M-ldempotent and Self-Dual Morphological everyi € I, € J and for everyz € E and then by letting

Filters: Supplemental Material z=0. u
Proof of Lemma 1: ay = of = a1 = ab. Hence, we
A. PROPERTIES OHNCREASING OPERATORS have
The following propositions will be useful for the subsequen p = (IdUad)Naf=[ITdNaz)Ua]" =p*. (41)
proofs. -

Proof of Lemma 2: Let a; = (J,c; &,. We havea] =

Proposition 5 [3] Let a; andas be two increasing operators. Mics Do It follows that

We haven; C as if and only if Kel(ap) C Ker(az).

a1 C Of{ s VY i,j, 591. - Dg; (42)
Proposition 6 [6] Let a; andas be two increasing operators. & Vij 2 X, (0;(2) CX) = (6;(2) N X #0).
We have B
By taking X = 6,;(z), we obtainVi, j, z,0;(2) N6;(z) # 0. &
Ker(a1) UKer(az) C Ker(ar U az), (38) Proof of Lemma 3:By recalling the identity:X C (Y U
Ker(ar Nas) = Ker(ar) NKer(as). (39) Z) < (XNZzZ°)CY, we have
a=IdNayUay, a; C as (43)

B. PROOF OFLEMMAS AND COROLLARIES

— a1 CaCayandldNa; Ca CIdUa;
Proof of Corollary 1: Let a5 C p C of. From Theorem

— a1 CaCldUa; andIdNa; C a C asy

2, we have
< anNld°Ca; Caanda C as C aU Id-.
p=p" <= Idnaj CpCIldUanj (40)
* * |
& ldnay € (IdUan)Nay =CIdUoej Proof of Lemma 4: Assume thaty is an overfilter. For
> Idno] Caz and an C IdU a3, everyz € E and for everyX € P(E) we have
 of Corollary 2: Th ol f .2 z€a(X) =z € ala(X)) = *(X) (44)
Proof of Corollary 2: The proof follows from Lemma . . .
and Theorem 3, by letting;(z) = (A;). for everyi € I and D Hz_ 12 € (X)) = 3_3 € I:z € &, (alX))
for every z € E, and then by letting: = 0. m < Ji:0;(2) CX = 3Fjel:0;(2) Ca(X).
Proof of Corollary 3: The proof follows immediately By letting X = 6;(z), we obtain the result. u
from Theorem 5 by letting;(z) = (A;). for everyz € E
and for everyi € I and then by letting: = 0. [ | C. PROOF OFPROPOSITIONS
Proof of Corollary 4: The proof follows immediately Proof of Proposition 1: From the increasing property of
from Proposition 1 by letting;(z) = (A4;). for everyz e E 4, we havea(IdNa) C a. Thus,
and for everyi € I and then by letting: = 0. ] _ . i
Proof of Corollary 5: The proof follows immediately a is an inf-overfilter
from Theorem 6 by letting;(z) = (A;)., for everyz € E = aCa(ldNa)
and for everyi € I and then by letting: = 0. [ | = Ker(a) C Ker(a(Id N a))

Proof of Corqllary 6: The proof is obtgined from 0 € Ker(a) = 6 € Ker(a(Id N a))
Theorem 7 by lettingd;(z) = (4;)., for every: € I and
for everyz € E and then by lettingz: = 0 in conditions (a) = Vze B zeallz) = 2 € ald(z) Na(dz)))
and (b) of Theorem 7. n <= VzeE, el 0;(z)Cl(z)=3Fjel:
Proof of Corollary 7: The proof can be obtained from 0;(2) C (0(z) Na((2))).
Theorem 8 by lettingd;(z) = (A;). for everyi € I and
for every z € E, and then lettingz = 0 in conditions
(1) and (2) of Theorem 8. Condition (1) of Corollary 7 isvz € E, Vi € I, 3j € I : 0;(z) C 6;(z) and,;(z) C a(6;(z)). (45)
similar to Condition (a) of Corollary 6. Condition (2) of _. hat th . inclusion between the
Corollary 7 can be obtained from Condition (2) of Theorer‘%Ince we assume that there IS Nno nclusion be
8 by noticing that the latter condition can be written jclements of the kernel generating we havef; = f;, and

) . L . P husvz e E, Viel, 6;(z) C a(b;(2)). [ |
the increasing and translation-invariant case as: “Theigise Proof of Proposition 2: From the increasing property of

By letting 6 = 6;, we obtain

(z1, 22, ,x2m) € E*™ such thatzy, zom, € (;c; 4 and ) ” i
Tt — i € (Nieg A for i = 1,2,--- ,2m — 1 This last a, we havea C a(Id U «). Thus,«a is an sup-underfilter
condition is equivalent to Condition (2) of Corollary 7. m — «a(ldUa)Ca
Proof of Corollary 8: The proof can be obtained from = VXePE),IEa(XUaX)) = 0caX)
Theorem 9 by lettingyi(=) = (A;). and3;(z) = (B))., for o WX eP(E),IA; C X Ua(X) — 34, C X
everyi € 1,7 € J and for everyz € E and then by letting ]
2= 0. - < Viel,VB; C A;,V mappingk : A;\ B; — I,
Proof of Corollary 9: The proof can be obtained from Jdjel:B;U U (Apey))y 2 Ay

Theorem 10 by lettingy; (z) = (4;). and3;(z) = (Bj)., for yEA\B;



]
Proof of Proposition 3:First, notice thatv* = (1, De; .
We have
0 € Ker(a*) <= ze€a"(0(z)), VzeE
— 0(z)N0;(2) #0, Yie LVz € E
=
= U {yi} CH(2), Vz € E.
yi€0i(2)
i€l

Assume now that! € Ker(p). The kernel ofp is generated
by the kernel ofld N o* and the kernel ofv. From Eq. (47),
Ker(Idna*) is generated by the mappings of the foffr) =
{z} U Uylee y{yi} for every z € E and the kernel ofv is

generated by the mappings of the fofifx) = 6,(z) for every
z € E and everyi € I.

The proof of the translation-invariant case is simply ob-

tained from the proof above by lettirfy(z) = (A;). for every
z € E and every; € I and then by letting: = 0. [ ]
Proof of Proposition 4: The proof of this proposition

follows exactly the same steps involved in the proof of

Proposition 4. [ ]
D. PROOF OFTHEOREMS
Proof of Theorem 2:We have
p=p" = p=IldnajUa;=IdUasNaj (48)

< Idnaoj CpCIdUa; and aj C p C af.

[ ]

Proof of Theorem 3:The proof follows immediately from
Lemmas 1 and 2. [ |
Proof of Theorem 4: Assume that there exists; C «of
such thate = Id N aj U ;. From Lemma 1q is self-dual.
Assume thate € O is self-dual. Leta; = o — Id and
as = a U Id° Notice thatae = af, anda; C as. From
Lemma 3, we haver = Id Naj U ag. [ |

Proof of Theorem 5:From Lemma 4, we have

« is an overfilter (49)
< VzeE, Viel, 3jel:0;(z) Cafi(z)) (50)
<= VzeE,Viel, Fjel: Vyeb;(z),y 604(6’( )
<=VzeE, Viel, Fjel: Vyeb;(z),Iky) e
such thatdy,, (y) < 0;(z).

|

Proof of Theorem 6:From Proposition 5 and the increas-

ing property ofa, we have
a2§a
—=zeca(a(X)) = z€a(X),Vz€ E,VX € P(E)
<~ Jiel:0;(z) CaX)=3Tel:6(z)CX,
Vz € E,VX € P(E)
= del:Vyecbiz),3k(y) €1 : 0y CX =
ANel:0(z)CX,VzeE VX € P(E)
< Vz e E,Vie [,V mappingk:6;(z)— I, €1:
0i(z) € e Or(y) (y)-

[ |
Proof of Theorem 7:Sincep is self-dual, it is sufficient
to prove that it is an overfilter. From Proposition 3, rech#tt

(46 )the kernel ofp is generated by the mappingsof the form

either (i) 0(z) = {2} UU,c 1%, vi € 0:i(2)} for everyz € E
or (i) 6(z) = 0;(z) for everyi € I and for everyz € E. We

Jy; € 0;(z) andy; € 6(z), Vi € I,Vz € Ewill cosnider both cases. From Theorem 5, we have
(47) Case (i) Assume tha# has the form (i). Fory = z we

obviously havef(z) C 0(z). Fory = y; € 0;(2),

by using the symmetry assumption we ha\e) =

{2} U{yit UUjerjzilys s v # 0(2),y5 € 0;(2)}

because ify; € 6;(z) then z € 6,(y;). From

Condition (a) and the symmetry assumption, we have
0(z) = {yi} U{z} UUjer jealys t w5 € 05(wi)} =

{yz}UUJe]{t i € 0 (yZ)} = e(yz) c 9( ) where

6 is a mapping of the form (i). Thus, we have proved

that Theorem 5 holds for mappingf the form (i).

Case (i) Assume thaf has the form (ii). From Condi-
tion (b), there existse € [,.;0i(z) and therefore
01(z) = {z,z} is an element of the kernel @f For
y = z, we have obviously;(z) C 0(z) = 6;(2).
Fory = x, by using Condition (b) and the symmetry
assumption and by letting:(z) = {z} U U, {vi :

Y; € 91(26)}, we have92(:1:) = {I} @] Uiel{yi 1Y €
0;(2)} C 0(z). Thus, we have proved that Theorem
5 holds foré(z) of the form (ii).
[ |
Proof of Theorem 8:We will show that under conditions

(1) and (2), we have™ C p™*+! and from the self-duality

of p, it can be deduced that™*! = p™. Let z € p"™(X)

for someX € P(E). From the SV kernel representation of
and proposition 3, there exists sorfiez) of the form either

(i) 0(z) = {2} UlU,;erlyi : yi € 0:(2)} or of the form (ii)

0(z) = 0;(2) for somei € I, such that)(z) C p™ 1 (X).

Case (i) Letf(z) be of the form (i). From Condition
(1), from the symmetry assumption and by using a
similar argument as in the proof of Theorem 7 for
the case (i), we havé(z) = {2} UU,;c; {y; :

y; € 0;(2)} = O(y;) € p™ (X). This shows
that y; € p™(X) for everyy, € 6(z). Therefore,
0(z) C p™(X) andz € pmH(X).

Case (ii) Letf(z) be of the form (ii). From condition 2
and the symmetry assumption, there existses,, €
P H(X) such thatzi,za, € Njer 95(2) and
there existz;, x4+ € p™ {(X) such that:vz- €
Njer 05(zi—1) for i 2,---.om— 1. If 21 €
P 2(X), we have{zs, x1} = fa(x2) C pm2(X).
This proves thatr, € p™~1(X). Consequently, we
havez; € p™(X) and thereforgz,z1} = 05(z) C
p™(X). The latter is equivalent te € p™1(X). A
similar argument can be madeif,, € p™2(X).

If z; andza,, ¢ p" 2(X), thenzy and za,, o €
p™~2(X) and the above process can be repeated. In
the worst case, we get,, and z,,+1 € p(X). In

this case, by going backwards and using Condition
(2) it is easy to see that,, ; € p*(X) and as
Tm_2 € p*(X) we haver,, 3 € p?(X) and so on



until we obtainz € p™ 1 (X).
|
Proof of Theorem 9: The proof follows exactly the
proof of Theorem 7. Conditions (a) and (b) imply thatis
an overfilter and conditions (c) and (d) imply that is an
overfilter. Notice again that conditions (c) and (d) are otsed
from conditions (a) and (b) by simply exchanging the roles of
Qo and ﬁj' | |
Proof of Theorem 10The proof follows exactly the proof
of Theorem 8. ]



