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Abstract—In this paper, we present a comprehensive analysis of self-dual and

m-idempotent operators. We refer to an operator as m-idempotent if it converges

after m iterations. We focus on an important special case of the general theory of

lattice morphology: spatially variant morphology, which captures the geometrical

interpretation of spatially variant structuring elements. We demonstrate that every

increasing self-dual morphological operator can be viewed as a morphological

center. Necessary and sufficient conditions for the idempotence of morphological

operators are characterized in terms of their kernel representation. We further

extend our results to the representation of the kernel of m-idempotent

morphological operators. We then rely on the conditions on the kernel

representation derived and establish methods for the construction of

m-idempotent and self-dual morphological operators. Finally, we illustrate the

importance of the self-duality and m-idempotence properties by an application to

speckle noise removal in radar images.

Index Terms—Mathematical morphology, spatially-invariant mathematical

morphology, duality, idempotence.
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1 INTRODUCTION

MOST morphological operators occur in pairs of dual operators,
such as erosion/dilation and opening/closing. In the binary case,
duality refers to processing of the background instead of the
foreground of the image. For example, erosion of the background of
an image is equivalent to dilation of its foreground. An operator
which acts on the foreground and background in the same fashion
is called a self-dual operator. Examples of self-dual morphological
operators are median filters, self-dual connected operators such as
levelings [17], [18], and merging-based autodual connected
operators [25]. However, self-dual operators are not necessarily
morphological filters, i.e., idempotent. In fact, in the case of the
median filter, not only is it not idempotent, but it may not converge
and thus repeated application of median filtering could enter into a
cycle [5]. The importance of idempotence in image analysis has
been emphasized by Serra [28]. Classical examples of idempotent
operators include ideal (low-pass, high-pass, and band-pass) filters

and morphological filters (opening and closing, alternating filters,
alternating sequential filters (ASF)).

The quest for self-dual and/or idempotent operators has been
the focus of many investigators. We refer to some important work
in the area in chronological order. A morphological operator that is
idempotent and self-dual has been proposed in [28] by using the
notion of the middle element. The middle element, however, can
only be obtained through repeated (possibly infinite) iterations.
Meyer and Serra [19] established conditions for the idempotence of
the class of the contrast mappings. Heijmans [8] proposed a
general method for the construction of morphological operators
that are self-dual, but not necessarily idempotent. Heijmans and
Ronse [10] derived conditions for the idempotence of the self-dual
annular operator, in which case it will be called an annular filter.
An alternative framework for morphological image processing that
gives rise to image operators which are intrinsically self-dual is
based upon the definition of a new self-dual partial ordering.
Heijmans and Keshet [9] and Mehmet and Jackway [16] proposed
alternative self-dual orderings on the gray-scale values of images.
Self-dual morphological operators result in a natural way if the
underlying partial ordering is self-dual. The price paid for this
property is that the underlying algebraic structure of the image
space is less rich. One ends up with semilattices rather than with
lattices [9]. More discussion on morphology for images with
alternative ordering, including geodesic reconstructions, can be
found in [21]. Soille revisited the notion of self-duality using the
more general concept of flat zones [30]. Recently, tree-based
approaches to producing self-dual morphological operators were
investigated in [12] and [36].

1.1 Motivation

Self-duality is a desirable property for at least two reasons: The first
reason is that self-dual operators do not require a priori delineation
of the image in terms of foreground and background. Such
operators are well suited to applications where we desire to
separate two components, one of which is sometimes lighter and
sometimes darker than the other component. An example is the
case in which we want to eliminate background noise [28]. Another
scenario which requires self-dual operators arises when filtering
images where the designation of foreground and background is
unclear, e.g., textures, natural scenes, earth observation imagery
[31], and radar images [16]. The second reason is that Yli-Harja et al.
[37] have shown that self-dual binary filters are statistically
unbiased in the sense of median, i.e., the median of the input is
also the median of the output in the case of i.i.d. random variables.
Similar results have also been presented experimentally by
Stevenson and Arce [33], who demonstrated that median filters
which are self-dual operators lead to unbiased estimates, whereas
filtering using morphological operators that are not self-dual (e.g.,
opening and closing) results in biased estimates.

In many applications, it is also desirable to impose a stability
condition: The operator  should be idempotent ( 2 ¼  ) or at least
rapidly converging ( mþ1 ¼  m, for some positive integer m) [24].
The idempotence or rapid convergence properties may be of great
importance in situations where repeated filtering is undesirable
due, for instance, to processing time [24]. In practice, idempotence
implies that the transformation is complete and no further
processing is required to achieve the aim of the filter [23].
Nonidempotent operators, on the other hand, must be repeated
over several iterations and it is generally very difficult to predict
how many iterations must be applied before the transformed
signal (or image) reaches a desired state. Even worse, repeated
iteration of nonidempotent operators often does not reach steady
state and such a state may not exist [8].

In this paper, we formalize the notion of rapid convergence by
introducing the concept of m-idempotence, namely, we refer to an
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operator asm-idempotent provided that it converges after exactlym

iterations, where m is a positive finite integer. We develop methods

for construction of spatially variant morphological operators that

are both self-dual and m-idempotent. SV morphology was first

introduced by Serra in [28, Chapters 2 and 4], recently extended by

Bouaynaya et al. in [2], [3], [4], and is currently playing a significant

role in various signal and image processing applications [34], [35].

Our construction of morphological operators relies on a spatially

variant version of a generalized morphological center. We demon-

strate that self-dual operators form a subclass of the generalized

morphological centers that can be used to establish an isomorphism

between increasing self-dual operators and morphological centers.

Self-duality and m-idempotence will therefore be characterized by

constraints on the spatially variant structuring elements of the

kernel of the generalized morphological center. In particular, we

will show that Heijman’s self-dual morphology based on switch

operators [8] is a special case of the proposed self-duality theory.

Moreover, we will establish methods that rely on the spatially-

variant kernel representation of the generalized morphological

center for construction of m-idempotent and self-dual morphologi-

cal operators.
This paper is organized as follows: In Section 2, we briefly recall

the basics of spatially variant morphology [2], [3], [4]. In Section 3,
a method for the construction of self-dual morphological operators
based on the notion of the morphological center and its kernel
representation is presented. In Section 4, we provide necessary and
sufficient conditions for the construction of overfilters and under-
filters given by their kernel representation. In Section 5, sufficient
conditions for the construction of m-idempotent self-dual mor-
phological centers given by their kernel representation are
provided. In Section 6, the results of the previous section are
extended to obtain sufficient conditions for the construction of
m-idempotent (not necessarily self-dual) morphological centers
given by their kernel representation. Section 8 presents an
application to speckle noise removal in radar images.

2 PRELIMINARIES

In this paper, we consider the continuous or discrete euclidean
space E ¼ IRn or ZZn for some n > 0. A binary image can be
represented as a subset of E. The set PðEÞ denotes the set of all
subsets of E. Elements of the set E will be denoted by lower case
letters, e.g., a; b; c. Elements of the set PðEÞ will be denoted by
upper case letters, e.g., A;B;C. An order on PðEÞ is imposed by
the inclusion � . We use [ and \ to denote the union and
intersection in PðEÞ, respectively. “);,;8;9” denote, respec-
tively, “implies,” “if and only if (iff),” “for all,” and “there exist(s).”
Xc denotes the complement of X, and �X ¼ �X ¼ f�x : x 2 Xg
denotes the reflected set of X. The translate of the set X by the
element a 2 E is defined by X þ a ¼ fxþ a : x 2 Xg. We use O ¼
PðEÞPðEÞ to denote the set of all operators mapping PðEÞ into itself.
Elements of the set O will be denoted by lower case Greek letters,
e.g., �; �; �. Id will denote the identity operator of PðEÞ into itself.
An order on O is imposed by the inclusion � , i.e., � � � if and
only if �ðXÞ � �ðXÞ for every X 2 PðEÞ. The symbol “n” will
denote, at the same time, the difference between sets and the
induced difference between operators in O. We shall restrict our
attention to nondegenerate operators, i.e.,  ðEÞ ¼ E and  ð;Þ ¼ ;
for every  2 O.

The mapping  � in O is the dual of the mapping  in O iff

 �ðXÞ ¼ ð ðXcÞÞc, for all X 2 PðEÞ. A self-dual operator is an

operator such that  � ¼  .
Throughout the paper, we provide references to known results

and limit the presentation of proofs to new contributions. All
proofs are presented in the supplemental material, which can be
found in the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2011.244.

2.1 Spatially Variant Mathematical Morphology

In the SVMM framework, the structuring element is not fixed but
varies (in size, shape, and other characteristics) in space. The

spatially variant structuring element � is given by a mapping from
E into PðEÞ such that to every z 2 E we can associate a “local”

structuring element �ðzÞ. The transposed spatially variant structur-
ing element �0 is given by a mapping from E into PðEÞ such that

�0ðyÞ ¼ fz 2 E : y 2 �ðzÞg ðy 2 EÞ: ð1Þ

The SV erosion and dilation are defined as follows [1], [3],

[22], [28]:
Spatially variant erosion: The spatially-variant erosion E� 2 O is

defined as

E�ðXÞ ¼ fz 2 E : �ðzÞ � Xg ¼
\
x2Xc

�0cðxÞðX 2 PðEÞÞ: ð2Þ

Spatially variant dilation: The spatially variant dilation D� 2 O
is defined as

D�ðXÞ ¼ fz 2 E : �0ðzÞ \X 6¼ ;g ¼
[
x2X

�ðxÞðX 2 PðEÞÞ: ð3Þ

A kernel representation theorem [6] that extends Matheron’s
representation theorem to increasing (but not necessarily transla-
tion invariant) operators can also be proven [3].

Theorem 1 [3]. A nondegenerate operator � 2 O is increasing if and

only if � can be exactly represented as union of spatially variant

erosions by mappings in its kernel or equivalently as intersection of

spatially variant dilations by the transposed mappings in the kernel of

its dual ��, i.e.,

�ðXÞ ¼
[

�2 Ker ð�Þ
E�ðXÞ ¼

\
�2 Ker ð��Þ

D�0 ðXÞ; ð4Þ

for every X 2 PðEÞ, where

Kerð�Þ ¼ f� : z 2 �ð�ðzÞÞ; for every z 2 Eg: ð5Þ

The SV kernel representation, given in (5), is redundant in the
sense that a smaller subset of the kernel is sufficient for the
representation of increasing operators [3]. In this paper, we say
that an increasing operator � is generated by a family of spatially
variant structuring elements f�igi2I if

� ¼
[
i2I
E�i : ð6Þ

Observe that the family f�igi2I is a subset of the kernel of � such
that for every � 2 Kerð�Þ, there exists i 2 I such that �i � �.
Furthermore, we assume that �j � �i ) �j ¼ �i. The family f�igi2I
is also called a basis of the kernel of � [13], [3]. The requirement that
the kernel of � has a basis, i.e., that every member of the kernel is
bounded by a maximal element, requires some continuity
condition on � [15], [3]. It is verified if � is locally finitary, i.e.,
p 2 �ðXÞ ) p 2 �ðY Þ, for a finite subset Y of X.

3 SELF-DUALITY

We assume throughout this section that all operators in O are
increasing. In particular, extension of increasing set operators into
flat operators follows from [11], [14], [20], [27], [28], [32]. Following
Serra’s work on self-dual filtering [28], we shall enlarge the
concept of the self-dual mapping to that of the central mapping, or
center, which does not require the existence of complementation.
The morphological center, �, of two operators �1 � �2 is defined
by Serra [28]:

� ¼ ðId \ �2Þ [ �1 ¼ ðId [ �1Þ \ �2: ð7Þ
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More generally, let f�igi2I be an arbitrary family of operators in

O. The morphological center � with respect to this family is

defined as [28]

� ¼ Id \
[
i2I
�i

 !
[

\
i2I
�i

 !
: ð8Þ

We will show that every increasing self-dual morphological
operator can be viewed as a morphological center. The following
theorem provides a necessary and sufficient condition for the self-
duality of the morphological center.

Theorem 2. Consider the morphological center � of two operators

�1 � �2. Then, � is self-dual if and only if

Id \ ��1 � � � Id [ ��2; ð9Þ

and ð10Þ

��2 � � � ��1: ð11Þ

From Theorem 2, we derive two corollaries which will be used
for the construction of self-dual increasing operators.

Corollary 1. The operator � is self-dual if and only if

Id \ ��1 � �2 and �1 � Id [ ��2 ð12Þ

and ð13Þ

��2 � � � ��1: ð14Þ

Lemma 1. If �2 ¼ ��1, then the morphological center � is self-dual.

The following theorem provides a method for the construction
of increasing self-dual operators based on the result of Lemma 1.
We assume that �1 is generated by the family f�igi2I , i.e.,

�1ðXÞ ¼
[
i2I
E�i ðXÞ: ð15Þ

Before stating the main theorem, we prove a lemma giving a
necessary and sufficient condition on the kernel of �1 such that
�1 � ��1.

Lemma 2. �1 � ��1 if and only if �iðzÞ \ �jðzÞ 6¼ ;, for every z 2 E and

for every i; j 2 I.

Theorem 3 (Self-duality of the SV morphological center). If the

operator �1, given by �1 ¼
S
i2I E�i , is such that �iðzÞ \ �jðzÞ 6¼ ; for

all i; j 2 I and all z 2 E, then the morphological center � ¼
ðId \ ��1Þ [ �1 is self-dual.

In the translation-invariant case, Theorem 3 reduces to the
following corollary.

Corollary 2 (Self-duality of the TI morphological center). If the

operator �1, given by �1ðXÞ ¼
S
i2IðX �AiÞ, for every X 2 PðEÞ,

is such that Ai \Aj 6¼ ; for every i; j 2 I, then the morphological

center � ¼ ðId \ ��1Þ [ �1 is self-dual.

The following example illustrates the self-duality of the
morphological center in the translation-invariant case.

Example 1. Let A;B be two structuring elements given, respec-
tively, by

A ¼
0 1 1
0 1 1
0 0 0

0
@

1
A; B ¼

0 1 0
1 0 1
0 1 0

0
@

1
A; ð16Þ

where the origin is taken at the center of the matrices. From
Corollary 2, it can be seen that the morphological center �

given by

�ðXÞ ¼ X \
�
ðX � �AÞ \ ðX � BÞ

�
[
�
ðX �AÞ [ ðX � BÞ

�
; ð17Þ

for every X 2 PðEÞ, is a self-dual operator.

We end this section with a theorem showing that the class of all

morphological centers of �1 and ��1 satisfying �1 � ��1 contains all

self-dual operators. The following lemma will be useful for the

proof of the theorem.

Lemma 3. Let � 2 O. For any �1 � �2, we have � ¼ ðId \ �2Þ [ �1 if

and only if � \ Idc � �1 � � and � � �2 � � [ Idc.
Theorem 4 (Self-duality of SV operators). The operator � 2 O is

self-dual if and only if there exists �1 2 O such that �1 � ��1 and

� ¼ ðId \ ��1Þ [ �1 ¼ ðId [ �1Þ \ ��1.

Theorem 4 states that every self-dual operator � can be viewed

as the morphological center of the operator �1 ¼ � \ Idc and its

dual ��1 ¼ � [ Idc. Note that for a given �, there can be several �1,

with � ¼ ðId [ �1Þ \ ��1. Clearly, among such �1, � is the greatest

one and � \ Idc is the least one. One should also notice that as long

as � is not identically equal to Id or Idc, the operator �1 is

nontrivial. In particular, for � ¼ Id (respectively, Idc), one gets

�1 ¼ ; (respectively, Idc). This provides a procedure for the

construction of arbitrary self-dual operators. By considering all

the operators �1 such that �1 � ��1, we are sure to cover all the self-

dual operators by considering all the centers of the form

ðId \ ��1Þ [ �1.
Now, the algorithm for the construction of self-dual operators is

straightforward.

Algorithm for the construction of self-dual operators:

1) Consider a family of mappings f�igi2I such that

�iðzÞ \ �jðzÞ 6¼ ;;8i; j 2 I; 8z 2 E.

2) Construct the operator �1 ¼ [i2I E�i
3) The operator � ¼ ðId \ ��1Þ [ �1 is self-dual.

Moreover, every increasing self-dual operator can be con-

structed using the above algorithm.
We now show that Heijmans’ method of the construction of

self-dual operators in [8] is a special case of the proposed self-

duality theory, corresponding to the choice of �1 ¼ � \ Idc.
Example 2 (The switching operator [8]). A switch operator �

associated with a self-dual operator � is defined by

�ðXÞ ¼ X \ �ðXcÞ; ðX 2 PðEÞÞ: ð18Þ

The term “switch operator” has been used by Heijmans to

denote two properties of �, that are satisfied if and only if the

self-dual operator � is increasing. The self-dual operator � can

be reconstructed from � by means of the following formula [8]:

�ðXÞ ¼ ðX \ �ðXÞcÞ [ �ðXcÞ; ðX 2 PðEÞÞ: ð19Þ

By letting �1ðXÞ ¼ ð� \ IdcÞðXÞ ¼ �ðXcÞ, it is easy to see that

we have

�ðXÞ ¼ ðX \ �ðXÞcÞ [ �ðXcÞ
¼ ðX \ ��1ðXÞÞ [ �1ðXÞ:

ð20Þ

Therefore, Heijman’s construction of self-dual operators is a

special case of the proposed self-duality theory, corresponding

to the choice of �1 ¼ � \ Idc in Theorem 4.
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4 OVERFILTERS AND UNDERFILTERS

Definition 1 [28]. An increasing operator � is called an overfilter

(respectively, underfilter) if � � �2 (respextively, �2 � �). An

increasing operator � is an inf-overfilter (respestively, sup-under-

filter) if �ðId \ �Þ ¼ � (respectively, �ðId [ �Þ ¼ �).

Observe that an operator that is simultaneously an overfilter

and an underfilter is an idempotent operator.

4.1 Overfilters

In the following, we derive a theorem which provides a necessary

and sufficient condition on the elements of the kernel of � ¼S
i2I E�i in order for � to be an overfilter.

Lemma 4. Consider � 2 O. We have � � �2 if and only if for every

z 2 E and for every i 2 I there exists j 2 I such that �jðzÞ �
�ð�iðzÞÞ.

Theorem 5 (SV overfilters). The operator � 2 O is an overfilter if and

only if for every z 2 E and for every i 2 I there exists j 2 I such that

for every y 2 �jðzÞ there exists kðyÞ 2 I such that �kðyÞðyÞ � �iðzÞ,
where k is a mapping from E to I.

Fig. 1a provides a simple summary of Theorem 5. For every

SVSE i of z, we can always find a SVSE j of z such that for every

element y in the jth SVSE, it is possible to come back to the ith SVSE

of z by using some other SVSE k of y. This condition generalizes the

concept of triple adjacency introduced by Heijmans [7].
The following corollary is a direct consequence of Theorem 5

for the translation-invariant case.

Corollary 3 (TI overfilters). The translation-invariant operator � is an

overfilter if and only if for every i 2 I there exists j 2 I such that for

every y 2 Aj there exists kðyÞ 2 I such that ðAkðyÞÞy � Ai.

In the following, we provide some examples showing how one
can build overfilters in the increasing and translation-invariant
case by using Corollary 3.

Example 3 (Translation-invariant morphological opening). Let �

be the translation-invariant opening by a structuring element B.

It is known that the basis of the kernel of � is given by fB�zgz2B
[28]. For every Ai ¼ B�z, it is possible to choose Aj ¼ B�z
satisfying Corollary 3. This proves the known fact that the

translation-invariant opening is idempotent and in particular

an overfilter.

Example 4. Let A; fA�zgz2B;B; fB�zgz2B be the elements of the

kernel of some operator �. It is straightforward to see that A

satisfies the condition of Corollary 3. The structuring

element A�z also satisfies this condition because, for every

t 2 B�z, we have A�z�t ¼ A�ðzþtÞ ¼ Ab with b 2 B. Also, from

Example 1, B; fB�zgz2B satisfy the condition. Therefore, from

Corollary 3, the operator � given by

�ðXÞ ¼ ðX � AÞ [ ðX �BÞ [ �BðXÞ [ ðX � A�BÞ;

for every X 2 PðEÞ, is an overfilter.

The following proposition gives the structure of the kernel of an

inf-overfilter.

Proposition 1 (SV inf-overfilters). The operator � is an inf-overfilter

if and only if for every z 2 E, for every i 2 I there exists j 2 I such

that �jðzÞ � �iðzÞ \ �ð�iðzÞÞ.
Moreover, if we assume that there is no inclusion between the

elements of the kernel generating �, i.e., �j � �i ) �j ¼ �i, then �
is an inf-overfilter if and only if for every i 2 I for every z 2 E we
have �iðzÞ � �ð�iðzÞÞ.
In the translation invariant case, Proposition 1 reduces to the

following corollary:

Corollary 4. The operator � is an inf-overfilter if and only if for every

i 2 I we have Ai � �ðAiÞ.

From Proposition 1 and Corollary 4, we verify the known fact

that an inf-overfilter is an overfilter.

4.2 Underfilters

We now provide a necessary and sufficient condition on the

elements of the kernel of � in order for � to be an underfilter.

Theorem 6. The operator � is an underfilter if and only if for every

z 2 E for every i 2 I and for every mapping k : �iðzÞ 7! I there exists

l 2 I such that

�lðzÞ �
[

y2�iðzÞ
�kðyÞðyÞ: ð21Þ

Fig. 1b shows the mechanism involved in Theorem 6. To every

element y of every SVSE i of z we can associate any SVSE k of y such

that the union of all the associated SVSEs covers some SVSE l of z.
The following corollary provides a necessary and sufficient

condition on the elements of the kernel of � in order for � to

be an underfilter in the increasing and translation-invariant

case.

Corollary 5. The operator � 2 O is an underfilter if and only if for every

i 2 I and for every mapping k : Ai 7! I there exists l 2 I such that

Al �
[
y2Ai

ðAkðyÞÞy: ð22Þ

In general, the construction of underfilters based on (21)

(respectively, (22)) is not easy. A simple case is when � is

antiextensive. In this case, we have for every i 2 I and for every
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z 2 E, z 2 �iðzÞ (respectively, 0 2 Ai, for every i 2 I) and therefore

Theorem 6 (respectively, Corollary 5) is satisfied.
The following proposition gives the structure of the kernel of a

sup-underfilter in the translation-invariant case.

Proposition 2. The operator � 2 O is a sup-underfilter if and only if for

every i 2 I for every Bi � Ai and for every mapping k: Ai nBi 7! I

there exists j 2 I such that Aj � Bi [
S
y2AinBi

ðAkðyÞÞy.

From Proposition 2 and Corollary 5, we verify the known fact

that a sup-underfilter is an underfilter.

5 SELF-DUALITY AND IDEMPOTENCE

5.1 Idempotence

In this section, we provide sufficient conditions on the elements of

the kernel of � for the idempotence of the self-dual morphological

center � of � and ��. This result is subsequently extended to

provide elements of the kernel of � in order to have �mþ1 ¼ �m, for

any positive integer m.
We assume throughout this section that � is given by

�ðXÞ ¼
S
i2I E�i ðXÞ, for every X 2 PðEÞ, if � is increasing and by

�ðXÞ ¼
S
i2IðX �AiÞ, for every X 2 PðEÞ, if � is increasing and

translation invariant.
The mappings f�igi2I (respectively, fAigi2I ) are assumed to be

symmetric, i.e., �i ¼ �0i (respectively, Ai ¼ �Ai) for all i 2 I. The

symmetry condition of the SV structuring element � can be

expressed as follows: For every y; z 2 E and for every i 2 I, we

have y 2 �iðzÞ ¼) z 2 �iðyÞ. We also assume that for every i; j 2 I
and for every z 2 E, �iðzÞ \ �jðzÞ 6¼ ; (respectively, Ai \Aj 6¼ ;).
From Theorem 3 (respectively, Corollary 2), it can be concluded that

the morphological center � of � and �� is self-dual. In order to

determine conditions on the mappings f�igi2I (respectively,

fAigi2I ) for the morphological center � to be idempotent, we first

start by studying the kernel of �. Its structure is given by the

following proposition.

Proposition 3. The kernel of � is generated by the following mapping

� : E 7! PðEÞ (respectively, structuring elements B) given by

�ðzÞ ¼ fzg [
[

yi2�iðzÞ
i2I

fyig or �ðzÞ ¼ �iðzÞ; for i 2 I ð23Þ

for every z 2 E (respectively, B ¼ f0g [
S
i2Ifai; ai 2 Aig or B ¼

Ai for i 2 I).

The following theorem provides sufficient conditions on the
elements of the kernel of � in order for the self-dual morphological
center � to be idempotent.

Theorem 7 (Idempotence of self-dual SV centers). The self-dual

morphological center � of � and �� is idempotent if for every z 2 E,

we have

1. For every i; j 2 I and for every xi 2 �iðzÞ n �jðzÞ and
yj 2 �jðzÞ n �iðzÞ, xi 2 �iðyjÞ and yj 2 �jðxiÞ; and

2. For every i 2 I there exists x 2
T
k2I �kðzÞ such that for

every j 2 I there exists yj 2 �jðxÞ such that z 2 �iðyjÞ.
For clarity, we will translate the conditions provided in the

previous Theorem into the concept of graph morphology. Condi-
tions 1 and 2 are represented by Fig. 2.

The next corollary provides sufficient conditions for the self-

dual morphological center to be idempotent in the increasing and

translation-invariant case.

Corollary 6 (Idempotence of self-dual TI centers). The self-dual

morphological center � of � and �� is idempotent if we have

1. For every i; j 2 I and for every xi 2 Ai nAj and
yj 2 Aj nAi, xi � yj 2 Ai \Aj; and

2. For every i 2 I there exists x 2
T
k2I Ak such that for every

j 2 I we have 0 2 Ai � ðAjÞx.

The next example presents a special case of Corollary 6 with
one structuring element, that is, �ðXÞ ¼ X � A, X 2 PðEÞ, is the
erosion by the symmetric structuring element A.

Example 5 (The self-dual center of the TI erosion [10]). Let A be
a symmetric structuring element. Then, the morphological
center � given by

�ðXÞ ¼ ðX \ ðX � AÞÞ [ ðX �AÞ; ð24Þ

for every X 2 PðEÞ, is idempotent if 0 2 A�A� A.
For instance, let A be given by

A ¼
1 1 1
1 0 1
1 1 1

0
@

1
A: ð25Þ

It is clear that the morphological center � is self-dual and
idempotent.

The next example illustrates Corollary 6 in the case of two
structuring elements.

Example 6. The morphological center � given by

�ðXÞ ¼ ðX \ ððX �AÞ \ ðX �BÞÞÞ
[ ððX � AÞ [ ðX �BÞÞ;

ð26Þ

for every X 2 PðEÞ, with A and B symmetric and A \B 6¼ ;, is
idempotent if

1. For every x 2 A nB and y 2 B nA, x� y 2 A \ B; and
2. There exists x; y 2 A \B such that 0 2 Ax � A,

0 2 Bx � A, 0 2 Ay �B, and 0 2 By �B.

For instance, let A and B be given by

A ¼
0 1 1 1 0
1 0 0 0 1
0 1 1 1 0

0
@

1
A; B ¼ 0 1 0 1 0

1 1 0 1 1
0 1 0 1 0

0
@

1
A: ð27Þ

The structuring elements A and B satisfy the above conditions

and the morphological center � is self-dual and idempotent.

5.2 M-Idempotence

The following theorem provides sufficient conditions under which

the self-dual morphological center � is m-idempotent, i.e., the

operator � is such that �mþ1 ¼ �m, for some integer m � 1.

Theorem 8. Consider an integer m � 1. The self-dual morphological

center � of � and �� is m-idempotent if for every z 2 E we have
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1. For every i; j 2 I and for every xi 2 �iðzÞ n �jðzÞ and
yj 2 �jðzÞ n �iðzÞ, xi 2 �iðyjÞ and yj 2 �jðxiÞ; and

2. T h e r e e x i s t s ðx1; x2; . . . ; x2mÞ s u c h t h a t x1 2T
j2I�jðzÞ; xiþ1 2

T
j2I�jðxiÞ, for i ¼ 2; . . . ; 2m� 1 and

z 2
T
j2I�jðx2mÞ.

Condition 2 can be simply represented by Fig. 3. This
condition generalizes the notion of triple adjacency introduced
by Heijmans [7].

We shall now state the corresponding corollary for the
increasing and translation-invariant case.

Corollary 7. The self-dual morphological center � of the translation-

invariant operators � and �� is m-idempotent for some integer m � 1

if we have

1. For every ði; jÞ 2 I � I and for every xi 2 Ai nAj and
yj 2 Aj nAi, xi � yj 2 Ai \Aj; and

2. 0 2 �j¼1;...;2mþ1ð\i2I AiÞ.
We end this section by providing a special case of Corollary 7

corresponding to one structuring element.

Example 7 (The self-dual center of the TI erosion). Consider a
symmetric structuring element A. The morphological center �
given by

�ðXÞ ¼ X \ ðX � AÞ [ ðX �AÞ; ð28Þ

for every X 2 PðEÞ, is m-idempotent for some integer m � 1 if
0 2 �i¼1;...;2mþ1 A.

For instance, let A be given by

A ¼

0 0 0 0 1
0 0 1 0 0
0 1 0 1 0
0 0 1 0 0
1 0 0 0 0

0
BBBB@

1
CCCCA: ð29Þ

It is easy to verify that 0 62 A� A�A and 0 2 A�A �
A� A�A. Therefore, A satisfies the above condition and
the self-dual morphological center � is 2-idempotent, i.e.,
�3 ¼ �.

6 GENERALIZED MORPHOLOGICAL CENTER

In this section, we extend the results obtained in the previous
section to the case of the morphological center � given by

�ðXÞ ¼ X [
[
i2I
E�i ðXÞ

 !
\
\
j2J
D�j ðXÞ; ð30Þ

for every X 2 PðEÞ, for the increasing case, and by

�ðXÞ ¼ X [
[
i2I
ðX �AiÞ

 !
\
\
j2J
ðX �BjÞ; ð31Þ

for every X 2 PðEÞ, for the increasing and translation-invariant

case.
In order to ensure that � is a morphological center, we

assume that for every i 2 I, for every j 2 J , and for every z 2 E,

we have �iðzÞ \ �jðzÞ 6¼ ; (respectively, for every i 2 I and for

every j 2 J , we have Ai \ Bj 6¼ ;Þ. Finally, we assume that the

relations (respectively, structuring elements) corresponding to �i
(respectively, AiÞ and �j (respectively, Bj) are symmetric, for

every i 2 I and j 2 J . In this case, the dual �� of � is given by

��ðXÞ ¼ X \
\
i2I
D�i ðXÞ

 !
[
[
j2J
E�j ðXÞ; ð32Þ

for every X 2 PðEÞ, for the increasing case, and by

��ðXÞ ¼ X \
\
i2I
ðX �AiÞ

 !
[
[
j2J
ðX � BjÞ; ð33Þ

for every X 2 PðEÞ, for the increasing and translation-invariant

case. Notice the symmetry in the structure of � and its dual. This

symmetry implies that any result that is valid for � will be valid for

its dual by simply exchanging the roles of �i (respectively, AiÞ and

�j (respectively, Bj).
In this section, we shall provide sufficient conditions on �i

(respectively, Ai) and �j (respectively, Bj) in order for the

morphological center � to be idempotent and, more generally,

m-idempotent, for some positive integer m.

6.1 Idempotence

As in the previous section, we first begin by studying the structure

of the kernel of �. This structure is given by the following

proposition:

Proposition 4. The kernel of � is generated by the mappings � from E

into PðEÞ given by �ðzÞ ¼ fzg [
S
j2Jfyj : yj 2 �jðzÞg or �ðzÞ ¼

�iðzÞ for i 2 I, for every z 2 E.

A similar result can be obtained for the dual �� of � by

exchanging the roles of �i and �j.
The following theorem provides sufficient conditions for the

morphological center � to be idempotent.

Theorem 9. The operator � is idempotent if, for every z 2 E, we have

1. For every k; l 2 J and for every xk 2 �kðzÞ n �lðzÞ and
yl 2 �lðzÞ n �kðzÞ, xk 2 �kðylÞ and yl 2 �lðxkÞ;

2. For every i 2 I, there exists x 2 �iðzÞ \
T
j2J �jðzÞ such that

for every j 2 J there exists yj 2 �jðxÞ such that z 2 �iðyjÞ;
3. For every k; l 2 I and for every uk 2 �kðzÞ n �lðzÞ and

vl 2 �lðzÞ n �kðzÞ, uk 2 �kðvlÞ and vl 2 �lðukÞ;
4. For every j 2 J there exists y 2 �jðzÞ \

T
i2I �iðzÞ such that

for every i 2 I there exists yi 2 �iðyÞ such that z 2 �jðyiÞ.
We now state the corresponding corollary for the case of an

increasing and translation-invariant morphological center.

Corollary 8. The operator � is idempotent if, for every z 2 E, we have

1. For every k; l 2 J and for every xk 2 Bk nBl and
yl 2 Bl nBk, xk � yl 2 Bk \ Bl;

2. For every i 2 I, there exists x 2 Ai \
T
j2J Bj such that for

every j 2 J we have ðBjÞx \Ai 6¼ ;;
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3. For every k; l 2 I and for every uk 2 Ak nAl and
vl 2 Al nAk, uk � vl 2 Ak \Al;

4. For every j 2 J there exists y 2 Bj \
T
i2I Ai such that for

every i 2 I we have ðAiÞy \Bj 6¼ ;.
A special case of Corollary 8 is obtained when Ai ¼ A for all

i 2 I and Bj ¼ B for all j 2 I. The resulting morphological center is
then called the annular filter. The following example provides
sufficient conditions under which the annular filter is idempotent.

Example 8 (Idempotence of the annular filter [10]). The annular
filter � given by

�ðXÞ ¼ X \ ðX � BÞ [ ðX �AÞ; ð34Þ

with A and B symmetric, and A \B 6¼ ;, is idempotent if
ðA \BÞ \ ðA�BÞ 6¼ ;.

6.2 M-Idempotence

In the next theorem, we provide sufficient conditions under which
the morphological center � is m-idempotent for some positive
integer m.

Theorem 10. The operator � is m-idempotent for some positive integer m
if, for every z 2 E, we have

1. For every k; l 2 J and for every xk 2 �kðzÞ n �lðzÞ and
yl 2 �lðzÞ n �kðzÞ, xk 2 �kðylÞ and yl 2 �lðxkÞ;

2. There exists ðx1; x2; . . . ; x2mÞ such that

x1 2
\
j2J

�jðzÞ \
\
i2I
�iðzÞ; xlþ1 2

\
j2J

�jðxlÞ \
\
i2I
�iðxlÞ

for l ¼ 2; . . . ; 2m and

z 2
\
j2J

�jðx2mÞ \
\
i2I
�iðx2mÞ; and

3. For every k; l 2 I and for every uk 2 �kðzÞ n �lðzÞ and
vl 2 �lðzÞ n �kðzÞ, uk 2 �kðvlÞ and vl 2 �lðukÞ.

Finally, we provide the corresponding corollary for the case
where the morphological center � is increasing and translation
invariant

Corollary 9. The operator � is m-idempotent for some positive integer m
if we have

1. For every k; l 2 J and for every xk 2 Bk nBl and
yl 2 Bl nBk, xk � yl 2 Bk \Bl;

2. 0 2 �l¼1;...;2mþ1ð
T
i2I Ai \

T
j2J BjÞ; and

3. For every k; l 2 I and for every uk 2 Ak nAl and
vl 2 Al nAk, uk � vl 2 Ak \Al.

We end this section by providing sufficient conditions for the
annular filter to be m-idempotent, for some positive integer m.

Example 9 (m-idempotence of the annular filter). The annular
filter [10] � is m-idempotent for some positive integer m if we
have 0 2 �l¼1;...;2mþ1ðA \BÞ.

7 APPLICATION: SPECKLE NOISE REMOVAL

Speckle noise is a granular noise that is inherent in radar images
and causes a degradation of their quality. This noise results from
sporadic variations caused by small phase shifts in the radar signal
which may be related to ground irregularities, such as plowed soil
in a field that results in point sources which backscatter in various
directions. Fig. 4a shows a speckled radar image of a field. Note
that the image consists of several dark and bright spots next to
each other and hence there is no clear distinction between the
foreground and background. In this case, self-dual filters
are necessary to avoid dependence on the varying local contrast
in the image. A method for reducing speckle noise based on

directional alternating sequential filters has been proposed in [24].
Considering the large variation of the speckle, in order to preserve
the local average value of the amplitude, it is necessary to
alternatively suppress the local maxima and minima with
neighborhoods of increasing size. Linear structuring elements
are particularly suitable for this task as two-dimensional structur-
ing elements may contain one or several very sharp maxima or
minima so that an opening or a closing with respect to this element
modifies the local value noticeably [24]. Let us denote by ð�; pÞ the
linear structuring element of length p and angle, with respect to
the x-axis, �. The algebraic opening is then defined as [24]

�p ¼ Max ð�ð�1 ;pÞ; �ð�2 ;pÞ; . . . ; �ð�n;pÞÞ; ð35Þ

where �1; �2; . . . ; �n are the different directions chosen. Similarly,
the algebraic closing is defined as [24]

�p ¼ Min ð�ð�1 ;pÞ; �ð�2 ;pÞ; . . . ; �ð�n;pÞÞ: ð36Þ

The alternating sequential filter corresponding to mp ¼ �p�p is

Mn ¼ mpn . . .mp2
mp1

; ð37Þ

where p1 < p2 < . . . < pn. The ASF defined in (37) is called a
multidirectional filter [24].

Alternating sequential filters are generally not self-dual [26]
and the final result depends on whether one starts the filtering
with an opening or a closing. Figs. 4b and 4c show the outputs of
the directional open-close and close-open ASF, respectively, with
�i ¼ 10	; . . . ; 90	 and p ¼ 2; . . . ; 5. In fact, the more directions in
which �i will be chosen, the more details in the image will be
preserved but the less efficient the operator will be. The
maximum length pn of the structuring element is given by
the mean speckle grain width, which is 5 pixels for the radar
image in Fig. 4a. Observe that the results of the multidirectional
filter differ depending on whether one begins the sequence by an
opening or a closing. Due to the nature of the speckle noise, the
morphological center of the directional alternating sequential
filters starting with an opening and a closing processes dark and
bright structures equally, as shown in Fig. 4d (and not only the
directional alternating sequential filter starting with a closing as
was adopted in [24]). In comparison, the first and fifth iterations
of the median filter are shown in Figs. 4e and 4f, respectively.
Observe that repeated application of the median filter results in
smoother image outputs. The 1-idempotent annular filter, given
in Example 5, is both self-dual and idempotent. Its corresponding
output is displayed in Fig. 4g. The 2-idempotent annular filter,
given in Example 7, results in the filtered image in Fig. 4h at the
first iteration and Fig. 4i at the second iteration. All further
iterations of the 2-idempotent annular filter will result in outputs
identical to the second iteration of the filter.

To assess the capability of the filters to remove speckle noise
and preserve the edges of the image, we use two performance
measures suggested by Sheng and Xia [29]: the speckle suppres-
sion index (SSI) and the edge enhancing index (EEI).

Speckle suppression index [29]: The speckle suppression index
is defined as the coefficient of variance of the filtered image
normalized by that of the original image:

SSI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V arðIf Þ

p
MeanðIfÞ

MeanðI0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V arðI0Þ

p ; ð38Þ

where I0 and If denote the original and filtered image,
respectively. For most cases, SSI < 1, which means speckle is
suppressed. The lower the SSI, the stronger is the suppression
ability of the filter.

Edge enhancing index [29]: The EEI is defined as

EEI ¼
P
jI01 � I02jP
jIf1 � If2j

; ð39Þ
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where I01 and I02 are the original values of the pixels on either
side of the edge, whereas If1 and If2 are the corresponding filtered
values. The numerator is the absolute difference in intensity of the
pixels on the two sides of the edge in the original image and the
denominator is the same difference in the filtered image. There-
fore, the EEI is usually greater than 1, and lower EEI values
correspond to a better edge preserving capability.

Table 1 shows the SSI and EEI values of the filters in Fig. 4.
The fifth iteration of the median filter removes most of the speckle
noise, followed by the directional close-open ASF and the
morphological center. The annular filters result in the poorest
denoising. On the other hand, consecutive iterations of the median
filter smooth the output image, thus resulting in indistinct edges.
Because of their poor denoising capability, the annular filters lead
to high edge enhancing index. The morphological center achieves
an optimum tradeoff between speckle noise removal and edge
preservation.

8 CONCLUSION

In this paper, we have presented a comprehensive analysis of

m-idempotent and self-dual morphological operators. Our in-

vestigation was based on the morphological center in the general
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Fig. 4. Speckle noise removal: (a) original speckled radar image, (b) directional ASF close-open, (c) directional ASF open-close, (d) morphological center, (e) median
filtering: iteration 1, (f) median filtering: iteration 5, (g) 1-idempotent annular filter, (h) 2-idempotent annular filter: iteration 1, (i) 2-idempotent annular filter: iteration 2.

TABLE 1
SSI and EEI of the Different Filters in Fig. 4



framework of spatially variant mathematical morphology. We

have shown that the class of self-dual operators is contained in

the class of morphological centers. We have relied on this

framework to provide sufficient conditions for the representation

of self-dual increasing operators characterized in terms of their

kernel representation.
We have also derived necessary and sufficient conditions for

the representation of idempotent operators by characterization of

the kernel of underfilters and overfilters. Furthermore, we

introduced m-idempotent operators by extending the notion of

idempotence (i.e., operators that converge after m iterations) and

characterized the kernel of m-idempotent operators. We finally

used the conditions on the kernel representation derived to

establish methods for the construction of m-idempotent and self-

dual morphological operators.
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