðEÞ ! USCðEÞ is an increasing V-system if and only if �
can be represented as the supremum of spatially-variant
function-processing erosions by mappings in its kernel or,
equivalently, as the infimum of spatially-variant function-
processing dilations by the transposed mappings in the kernel of
its dual, that is,

�ðfÞ¼ _
�2Kð�Þ

E�ðfÞ¼ ^
�2Kð��Þ

D�0 ðfÞ ðf 2 USCðEÞÞ: ð29Þ

Corollary 1. A spatially-variant function-set-processing system
� : USCðEÞ ! USCðEÞ that commutes with thresholding is
an increasing V-system if and only if it can be represented as
the supremum of spatially-variant function-set-processing
erosions by mappings in the kernel of its set-processing
system � or, equivalently, as the infimum of spatially-variant
function-set-processing dilations by the transposed mappings
in the kernel of ��

�ðfÞ ¼ _
�2Kerð�Þ

E�ðfÞ¼ ^
�2Kerð��Þ

D�0 ðfÞ ðf 2 USCðEÞÞ: ð30Þ

3.2 Basis Representation

The kernel representations in Theorem 1 and Corollary 1 are
powerful theoretical results, as they demonstrate the ubiquity
of the SVFP and the SVFSP erosion and dilation and, hence,
establish the spatially-variant mathematical morphology for

gray-level signals as the general mathematical framework for
the study of linear and nonlinear increasing systems in signal
and image processing. However, the kernel representation
theorems have no direct relevance for a practical implementa-
tion of V-systems because of the infinite cardinality of the
kernel. To see this, consider an increasing V-system �. From
(27), we observe that if � 2 Kð�Þ, then every structuring
function mapping � � � is also in the kernel of �. Therefore,
we are led to the investigation of the existence of the minimal
kernel elements for the representation of V-systems. Follow-
ing Maragos’ approach in defining the basis of translation-
invariant set-processing and function-processing systems [5],
we define the basis BBBB� of the kernel of a V-system � as the
collectionof theminimalelementsof thekernelof�.Formally,

BBBB� ¼ f� 2 Kð�Þ : ½� 2 Kð�Þ and � � ��¼)� ¼ �g: ð31Þ

In this paper, we useBBBB� to denote the basis of the SVFP �, and
B to denote the basis of the SVSP system defined in [11]. In
the development of the basis representation for SVSP systems
in [11], we had to restrict ourselves to the class of all closed
subsets of E. The equivalent class of functions is the class of
upper-semicontinuous functions. In fact, a function f is
upper-semicontinuous if and only if its umbra U ½f� is closed
or, equivalently, if and only if its threshold sets X tðfÞ are
closed for all t 2 T . Let fn # f be a sequence of upper-
semicontinuous functions that decrease monotonically to
f ¼ ^nfn. An increasing FP system � is said to be upper-
semicontinuous if and only if fn # f¼)�ðfnÞ # �ðfÞ.

In the following, we prove that every increasing upper-
semicontinuous V-system has a minimal element in its kernel.

Theorem 2. Let � : USCðEÞ ! USCðEÞ be an increasing upper-
semicontinuous V-system. Then, the kernel of � has a minimal
element.

Before we prove the potential of minimal elements for the
exact representation of these systems, we need the following
result:

Theorem 3. Let � be an increasing upper-semicontinuous
V-system. Then, for every � 2 Kð�Þ, there exists �M 2 BBBB�

such that �M � �.

We can now establish the basis representation of upper-
semicontinuous V-systems in terms of SVFP erosions.

Theorem 4. Let � : USCðEÞ ! USCðEÞ be an increasing
upper-semicontinuous V-system. Then, � can be represented
as the supremum of spatially-variant function-processing
erosions by mappings in its basis BBBB�:

�ðfÞ ¼ _
�2BBBB�

E�ðfÞ ðf 2 USCðEÞÞ: ð32Þ

To find a dual representation in terms of SVFP dilations,
Theorem 4 has to apply to the dual V-system ��. In particular
�� has to be upper-semicontinuous on USCðEÞ. Conse-
quently, the class USCðEÞ has to be invariant under function
complementation; that is, if f is upper-semicontinuous, then
ð�fÞ is also upper-semicontinuous This is, in particular, true
for functions defined on ZZm. In this case, both � and �� are
defined on USCðZZmÞ.
Corollary 2. Let � : USCðZZmÞ ! USCðZZmÞ be an increasing

and upper-semicontinuous V-system. If the dual system �� is
also upper-semicontinuous, then � can be represented as the
supremum of erosions by mappings in its basis or, equivalently,
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as the infimum of dilations by the transposed mappings in the
basis of its dual, that is,

�ðfÞ ¼ _
�2BBBB�

E�ðfÞ ¼ ^
�2BBBB��

D�0 ðfÞ ðf 2 USC ðZZmÞ: ð33Þ

Corollary 3.

a. Let � : USCðEÞ ! USCðEÞ be a spatially-variant
function-set-processing system that commutes with
thresholding. Then, � can be represented as the
supremum of erosions by mappings in the basis of its
set-processing system �

�ðfÞ ¼ _
�2B�
E�ðfÞ ðf 2 USCðEÞÞ: ð34Þ

b. Let � : USCðZZmÞ ! USCðZZmÞ be a spatially-variant
function-set-processing system that commutes with
thresholding and consider its set-processing system �.
If the dual set-processing system �� is upper-semicon-
tinuous, then � can be represented as the supremum of
erosions by mappings in the basis of its set-processing
system � or, equivalently, as the infimum of dilations by
the reflected mappings in the basis of ��, that is

�ðfÞ¼ _
�2B�
E�ðfÞ¼ ^

�2B��
D�0 ðfÞ ðf 2 USC ðZZmÞÞ:

ð35Þ

The perspectives of the basis theory are at least twofold.
First, the redundancy of the kernel is infinitely reduced.
Second, if the basis is finite, the corresponding V-system can
be represented as the maximum of SVFP erosions or as the
minimum of SVFP dilations. This can tremendously simplify
the analysis and the implementation of these systems.
However, the basis representation theorem is not construc-
tive in the sense that it does not provide an algorithm for
finding the basis elements for each increasing and upper-
semicontinuous V-system. It is merely an existence theorem.
In the following section, we present examples of practical
V-systems that are used in signal and image processing
applications, and we show how their basis can be obtained.

4 EXAMPLES

4.1 Order-Statistic Filters

In this example, we study the properties of the SVFSP
order-statistic filters and show their relation to the SVFSP
basic morphological systems.

Consider E � ZZ2. Let B be a mapping from E into PðEÞ
such that y 2 BðyÞ and jBðyÞj ¼ cardinality of BðyÞ ¼ n for
every y 2 E. The rth SVFSP order-statistic filter is defined by

½�rðf;BÞ�ðxÞ ¼ rth largest value of ffðyÞ : y 2 BðxÞg; ð36Þ

where r ¼ 1; 2; � � � ; n. Observe that the first SVFSP order
statistic is the SVFSP dilation by the transposed mapping
�B ¼ f�b : b 2 Bg, and the nth SVFP order statistic is the
SVFSP erosion by the mapping B.

Proposition 3. The rth SVFSP order-statistic filter is an
increasing V-system, which commutes with thresholding.
Moreover, its dual is the ðn� rþ 1Þth SVFSP order-statistic
filter.

Thus, from Corollary 3b, the rth SVFSP order-statistic
filter can be represented as the supremum of SVFSP
erosions by mappings in the kernel of its SP system or,
equivalently, as the infimum of SVFSP dilations by the
mappings in the kernel of the dual SP system. However,
this representation is not very useful in practice because of
the redundancy of the kernel. In [11], we proved that the
SVSP median filter admits a basis representation. The same
proof can be easily carried over to SVFSP order-statistic
filters to obtain the following basis representation

½�rðf;BÞ�ðxÞ ¼ _
��B;j�j¼r

½ ^
u2�ðxÞ

fðuÞ� ð37Þ

¼ ^
��B;j�j¼n�rþ1

½ _
u2�0ðxÞ

fðuÞ�: ð38Þ

The importance of (37) and (38) stems from the fact that a
SVFSP order-statistic filter can be exactly implemented by
using max-min operations, which require much less compu-
tations than sorting, for quite small adaptive window sizes [5].

4.2 Linear Time-Varying Systems

In this example, we generalize the study of linear time
invariant systems in [9] to linear time-varying (LTV) systems.
This example will show the power of the proposed spatially-
variant gray-level mathematical morphology theory to study
not only SV nonlinear systems but also SV linear systems.

The output of a continuous linear time-varying (LTV)
system is given by

½�ðfÞ�ðtÞ ¼
Z

IR

fð�Þ½hð�Þ�ðtÞd�; ð39Þ

where hð�Þ is the response of the system to an impulse
applied at time � . Therefore, the impulse response mapping
of an linear time-varying system can be viewed as a
mapping from IR to FuncðIRÞ such that for each impulse
applied at time � 2 IR corresponds an impulse response
hð�Þ 2 FuncðIRÞ. Without loss of generality, we consider
systems such that their DC gain is equal to unity; that is,R

IR½hð�Þ�ðtÞd� ¼ 1 for all t 2 IR. Observe that this scaling
condition ensures that the linear time-varying system �, as
defined in (39), is a V-system. In the following, we give a
necessary and sufficient condition for � to be increasing.

Proposition 4. A linear time-varying system is increasing if and
only if its impulse response mapping is nonnegative; that is,
for each � , hð�Þ is a nonnegative function.

The kernel of the linear time-varying system �, as
defined in (39), is given by

Kð�Þ ¼
(

� :

Z
IR

½�ðxÞ�ð�Þ½h0 ðxÞ�ð�Þd� � 0; 8x 2 IR

)
; ð40Þ

where h0 is the transpose mapping of h (see (3)). Thus, from
Theorem 1, we obtain a kernel representation of the linear
time-varying system as follows:

Proposition 5. Let � be a linear time-varying system with unity
gain and a nonnegative impulse response mapping. Then,

½�ðfÞ�ðxÞ ¼
Z

IR

fð�Þ½hð�Þ�ðxÞd�

¼ _
�2Kð�Þ

½
û
ffðuÞ � ½�ðxÞ�ðuÞg�:

ð41Þ
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Proposition 5 gives a closed-form expression of the output

of an linear time-varying system having unity gain and a

nonnegative impulse response mapping in terms of sup-inf

operations only. The drawback of this expression is that there

are an infinite number of such operations, since the kernel of

the system is infinite.
In what follows, we will investigate the existence of a basis

representation for discrete linear time-varying systems. A

sufficient condition for a discrete LTV system with a

nonnegative impulse response mapping to be upper-semi-

continuous is that the transposed mapping h0ðnÞ has a finite

support for all n, where the support of the function hðkÞ,
SptðhðkÞÞ, is defined as SptðhðkÞÞ ¼ fn 2 IN : ½hðkÞ�ðnÞ 6¼ 0g.
One can easily verify that in this case, fn # f ) �ðfnÞ # �ðfÞ.
Proposition 6. Let � be a discrete linear time-varying system with

unity gain and a nonnegative impulse response mapping having

a transposed mapping with finite support. Then, the basis of � is

given by

BBBB� ¼
(

� :
XN
k¼1

½h0 ðnÞ�ðkÞ½�ðnÞ�ðkÞ ¼ 0

and Sptð�ðnÞÞ ¼ Sptðh0ðnÞÞ; 8n 2 IN

)
:

If we represent the finite extent function h0ðnÞ in a vector

form, then we see that the basis elements �ðnÞ belong to the

hyperplane perpendicular to the vector h0ðnÞ for all n 2 IN.

The basis mappings are solutions of the linear systemPN
k¼1½hðkÞ�ðnÞ½�ðnÞ�ðkÞ ¼ 0, 8n 2 IN subject to three con-

straints: 1) hðkÞ is a nonnegative function for k ¼ 1; � � � ; N ,

2)
P

k½hðkÞ�ðnÞ ¼ 1, 8n 2 SptðhðkÞÞ, and 3) Spt½�ðnÞ� ¼
Spt½h0ðnÞ� is finite 8n. Consequently, we have the following

basis representation:

½�ðfÞ�ðnÞ ¼
XN
k¼1

fðkÞ½hðkÞ�ðnÞ

¼ _
�2BBBB�

�
^

k2Sptð�ðnÞÞ
ffðkÞ � ½�ðnÞ�ðkÞg

�
:

ð42Þ

Equation (42) relates the nonlinear SVFP morphological

erosions to LTV systems. Moreover, it gives a closed-form

expression to a large class of linear time-varying discrete

systems.
Example: adaptive mean. Consider a normalized 1D

signal xðnÞ and its corrupted version by an impulse noise

zðnÞ, that is,

zðnÞ ¼ xðnÞ þ
X
k2I
ð�1Þk�ðn� kÞ; ð43Þ

where I � IN is the set of corrupted samples. We propose to

adaptively denoise the signal zðnÞ by using an LTV system

with the following causal impulse response mapping:

½hðkÞ�ðnÞ ¼ �ðn� kÞ; if n 62 I;
1
2 ½�ðn� kÞ þ �ðn� 1� kÞ�; if n 2 I:

�
ð44Þ

Here, k 2 fn� 1; ng, and hðkÞ ¼ 0 if k 62 fn� 1; ng. The

output of this filter is given by

yðnÞ ¼
Xn
k¼n�1

zðkÞ½hðkÞ�ðnÞ

¼
xðnÞ; if n 62 I;
1
2 ½zðn� 1Þ þ zðnÞ�; if n 2 I:

( ð45Þ

From (45), we see that this LTV filter is an adaptive mean,
which averages the last two samples of the signal if the
current sample is noisy and leaves the current sample
unchanged if it is not noisy. This simple strategy, as
illustrated in Fig. 1, denoises the signal without oversmooth-
ing it.

The impulse response mapping, as defined in (44), is
nonnegative and has a unity DC gain, and the support of its
transpose mapping is finite. Therefore, from Proposition 6,
the basis functions are given by

�ðnÞ ¼
0; if n 62 I;
ð�ðnÞÞðnÞ
ð�ðnÞÞðn� 1Þ

� �
¼ �
��

� �
; if n 2 I;

8><
>: ð46Þ

where � 2 IR. Thus, from (42), the adaptive mean filter can
be represented as the suprema of minima:

yðnÞ ¼ xðnÞ; if n 62 I;
_�2IR minfxðnÞ � �; xðn� 1Þ þ �g; if n 2 I:

�
ð47Þ

5 SIMULATIONS

5.1 Adaptive Denoising

Image restoration is an important problem in image proces-
sing and analysis applications. It requires the development of
an efficient filtering procedure, which restores an image from
its noisy version while preserving the important features of
the noise-free image. This is an important requirement, since
many algorithms for pattern analysis, which process noisy
data, critically depend on accurate geometrical and topolo-
gical image description [2]. The traditional approach to
solving this problem is by means of linear filtering techni-
ques. Although this is a mathematically and practically
simple approach, it usually results in a distortion of many
important image characteristics. The alternative solution is by
means of more powerful nonlinear filtering techniques and,
specifically, by employing the class of morphological filters
[9], [26]. However, it is known that there is an inherent trade-
off in translation-invariant morphological filters between the
noise removal capability of the filter and the feature
preservation of the noise-free image [16], [17], [27]. This
trade-off is due to the use of a fixed SE while morphologically
filtering the signal (or image). The important structures of the
signal that are smaller than the SE used will be removed or
oversmoothed. One solution to the denoising problem, then,
is to vary the SE according to the local characteristics of the
image. In this example, we will show the power of linear and
nonlinear SV denoising by considering the SV mean filter, the
SV alternating filter [28], [2], and the SV median filter.

Consider the corrupted Lena image by a 10 percent salt
(gray-level 0) and pepper (gray-level 255) noise, as shown
in Fig. 1a. Let B be a fixed SE and consider a flat structuring
function mapping with a region of support mapping �

given by
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�ðxÞ ¼ B; if x is a salt or pepper pixel;
;; otherwise:

�

That is, only noisy pixels are filtered. A noisy pixel is
detected as an isolated 0 or 255 gray-level pixel. This SV
denoising scheme will significantly preserve the edges
while effectively removing the noise. In our simulations, B
is a square window of a predetermined size.

SV mean filter. The usual mean filter is a linear, simple,
and easy to implement system, which is often used for image
smoothing and denoising. There is an inherent trade-off in the
choice of the window of the mean filter: a small window
preserves, to an extent, the edges of the image but is sensitive
to outliers, whereas a large window reduces the effect of
outliers but significantly blurs the edges of the image. This
trade-off is illustrated in Figs. 1b and 1d. We adaptively mean
filter the noisy image using a 2D version of the impulse
response mapping given in (44). The power of the adaptive
mean filter in denoising is illustrated in Figs. 1c and 1e.

SV alternating filter. The alternating filter is a composi-
tion of closing and opening by the same SE. Maragos and

Schafer [26] have demonstrated a strong relationship be-
tween the alternating filter and the median filter. The
alternating filter has been experimentally demonstrated for
its smoothing and noise removal capability in binary and
gray-scale images [2], [28], [29]. Fig. 1f shows the translation-
invariant alternating filter output, with a 3� 3 square SE.
Some salt noise remains, and the image is overly smoothed.
The SV alternating filter, as displayed in Fig. 1g, removes all
the noise and preserves the edges of the noise-free image.

SV median filter. The median filter is a self-dual rank-
order filter (see Section 4). The translation-invariant median
filter is more robust than the translation-invariant mean
filter in removing the noise. However, it is also relatively
expensive and complex to compute, as it requires sorting
algorithms. Moreover, the translation-invariant median
filter removes the noise at the expense of oversmoothing
the image, as shown in Fig. 1h. On the other hand, the SV
median filter preserves the noise-free image features, as can
be seen in Fig. 1i.
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Fig. 1. Translation-invariant and spatially-variant denoising. (a) Noisy image. (b) Translation-invariant mean filter using a 3� 3 window. (c) Spatially-
variant mean filter using a 3� 3 window for noisy pixels only. (d) Translation-invariant mean filter using a 7� 7 window. (e) Spatially-variant mean filter
using a 7� 7 window for noisy pixels only. (f) Translation-invariant alternating filter using the 3� 3 square SE. (g) Spatially-variant alternating filter.
(h) Translation-invariant median filter using the 5� 5 square SE. (i) spatially-variant median filter.



5.2 SV Multiscale Filtering and Segmentation

In this application, we will show the power of SV gray-level
mathematical morphology in multiscale filtering and
segmentation by presenting a multiscale representation of
the cameraman image using the Alternating Sequential

Filters (ASFs) and segmenting the filtered images using the
watershed transformation. An alternating sequential filter is
a composition of openings and closings by structuring

elements of increasing sizes. The alternation of openings
and closings is essentially a multiresolution technique,

BOUAYNAYA AND SCHONFELD: THEORETICAL FOUNDATIONS OF SPATIALLY-VARIANT MATHEMATICAL MORPHOLOGY PART II: GRAY-... 9

Fig. 2. Translation-invariant and spatially-variant multiscale decomposition using Alternating Sequential Filters (ASF), and segmentation using the
watershed transformation. (a) The original cameraman image. (b) Segmentation of the original image. (c) Segmentation of the gradient image. (d),
(e), and (f) Translation-invariant ASF. (g), (h), and (i) Segmentation of the results in (d), (e), and (f), respectively. (j), (k), and (l) spatially-variant ASF
with a homogeneity tolerance of m ¼ 10. (m), (n), and (o) Segmentation of the results in (j), (k), and (l), respectively. (d) TIASF4, (e) TIASF7,
(f) TIASF10, (g) SegðTIASF4Þ, (h) SegðTIASF7Þ, (i) SegðTIASF10Þ, (j) SVASF7

4, (k) SVASF7
7, (l) SVASF7

10, (m) SegðSVASF7
4Þ, (n) SegðSVASF7

7Þ, and
(o) SegðSVASF7

10Þ.



which introduces less distortion than individual openings
and closings. Schonfeld and Goutsias showed that alternat-
ing sequential filters are the best filters in preserving crucial
structures in the “least difference” sense [30].

The watershed transformation is a powerful tool for
image segmentation [8], [31]. The intuitive idea underlying
this method is that of a landscape or topographic relief,
which is flooded by water, with watersheds being the
dividing lines of the domains of attraction of rain falling over
the region. An alternative approach is to imagine the
landscape being immersed in a lake, with holes pierced in
the local minima. The water entering through the holes
floods the surface. When two or more floods coming from
different minima may merge, dams are built. At the end of
the process, only the dams emerge. These dams define the
watershed lines. In order to produce a meaningful segmen-
tation, the input image is generally transformed, and then,
the watershed is applied. The gradient image is often used in
the watershed transformation because the main criterion of
the segmentation is the homogeneity of the gray values of
the objects present in the image. However, the gradient
image generally creates an oversegmentation, which is due
to the presence of spurious minima. In this simulation, we
show that applying the watershed transformation to a
spatially-variant ASF (SVASF) produces better segmenta-
tions than applying it to the gradient image or to the
translation-invariant counterpart filter (TIASF).

In our implementation, we use balls SEs of increasing

radius for the TIASF, and the flat structuring function

mapping represented by its region of support given in (20)

for the SVASF. We write TIASFp to denote the TIASF of order

p, and SVASFm
p to denote the SVASF of order p, with

homogeneity m and criterion mapping given by the lumi-

nance. Fig. 2 shows the decomposition and segmentation

results of the different filters. The translation-invariant ASF

rapidly oversmooths the image, altering the transitions

between the different objects and losing the original topology

of the image. Even though it results in a less mosaic segmented

image than the gradient, it loses the oversmoothed objects (see

Figs. 2g and 2h, where the camera stand is not represented)

and still results in an oversegmentation of the background.

The SVASF, however, results in a simplified version of the

image while conserving the topology and contours of its

different objects and, at the same time, producing flat zones of

the image, which lead to a much better segmentation than its

translation-invariant counterpart.

6 SUMMARY

We have proposed a spatially-variant gray-level mathema-
tical morphology theory in the Euclidean space, which
preserves the geometrical notion of the structuring function
inherent in the classical translation-invariant morphology.
We defined the basic spatially-variant gray-level morpholo-
gical operations, that is, spatially-variant erosion, dilation,
opening, and closing, and investigated their properties. We
have demonstrated the ubiquity of spatially-variant func-
tion-processing (SVFP) erosions and dilations by showing
that every increasing V-system, i.e., an increasing system that
is invariant under vertical translations, can be represented as
the supremum of SVFP erosions or, equivalently, as the

infimum of SVFP dilations. Furthermore, we established a

basis representation for the subclass of upper-semicontin-

uous increasing V-systems. If the basis of a system is finite,

then it can be represented as the maximum of SVFP erosions

or the minimum of SVFP dilations. In particular, we showed

that adaptive order-statistic filters have a basis representa-

tion in terms of SVFP erosions and SVFP dilations. We have

also related LTV systems to the basic nonlinear SVFP

morphological operators. In particular, we established a

closed-form expression for LTV systems in terms of the

supremum and infimum of functions. Simulation results

showed the enormous potential of the theory of SV gray-level

mathematical morphology in image denoising and multi-

scale representation.

APPENDIX A

PROPERTIES OF THE BASIC SVFP MORPHOLOGICAL

OPERATORS

A.1 Properties of SVFP Erosion and Dilation

The following properties are valid for all functions

f 2 USCðEÞ.
Adjunction. For every structuring function mapping �,

the pair ðE�;D�Þ is an adjunction, that is,

D�ðfÞ � g()f � E�ðgÞ: ð48Þ

Proof. We have

D�ðfÞ � g () 8x 2 E;_u2EffðuÞ þ ½�ðuÞ�ðxÞg � gðxÞ
() 8x; u 2 E; fðuÞ þ ½�ðuÞ�ðxÞ � gðxÞ
() 8x; u 2 E; fðuÞ � gðxÞ � ½�ðuÞ�ðxÞ
() 8u 2 E; fðuÞ � ^x2EfgðxÞ � ½�ðuÞ�ðxÞg
() 8u 2 E; fðuÞ � E�ðgÞðuÞ
() f � E�:

tu

Duality. For every structuring function mapping �, the

SVFP systems E� and D� are dual; that is, E�� ¼ D�0 .

Proof. We have

E��ðfÞ ¼ � E�ð�fÞ ¼ � _ fv 2 T : �ðxÞ þ v � �fg
¼ ^ f�v 2 T : f � �v��ðxÞg
¼ ^ fv 2 T : f � v��ðxÞg ¼ D�0 ðfÞ:

tu

Increasing. For every structuring function mapping �, the

SVFP systems E� and D� are increasing systems.

Proof. The proof follows immediately from (4) and (6). tu

Extensivity and antiextensivity. If ½�ðxÞ�ðxÞ � 0, 8x 2 E,

then

E�ðfÞ � f and D�ðfÞ � f: ð49Þ
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Proof.

E�ðfÞðxÞ ¼ _
u2Sptð�ðxÞÞ

ffðuÞ � ½�ðxÞ�ðuÞg

� fðxÞ � ½�ðxÞ�ðxÞ � fðxÞ;

where the last inequality follows from the fact that

½�ðxÞ�ðxÞ � 0. A similar argument can be used for

showing the extensivity of the SVFP dilation. tu
Scaling with respect to the spatially-variant structuring

function mapping:

Proposition 7. If �1 � �2, then

E�2
ðfÞ � E�1

ðfÞ and D�1
ðfÞ � D�2

ðfÞ:

Proof. Since �1 � �2, we have for all x 2 E and v 2 T ,

�1ðxÞ þ v � �2ðxÞ þ v. Thus, for a given f 2 USCðEÞ, we

have fv : �2ðxÞ þ v � fg � fv : �1ðxÞ þ v � fg. Hence,

_fv : �2ðxÞ þ v � fg � _fv : �2ðxÞ þ v � fg or, equiva-

lently, E�2
ðfÞ � E�1

ðfÞ.
The increasing property of the SVFP dilation with

respect to the structuring function mapping can be
derived by using similar arguments and the fact that
�1 � �2 , �01 � �02. tu
Serial composition. Consider two structuring function

mappings: �1 and �2. We use E�1
ð�2Þ andD�1

ð�2Þ to denote

the structuring function mapping given by E�1
ð�2ÞðxÞ ¼

E�1
ð�2ðxÞÞ and D�1

ð�2ÞðxÞ ¼ D�1
ð�2ðxÞÞ, 8x 2 E. We have

E�2
½E�1
ðfÞ� ¼ ED�1

ð�2ÞðfÞ; ð50Þ

and

D�2
½D�1
ðfÞ� ¼ DD�2

ð�1ÞðfÞ: ð51Þ

Proof. We have

E�2
½E�1
ðfÞ�ðxÞ

¼ _ fv : ½�2ðxÞ�ðuÞ þ v � ½E�1
ðfÞ�ðuÞ�; 8ug

¼ _ fv : ½�2ðxÞ�ðuÞ þ v � ^tffðtÞ � ½�1ðuÞ�ðtÞg; 8ug
¼ _ fv : ½�2ðxÞ�ðuÞ þ v � fðtÞ � ½�1ðuÞ�ðtÞ; 8u; 8tg
¼ _ fv : ½�2ðxÞ�ðuÞ þ ½�1ðuÞ�ðtÞ � fðtÞ � v; 8u; 8tg
¼ _ fv : _uf½�2ðxÞ�ðuÞ þ ½�1ðuÞ�ðtÞg � fðtÞ � v; 8tg
¼ _ fv : D�1

½�2ðxÞ�ðtÞ � fðtÞ � v; 8tg
¼ ED�1

ð�2ÞðfÞ:

A similar argument can be used for obtaining the serial

composition of the SVFP dilation. tu

A.2 Properties of the SVFP Opening and Closing

From the properties of the SVFP erosion and dilation, it

follows that the SVFP opening and closing are increasing

dual operators. Moreover, the SVFP opening is anti-

extensive, and the SVFP closing is extensive.
Idempotence. For every structuring function mapping �,

the spatially-variant function-processing morphological
opening and closing are idempotent; that is,

�2
� ¼ �� and �2

� ¼ ��: ð52Þ

Proof.

��½��ðfÞ� ¼ _
ðu;vÞ

�
�ðuÞ þ v � ½ _

ða;bÞ
f�ðaÞ þ b � f�

�
¼ _

ðu;vÞ
f�ðuÞ þ v � �ðaÞ þ b � f ; ða; bÞ 2 E� T g

¼ _
ðu;vÞ
f�ðuÞ þ v � fg

¼ ��ðfÞ:

A similar argument can be used for obtaining the

idempotence of the SVFP closing. tu
It was shown in [1] and [32] that the translation-invariant

set-processing opening and closing can be exactly specified

from their fixed points. In the following, we provide a

characterization of �-open and �-closed functions, which

are the fixed points of the SVFP opening and closing,

respectively.

Definition 5. A function f is � open (respectively, � closed) if

��ðfÞ ¼ f (respectively, ��ðfÞ ¼ f).

A useful characterization of �-open and �-closed

functions is given by the following:

Proposition 8. A function f is � open (respectively, � closed) if

and only if there exists a function g such that f ¼ D�ðgÞ
(respectively, f ¼ E�ðgÞ).

Proof. Assume first that ��ðfÞ ¼ f . Take g ¼ E�ðfÞ. Then, we

have f ¼ D�ðgÞ. Assume now that f ¼ D�ðgÞ for some

function g. By the antiextensivity of the SVFP opening and

the increasing property of the SVFP dilation, we have

D�ðgÞ � ��ðD�ðgÞÞ ¼ D�ðE�ðD�ðgÞÞÞ ¼D�ð��ðgÞÞ
�D�ðgÞ:

Hence, we have ��ðD�ðgÞÞ ¼ D�ðgÞ, which is equivalent

to ��ðfÞ ¼ f . Therefore, we obtain a characterization of

�-open functions. A similar argument can be used for

obtaining a characterization of �-closed functions. tu

APPENDIX B

PROOF OF PROPOSITIONS

Proof of Proposition 1. Consider f 2 USCðEÞ and t 2 T .

We have

X t½E�ðfÞ� ¼
�
z : ^

u2Spt½�ðzÞ�
ffðuÞg � t

�
¼ fz : 8 u 2 Spt½�ðzÞ�; fðuÞ � tg
¼ fz : 8 u 2 �ðzÞ; fðuÞ � tg
¼ fz : �ðzÞ � X tðfÞg
¼ E�½X tðfÞ�:

If Sptð�0ðxÞÞ is compact for all x 2 E, then the supremum

on the set Sptð�0ðxÞÞ is achieved. Then, we have
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X t½D�ðfÞ� ¼
�
z : _

u2SptðfÞ\Spt½�0 ðzÞ�
ffðuÞg � t

�

¼ fz : 9 u 2 SptðfÞ \ Spt½�0 ðzÞ�; fðuÞ � tg
¼ fz : 9 u 2 SptðfÞ \ �0 ðzÞ; fðuÞ � tg
¼ fz : �

0 ðzÞ \ X tðfÞ 6¼ ;g
¼ D�½X tðfÞ�:

tu
Proof of Proposition 2. Let � be a V-system and consider its

umbra processing system  u. Define the umbra SE
mapping �U from E to the set of all umbras on E� T
by �Uðx; yÞ ¼ U½�ðxÞ þ y� ¼ U½�ðxÞ� þ y.  u has an SV
kernel Kerð uÞ, as defined in [11]. We have

�U 2 Ker ð uÞ
() ðx; yÞ 2  uð�Uðx; yÞÞ; 8ðx; yÞ 2 E� T
() ðx; yÞ 2  uðU ½�ðxÞ þ y�Þ; 8ðx; yÞ 2 E� T
() ðx; yÞ 2 U½�ð�ðxÞ þ yÞ�; 8ðx; yÞ 2 E� T
() ½�ð�ðxÞ þ yÞ�ðxÞ � y; 8ðx; yÞ 2 E� T
() ½�ð�ðxÞÞ�ðxÞ þ y � y; 8ðx; yÞ 2 E� T
() �½�ðxÞ�ðxÞ � 0; 8x 2 E

() � 2 Kð�Þ:

tu
Proof of Proposition 3.

1. Increasing. Letf � g. In particular,fðyÞ � gðyÞ 8y 2
BðxÞ and 8x 2 E. This implies that 8x 2 E, ½�r

ðf;BÞ�ðxÞ � ½�rðg; BÞ�ðxÞ. Thus, �r is an increasing
system.

2. Duality. Let f 2 USCðEÞ. For every x 2 E, we have

½��ðf;BÞ�ðxÞ ¼ ½��ð�f;BÞ�ðxÞ
¼ � rth largest value of

f�fðyÞ; y 2 BðxÞg
¼ ðn� rþ 1Þth largest value of

ffðyÞ; y 2 BðxÞg
¼ ½�n�rþ1ðf;BÞ�ðxÞ:

Hence, ��ð; BÞ ¼ �n�rþ1ð; BÞ.
3. Commuting with thresholding. Consider a function

f 2 USCðEÞ. We have

z 2 X t½�rðf;BÞ�
() ½�rðf;BÞ�ðzÞ � t
() rth largest value offfðyÞ : y 2 BðzÞg � t
() jX tðfÞ \BðzÞj � r()z 2 �rðX tðfÞ; BÞ:

Thus, X t½�rðf;BÞ� ¼ �rðX tðfÞ; BÞ. From (11), we
conclude that �r commutes with thresholding. tu

Proof of Proposition 4. Assume first that the functionhð�Þ �
0 for all � 2 E. Consider two functions f and g such that
f � g. Then, ½�ðfÞ ��ðgÞ�ðtÞ ¼

R
ðf � gÞð�Þ½hð�Þ�ðtÞd� � 0,

since the integrand is a nonnegative function. Hence, the
LTV system � is increasing. Assume now that � is
increasing, that is, f � g) �ðfÞ � �ðgÞ. Thus,

R
Rð�Þ

½hð�Þ�ðtÞd� � 0 for every nonnegative function R. Let
pkðxÞ be a sequence of triangular functions such that their

width goes to zero, and their height goes toþ1, satisfyingR
pkðxÞdx ¼ 1, for all k 2 IN. For a given � , we have 8t

½hð�Þ�ðtÞ ¼
Z
½hð�Þ�ðzÞ�ðz� tÞdz ¼

¼
Z
½hð�Þ�ðzÞ lim

k�!þ1
pkðz� tÞdz

¼ lim
k�!þ1

Z
½hð�Þ�ðzÞpkðz� tÞdz � 0:

Thus, the function hð�Þ is nonnegative. tu
Proof of Proposition 6. Consider a mapping � satisfyingP

k½h0ðnÞ�ðkÞ½�ðnÞ�ðkÞ ¼ 0, 8n 2 IN. We want to show that
� is a minimal element. Assume that there exists � 2 Kð�Þ
such that � < �. Then, from the fact that � 2 Kð�Þ and the
fact that ½h0ðnÞ�ðkÞ � 0 for all n, k 2 IN, we have 0 �P

k½h0ðnÞ�ðkÞ½�ðnÞ�ðkÞ �
P

k½h0ðnÞ�ðkÞ½�ðnÞ�ðkÞ¼ 0¼)
P

k

½h0ðnÞ�ðkÞ½�ðnÞ�ðkÞ ¼ 0. From the fact that � < �, there
exists n and j such that ½�ðnÞ�ðjÞ < ½�ðnÞ�ðjÞ and, hence,
½h0ðnÞ�ðjÞ½�ðnÞ�ðjÞ < ½h0ðnÞ�ðjÞ½�ðnÞ�ðjÞ. Thus,

P
k½h0ðnÞ�ðkÞ

½�ðnÞ�ðkÞ <
P

k½h0ðnÞ�ðkÞ½�ðnÞ�ðkÞ ¼ 0. This is a contra-
diction. Therefore, � is a minimal element.

Consider now a minimal element �. We want to show
that � satisfies

P
k½h0ðnÞ�ðkÞ½�ðnÞ�ðkÞ ¼ 0, 8n 2 IN. As-

sume that there exists n0 2 IN such that
P

k½h0ðn0Þ�
ðkÞ½�ðn0Þ�ðkÞ ¼ q > 0. Consider the mapping � : ZZm !
ZZ defined by

�ðnÞ ¼ �ðnÞ; if n 6¼ n0;
�ðn0Þ � q; if n ¼ n0:

�

Then, � < �, and � 2 Kð�Þ, since
P

k½h0ðn0Þ�ðkÞ½�ðn0Þ�
ðkÞ ¼ 0, and

P
k½h0ðnÞ�ðkÞ½�ðnÞ�ðkÞ ¼

P
k½h0ðnÞ�ðkÞ½�ðnÞ�

ðkÞ � 0 for n 6¼ n0. This contradicts the minimality of �.
Hence, � satisfies

P
k½h0ðnÞ�ðkÞ½�ðnÞ�ðkÞ ¼ 0, 8n 2 IN. We

conclude that the class of minimal elements of the kernel
are exactly f� :

P
k½h0ðnÞ�ðkÞ½�ðnÞ�ðkÞ ¼ 0, 8n 2 INg. tu

APPENDIX C

PROOF OF THEOREMS

Proof of Theorem 1. First, assume that � ¼ _�2Kð�ÞE�. Then,
� is an increasing V-system as the supremum of increasing
V-systems. Assume now that � is an increasing V-system.
Consider f 2 USCðEÞ and t 2 T . Let f 0 ¼ _�2Kð�ÞE�ðfÞ.
We will show that ½�ðfÞ�ðxÞ � t()f 0ðxÞ � t.

Assume first that ½�ðfÞ�ðxÞ � t for some x 2 E.
Consider the mapping �f;t given by

�f;tðxÞ ¼
f � t; if ½�ðfÞ�ðxÞ � t;
I ; otherwise:

�
ð53Þ

We have �f;tðxÞ ¼ f � t. Moreover,

�½�f;tðxÞ� ¼
�ðfÞ � t; if ½�ðfÞ�ðxÞ � t;
I ; otherwise:

�
ð54Þ

In particular, �½�f;tðxÞ�ðxÞ � 0. Thus, �f;t 2 Kð�Þ. We
have ½E�f;t

ðfÞ�ðxÞ ¼ _fv 2 T : �f;tðxÞ þ v � fg � t, since
t 2 fv 2 T : �f;tðxÞ þ v � fg. Hence,

f 0ðxÞ ¼ ½_�2Kð�ÞE�ðfÞ�ðxÞ � ½E�f;t
ðfÞ�ðxÞ � t:
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Assume now that f 0ðxÞ � t. We have

f
0 ðxÞ � t () _

�2K ð�Þ
E�ðfÞðxÞ � t

¼) 9� 2 Kð�Þ : E�ðfÞðxÞ � t
() 9� 2 Kð�Þ : ^uffðuÞ � ½�ðxÞ�ðuÞg � t
¼) 9� 2 Kð�Þ : f ��ðxÞ � t
¼) 9� 2 Kð�Þ : �ðfÞ � tþ�ð�ðxÞÞ:

Since � 2 Kð�Þ, we have � ½�ðxÞ� ðxÞ � 0. Thus,
½�ðfÞ�ðxÞ � tþ ½�ð�ðxÞÞ�ðxÞ � t.

Finally, we showed that

½�ðfÞ�ðxÞ � t()f 0 ðxÞ � t; 8t 2 T ð55Þ
() X t½�ðfÞ� ¼ X t½f

0 �; 8t 2 T ð56Þ
() �ðfÞ ¼ f 0 ; ð57Þ

where the last equivalence follows from the bijection of
the threshold sets operators [2], [7]. This establishes the
proof that a function-processing system is an increasing
V-system if and only if it is the supremum of erosions by
mappings in its kernel. The dual representation of � in
terms of SVFP dilations is easily obtained by duality. tu

Proof of Theorem 2. Let � be an increasing and upper-
semicontinuous V-system and let  u be its umbra proces-
sing system. From [9, Theorem 3],  u is increasing and
upper-semicontinuous. We showed in [11, Theorem 3] that
an increasing upper-semicontinuous SP system has a
minimal element. Therefore, u has a minimal element. Let
�U
M be a minimal element of  u. Due to the one-to-one

correspondence between kerð uÞ and Kð�Þ (see the proof
of Proposition 2), there exists a unique �M 2 Kð�Þ such
that �U

Mðx; yÞ ¼ U½�MðxÞ þ y�, 8ðx; yÞ 2 E� T . We claim
that �M is a minimal element ofKð�Þ, for otherwise, there
exists � 2 Kð�Þ such that � � �M . Let then �Uðx; yÞ ¼
U ½�ðxÞ þ y�, 8ðx; yÞ 2 E� T . From the one-to-one corre-
spondence between kerð uÞ and Kð�Þ, we deduce that
�U 2 Kerð uÞ, and �U � �U

M . This contradicts the fact that
�U
M is a minimal element of Kerð uÞ. Therefore, we

conclude that �M is a minimal element of Kð�Þ. tu
Proof of Theorem 3. Let � be an upper-semicontinuous

V-system and consider �A 2 Kð�Þ. Then, there exists
�B 2 Kð�Þ such that �B � �A, for otherwise, �A is a
minimal element. Therefore, for every �A 2 Kð�Þ, we
can construct a decreasing family L of Kð�Þ containing
�A. From the fact that L is a totally ordered subset of
Kð�Þ and from Hausdorff’s maximality principle [4],
there exists a maximal totally ordered subsetM of Kð�Þ
containing L. Let �MðxÞ ¼ ð^MÞðxÞ ¼ ^�2M�ðxÞ for
every x 2 E. From [33, Lemma 4.1], there exists a
sequence f�nðxÞ : n 2 IN;�n 2 Mg such that �nðxÞ #
�MðxÞ for every x 2 E. From the fact that � is an
upper-semicontinuous system and that �nðxÞ is an
upper-semicontinuous function for every x 2 E, we have

�ð�nðxÞÞ # �ð�MðxÞÞ; 8x 2 E:

We also have �ð�nðxÞÞ # ^n�ð�nðxÞÞ, 8x. By the unique-
ness of the limit, we have ½�ð�MðxÞÞ�ðxÞ ¼ ^n½�ð�nðxÞÞ�
ðxÞ. Since �n 2 Kð�Þ, we have ½�ð�nðxÞÞ�ðxÞ � 0; 8n 2 IN;
8x 2 E. Hence, ½�ð�MðxÞÞ�ðxÞ � 0; 8x 2 E. Thus, �M 2
Kð�Þ.Wehave�M ¼ ^M � ^L � �A.Weclaimthat�M is

a minimal element of Kð�Þ. Otherwise, there exists � 2
Kð�Þ such that � � �M . The setM[ f�g is then a totally

ordered subset ofKð�Þ containingM. This contradicts the

maximality of M. Finally, we have shown that �M is a

minimal element ofKð�Þ and �M � �A. tu
Proof of Theorem 4. Let � be a upper-semicontinuous

V-system. From Theorem 1, � has a kernel representation

as the supremum of SVFP erosions. From the fact that

BBBB� � Kð�Þ, we have _�2BBBB�
E� � _�2Kð�ÞE�. From Theo-

rem 3, for every � 2 Kð�Þ, there exists �M 2 BBBB� such that

�M � �. Thus, E� � E�M
. Therefore, _�2Kð�ÞE� � _�2BBBB�

E�. The result follows by antisymmetry of the partial

order � . tu

APPENDIX D

PROOF OF COROLLARIES

Proof of Corollary 1. Let � be an FSP system, which

commutes with thresholding. From [9, Theorem 3], both �

and its SP system � are increasing and upper-semicontin-

uous. From the kernel representation of increasing SVSP

systems given in [11], we have �½X tðfÞ� ¼ X t½�ðfÞ� ¼S
�2Kerð�Þ E� ðX tðfÞÞ ¼

T
�2Kerð��Þ D�0 ðX tðfÞÞ. Using Propo-

sition 1 and the fact that the intersection (respectively,

union) of threshold sets corresponds to ^ (respectively, _)

of functions [5, (8) and (9)], we obtain

�ðfÞ ¼ _
�2Kerð�Þ

E�ðfÞ ¼ ^
�2Kerð��Þ

D�0 ðfÞ: ð58Þ

tu
Proof of Corollary 2. Let � : USCðZZmÞ ! USCðZZmÞ be an

increasing and upper-semicontinuous V-system. From

Theorem 4, � has a basis representation in terms of SVFP

erosions. Assume further that its dual system �� is upper-

semicontinuous. �� is also increasing. Therefore, applying

Theorem 4 to �� and since �f is also upper-semicontin-

uous, we obtain ��ðfÞ¼��ð�fÞ ¼ _�2BBBB�� E�ðfÞ¼)�ðfÞ¼
^�2BBBB�� D�0 ðfÞ. Thus, � also has a basis representation in

terms of SVFP dilations. tu
Proof of Corollary 3.

a. Let � : USCðEÞ ! USCðEÞ be an SVFSP system
that commutes with thresholding. Consider its
SVSP system  . From [9, Theorem 3], both � and �
are increasing and upper-semicontinuous. Con-
sider a function f . From the kernel representation
of increasing SVSP systems in [11], we have

�½X tðfÞ� ¼ X t½�ðfÞ� ¼
[
�2B�
E�ðX tðfÞÞ

¼
[

�2Bð�Þ
X t½E�ðfÞ� ) �ðfÞ ¼ _�2B�E�ðfÞ:

b. �� is also an increasing V-system. By assumption,

it is also upper-semicontinuous. Applying Cor-

ollary 3a to ��, we obtain the desired result. tu
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Approfondies in signal and image processing
from ENSEA in 2003, and the MS degree in
mathematics and the PhD degree in electrical

and computer engineering from the University of Illinois, Chicago, in
2007. In Fall 2007, she joined the University of Arkansas, Little Rock,
where she is currently an assistant professor in the Department of
Systems Engineering. Her research interests are signal, image, and
video processing, mathematical morphology, and genomic signal
processing. She received the Best Student Paper Award in Visual
Communication and Image Processing in 2006. She is a member of
the IEEE.

Dan Schonfeld received the BS degree in
electrical engineering and computer science
from the University of California, Berkeley, in
1986 and the MS and PhD degrees in electrical
and computer engineering from the Johns
Hopkins University in 1988 and 1990, respec-
tively. In 1990, he joined the University of Illinois,
Chicago, where he is currently a professor in the
Department of Electrical and Computer Engi-
neering. He is currently an associate editor of

the IEEE Transactions on Image Processing on Image and Video
Storage, Retrieval and Analysis and the IEEE Transactions on Circuits
and Systems for Video Technology on Video Analysis. He has served as
an associate editor of the IEEE Transactions on Signal Processing on
Multidimensional Signal Processing and Multimedia Signal Processing
and the IEEE Transactions on Image Processing on Nonlinear Filtering.
His current research interests are signal, image, and video processing,
video communications, retrieval, and networks, image analysis and
computer vision, and genomic signal processing. He is the author of
more than 100 technical papers in various journals and conference
proceedings. He is a coauthor of the papers that won the Best Student
Paper Awards in Visual Communication and Image Processing in 2006
and the IEEE International Conference on Image Processing (ICIP) in
2006 and 2007. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 5, MAY 2008


