M-Idempotent and Self-Dual Morphological Filters: Supplemental Material

A. PROPERTIES OF INCREASING OPERATORS

The following propositions will be useful for the subsequent proofs.

Proposition 5 [3] Let α_1 and α_2 be two increasing operators. We have $\alpha_1 \subseteq \alpha_2$ if and only if $Ker(\alpha_1) \subseteq Ker(\alpha_2)$.

Proposition 6 [6] Let α_1 and α_2 be two increasing operators. We have

$$Ker(\alpha_1) \cup Ker(\alpha_2) \subseteq Ker(\alpha_1 \cup \alpha_2),$$
 (38)

$$Ker(\alpha_1 \cap \alpha_2) = Ker(\alpha_1) \cap Ker(\alpha_2).$$
 (39)

B. PROOF OF LEMMAS AND COROLLARIES

Proof of Corollary 1: Let $\alpha_2^* \subseteq \rho \subseteq \alpha_1^*$. From Theorem 2, we have

$$\rho = \rho^* \iff Id \cap \alpha_1^* \subseteq \rho \subseteq Id \cup \alpha_2^* \tag{40}$$

$$\iff Id \cap \alpha_1^* \subseteq (Id \cup \alpha_1) \cap \alpha_2 = \subseteq Id \cup \alpha_2^*$$

$$\iff Id \cap \alpha_1^* \subseteq \alpha_2 \text{ and } \alpha_1 \subseteq Id \cup \alpha_2^*.$$

Proof of Corollary 2: The proof follows from Lemma 2 and Theorem 3, by letting $\theta_i(z) = (A_i)_z$ for every $i \in I$ and for every $z \in \mathbf{E}$, and then by letting z = 0.

Proof of Corollary 3: The proof follows immediately from Theorem 5 by letting $\theta_i(z) = (A_i)_z$ for every $z \in \mathbf{E}$ and for every $i \in I$ and then by letting z = 0.

Proof of Corollary 4: The proof follows immediately from Proposition 1 by letting $\theta_i(z) = (A_i)_z$ for every $z \in \mathbf{E}$ and for every $i \in I$ and then by letting z = 0.

Proof of Corollary 5: The proof follows immediately from Theorem 6 by letting $\theta_i(z) = (A_i)_z$, for every $z \in \mathbf{E}$ and for every $i \in I$ and then by letting z = 0.

Proof of Corollary 6: The proof is obtained from Theorem 7 by letting $\theta_i(z) = (A_i)_z$, for every $i \in I$ and for every $z \in \mathbf{E}$ and then by letting z = 0 in conditions (a) and (b) of Theorem 7.

Proof of Corollary 7: The proof can be obtained from Theorem 8 by letting $\theta_i(z) = (A_i)_z$ for every $i \in I$ and for every $z \in \mathbf{E}$, and then letting z = 0 in conditions (1) and (2) of Theorem 8. Condition (1) of Corollary 7 is similar to Condition (a) of Corollary 6. Condition (2) of Corollary 7 can be obtained from Condition (2) of Theorem 8 by noticing that the latter condition can be written in the increasing and translation-invariant case as: "There exists $(x_1, x_2, \dots, x_{2m}) \in \mathbf{E}^{2m}$ such that $x_1, x_{2m} \in \bigcap_{i \in I} A_i$ and $x_{i+1} - x_i \in \bigcap_{i \in I} A_i$ for $i = 1, 2, \dots, 2m - 1$." This last condition is equivalent to Condition (2) of Corollary 7.

Proof of Corollary 8: The proof can be obtained from Theorem 9 by letting $\alpha_i(z) = (A_i)_z$ and $\beta_j(z) = (B_j)_z$, for every $i \in I, j \in J$ and for every $z \in \mathbf{E}$ and then by letting z = 0.

Proof of Corollary 9: The proof can be obtained from Theorem 10 by letting $\alpha_i(z) = (A_i)_z$ and $\beta_i(z) = (B_i)_z$, for

every $i \in I, j \in J$ and for every $z \in \mathbf{E}$ and then by letting z = 0.

Proof of Lemma 1: $\alpha_2 = \alpha_1^* \Rightarrow \alpha_1 = \alpha_2^*$. Hence, we have

$$\rho = (Id \cup \alpha_2^*) \cap \alpha_1^* = [(Id \cap \alpha_2) \cup \alpha_1]^* = \rho^*.$$
(41)

Proof of Lemma 2: Let $\alpha_1 = \bigcup_{i \in I} \mathcal{E}_{\theta_i}$. We have $\alpha_1^* = \bigcap_{i \in I} \mathcal{D}_{\theta'_i}$. It follows that

$$\begin{aligned} \alpha_1 \subseteq \alpha_1^* &\Leftrightarrow \quad \forall \ i, j, \ \mathcal{E}_{\theta_i} \subseteq \mathcal{D}_{\theta'_j} \\ &\Leftrightarrow \quad \forall i, j, z, X, \ (\theta_i(z) \subseteq X) \Rightarrow (\theta_j(z) \cap X \neq \emptyset). \end{aligned} \tag{42}$$

By taking $X = \theta_i(z)$, we obtain $\forall i, j, z, \theta_j(z) \cap \theta_i(z) \neq \emptyset$. *Proof of Lemma 3:* By recalling the identity: $X \subseteq (Y \cup Z) \iff (X \cap Z^c) \subseteq Y$, we have

$$\alpha = Id \cap \alpha_2 \cup \alpha_1, \ \alpha_1 \subseteq \alpha_2$$

$$\iff \alpha_1 \subseteq \alpha \subseteq \alpha_2 \text{ and } Id \cap \alpha_2 \subseteq \alpha \subseteq Id \cup \alpha_1$$

$$\iff \alpha_1 \subseteq \alpha \subseteq Id \cup \alpha_1 \text{ and } Id \cap \alpha_2 \subseteq \alpha \subseteq \alpha_2$$

$$\iff \alpha \cap Id^c \subseteq \alpha_1 \subseteq \alpha \text{ and } \alpha \subseteq \alpha_2 \subseteq \alpha \cup Id^c.$$
(43)

Proof of Lemma 4: Assume that α is an overfilter. For every $z \in \mathbf{E}$ and for every $X \in \mathcal{P}(\mathbf{E})$ we have

$$z \in \alpha(X) \Longrightarrow z \in \alpha(\alpha(X)) = \alpha^{2}(X)$$
(44)
$$\Leftrightarrow \exists i : z \in \mathcal{E}_{\theta_{i}}(X) \Longrightarrow \exists j \in I : z \in \mathcal{E}_{\theta_{j}}(\alpha(X))$$

$$\Leftrightarrow \exists i : \theta_{i}(z) \subseteq X \Longrightarrow \exists j \in I : \theta_{j}(z) \subseteq \alpha(X).$$

By letting $X = \theta_i(z)$, we obtain the result.

C. PROOF OF PROPOSITIONS

Proof of Proposition 1: From the increasing property of α , we have $\alpha(Id \cap \alpha) \subseteq \alpha$. Thus,

$$\begin{array}{l} \alpha \text{ is an inf-overfilter} \\ \Longleftrightarrow \alpha \subseteq \alpha(Id \cap \alpha) \\ \Leftrightarrow \textit{Ker}(\alpha) \subseteq \textit{Ker}(\alpha(Id \cap \alpha)) \\ \Leftrightarrow \theta \in \textit{Ker}(\alpha) \Longrightarrow \theta \in \textit{Ker}(\alpha(Id \cap \alpha)) \\ \Leftrightarrow \forall z \in \mathbf{E}, z \in \alpha(\theta(z)) \Longrightarrow z \in \alpha(\theta(z) \cap \alpha(\theta(z))) \\ \Leftrightarrow \forall z \in \mathbf{E}, \ \exists i \in I : \theta_i(z) \subseteq \theta(z) \Longrightarrow \exists j \in I : \\ \theta_j(z) \subseteq (\theta(z) \cap \alpha(\theta(z))). \end{array}$$

By letting $\theta = \theta_i$, we obtain

$$\forall z \in \mathbf{E}, \ \forall i \in I, \ \exists j \in I : \theta_j(z) \subseteq \theta_i(z) \text{ and } \theta_j(z) \subseteq \alpha(\theta_i(z)).$$
 (45)

Since we assume that there is no inclusion between the elements of the kernel generating α , we have $\theta_j = \theta_i$, and thus $\forall z \in \mathbf{E}, \forall i \in I, \ \theta_i(z) \subseteq \alpha(\theta_i(z))$.

Proof of Proposition 2: From the increasing property of α , we have $\alpha \subseteq \alpha(Id \cup \alpha)$. Thus, α is an sup-underfilter

$$\begin{array}{l} \Longleftrightarrow \quad \alpha(Id\cup\alpha)\subseteq\alpha \\ \Leftrightarrow \quad \forall \; X\in\mathcal{P}(\mathbf{E}), 0\in\alpha(X\cup\alpha(X))\Longrightarrow 0\in\alpha(X) \\ \Leftrightarrow \quad \forall \; X\in\mathcal{P}(\mathbf{E}), \exists A_i\subseteq X\cup\alpha(X)\Longrightarrow \exists A_j\subseteq X \\ \Leftrightarrow \quad \forall i\in I, \forall B_i\subseteq A_i, \forall \text{ mapping } k:A_i\setminus B_i\mapsto I, \\ \quad \exists j\in I: B_i\cup \bigcup_{y\in A_i\setminus B_i} (A_{k(y)})_y\supseteq A_j. \end{array}$$

Proof of Proposition 3: First, notice that $\alpha^* = \bigcap_{i \in I} \mathcal{D}_{\theta'_i}$. We have

$$\begin{array}{lll} \theta \in \operatorname{Ker}(\alpha^*) & \Longleftrightarrow & z \in \alpha^*(\theta(z)), \ \forall z \in \mathbf{E} & (4\theta) \\ & \Leftrightarrow & \theta(z) \cap \theta_i(z) \neq \emptyset, \ \forall i \in I, \forall z \in \mathbf{E} \\ & \Leftrightarrow & \exists y_i \in \theta_i(z) \ \text{and} \ y_i \in \theta(z), \ \forall i \in I, \forall z \in \mathbf{E} \\ & \Leftrightarrow & \bigcup_{\substack{y_i \in \theta_i(z) \\ i \in I}} \{y_i\} \subseteq \theta(z), \ \forall z \in \mathbf{E}. & (4f) \end{array}$$

Assume now that $\theta \in Ker(\rho)$. The kernel of ρ is generated by the kernel of $Id \cap \alpha^*$ and the kernel of α . From Eq. (47), $Ker(Id \cap \alpha^*)$ is generated by the mappings of the form $\theta(z) = \{z\} \cup \bigcup_{\substack{y_i \in \theta_i(z) \\ i \in I}} \{y_i\}$ for every $z \in \mathbf{E}$ and the kernel of α is generated by the mappings of the form $\theta(z) = \theta_i(z)$ for every $z \in \mathbf{E}$ and every $i \in I$.

The proof of the translation-invariant case is simply obtained from the proof above by letting $\theta_i(z) = (A_i)_z$ for every $z \in \mathbf{E}$ and every $i \in I$ and then by letting z = 0.

Proof of Proposition 4: The proof of this proposition follows exactly the same steps involved in the proof of Proposition 4.

D. PROOF OF THEOREMS

Proof of Theorem 2: We have

$$\rho = \rho^* \iff \rho = Id \cap \alpha_1^* \cup \alpha_2^* = Id \cup \alpha_2^* \cap \alpha_1^*$$

$$\iff Id \cap \alpha_1^* \subseteq \rho \subseteq Id \cup \alpha_2^* \text{ and } \alpha_2^* \subseteq \rho \subseteq \alpha_1^*.$$
(48)

Proof of Theorem 3: The proof follows immediately from Lemmas 1 and 2.

Proof of Theorem 4: Assume that there exists $\alpha_1 \subseteq \alpha_1^*$ such that $\alpha = Id \cap \alpha_1^* \cup \alpha_1$. From Lemma 1, α is self-dual.

Assume that $\alpha \in \mathcal{O}$ is self-dual. Let $\alpha_1 = \alpha - Id$ and $\alpha_2 = \alpha \cup Id^c$. Notice that $\alpha_2 = \alpha_1^*$, and $\alpha_1 \subseteq \alpha_2$. From Lemma 3, we have $\alpha = Id \cap \alpha_1^* \cup \alpha_1$.

Proof of Theorem 5: From Lemma 4, we have

$$\begin{array}{ll} \alpha \text{ is an overfilter} & (49) \\ \iff \forall z \in \mathbf{E}, \ \forall i \in I, \ \exists j \in I : \theta_j(z) \subseteq \alpha(\theta_i(z)) & (50) \\ \iff \forall z \in \mathbf{E}, \ \forall i \in I, \ \exists j \in I : \ \forall y \in \theta_j(z), y \in \alpha(\theta_i(z)) \\ \iff \forall z \in \mathbf{E}, \ \forall i \in I, \ \exists j \in I : \ \forall y \in \theta_j(z), \exists k(y) \in I \\ \text{such that } \theta_{k(y)}(y) \subseteq \theta_i(z). \end{array}$$

Proof of Theorem 6: From Proposition 5 and the increasing property of α , we have

$$\begin{split} &\alpha^2 \subseteq \alpha \\ \Longleftrightarrow z \in \alpha(\alpha(X)) \Longrightarrow z \in \alpha(X), \forall z \in \mathbf{E}, \forall X \in \mathcal{P}(\mathbf{E}) \\ \Leftrightarrow \exists i \in I : \theta_i(z) \subseteq \alpha(X) \Longrightarrow \exists l \in I : \theta_l(z) \subseteq X, \\ &\forall z \in \mathbf{E}, \forall X \in \mathcal{P}(\mathbf{E}) \\ \Leftrightarrow \exists i \in I : \forall y \in \theta_i(z), \exists k(y) \in I : \theta_{k(y)}(y) \subseteq X \Longrightarrow \\ &\exists l \in I : \theta_l(z) \subseteq X, \forall z \in \mathbf{E}, \forall X \in \mathcal{P}(\mathbf{E}) \\ \Leftrightarrow \forall z \in \mathbf{E}, \forall i \in I, \forall \text{ mapping } k : \theta_i(z) \mapsto I, \exists l \in I : \\ &\theta_l(z) \subseteq \bigcup_{y \in \theta_i(z)} \theta_{k(y)}(y). \end{split}$$

Proof of Theorem 7: Since ρ is self-dual, it is sufficient to prove that it is an overfilter. From Proposition 3, recall that the kernel of ρ is generated by the mappings θ of the form either (i) $\theta(z) = \{z\} \cup \bigcup_{i \in I} \{y_i, y_i \in \theta_i(z)\}$ for every $z \in \mathbf{E}$ or (ii) $\theta(z) = \theta_i(z)$ for every $i \in I$ and for every $z \in \mathbf{E}$. We Ewill cosnider both cases. From Theorem 5, we have

- 7) Case (i) Assume that θ has the form (i). For y = z we obviously have $\theta(z) \subseteq \theta(z)$. For $y = y_i \in \theta_i(z)$, by using the symmetry assumption we have $\theta(z) = \{z\} \cup \{y_i\} \cup \bigcup_{j \in I, j \neq i} \{y_j : y_i \neq \theta_j(z), y_j \in \theta_j(z)\}$ because if $y_i \in \theta_j(z)$ then $z \in \theta_j(y_i)$. From Condition (a) and the symmetry assumption, we have $\theta(z) = \{y_i\} \cup \{z\} \cup \bigcup_{j \in I, j \neq i} \{y_j : y_j \in \theta_j(y_i)\} = \{y_i\} \cup \bigcup_{j \in I} \{t_j : t_j \in \theta_j(y_i)\} = \tilde{\theta}(y_i) \subseteq \theta(z)$, where $\tilde{\theta}$ is a mapping of the form (i). Thus, we have proved that Theorem 5 holds for mappings θ of the form (i).
 - Case (ii) Assume that θ has the form (ii). From Condition (b), there exists $x \in \bigcap_{i \in I} \theta_i(z)$ and therefore $\theta_1(z) = \{z, x\}$ is an element of the kernel of ρ . For y = z, we have obviously $\theta_i(z) \subseteq \theta(z) = \theta_i(z)$. For y = x, by using Condition (b) and the symmetry assumption and by letting $\theta_2(z) = \{x\} \cup \bigcup_{i \in I} \{y_i : y_i \in \theta_i(x)\}$, we have $\theta_2(x) = \{x\} \cup \bigcup_{i \in I} \{y_i : y_i \in \theta_i(z)\} \subseteq \theta(z)$. Thus, we have proved that Theorem 5 holds for $\theta(z)$ of the form (ii).

Proof of Theorem 8: We will show that under conditions (1) and (2), we have $\rho^m \subseteq \rho^{m+1}$ and from the self-duality of ρ , it can be deduced that $\rho^{m+1} = \rho^m$. Let $z \in \rho^m(X)$ for some $X \in \mathcal{P}(\mathbf{E})$. From the SV kernel representation of ρ and proposition 3, there exists some $\theta(z)$ of the form either (i) $\theta(z) = \{z\} \cup \bigcup_{i \in I} \{y_i : y_i \in \theta_i(z)\}$ or of the form (ii) $\theta(z) = \theta_i(z)$ for some $i \in I$, such that $\theta(z) \subseteq \rho^{m-1}(X)$.

- Case (i) Let $\theta(z)$ be of the form (i). From Condition (1), from the symmetry assumption and by using a similar argument as in the proof of Theorem 7 for the case (i), we have $\theta(z) = \{z\} \cup \bigcup_{j \in I, j \neq i} \{y_j :$ $y_j \in \theta_j(z)\} = \tilde{\theta}(y_i) \subseteq \rho^{m-1}(X)$. This shows that $y_i \in \rho^m(X)$ for every $y_i \in \theta(z)$. Therefore, $\theta(z) \subseteq \rho^m(X)$ and $z \in \rho^{m+1}(X)$.
- Case (ii) Let $\theta(z)$ be of the form (ii). From condition 2 and the symmetry assumption, there exists $x_1, x_{2m} \in \rho^{m-1}(X)$ such that $x_1, x_{2m} \in \bigcap_{j \in I} \theta_j(z)$ and there exist $x_i, x_{m+i} \in \rho^{m-i}(X)$ such that $x_i \in \bigcap_{j \in I} \theta_j(x_{i-1})$ for $i = 2, \cdots, m-1$. If $x_1 \in \rho^{m-2}(X)$, we have $\{x_2, x_1\} = \theta_2(x_2) \subseteq \rho^{m-2}(X)$. This proves that $x_2 \in \rho^{m-1}(X)$. Consequently, we have $x_1 \in \rho^m(X)$ and therefore $\{z, x_1\} = \theta_3(z) \subseteq \rho^m(X)$. The latter is equivalent to $z \in \rho^{m+1}(X)$. A similar argument can be made if $x_{2m} \in \rho^{m-2}(X)$. If x_1 and $x_{2m} \notin \rho^{m-2}(X)$, then x_2 and $x_{2m-2} \in \rho^{m-2}(X)$ and the above process can be repeated. In the worst case, we get x_m and $x_{m+1} \in \rho(X)$. In this case, by going backwards and using Condition (2) it is easy to see that $x_{m-1} \in \rho^2(X)$ and as $x_{m-2} \in \rho^2(X)$ we have $x_{m-3} \in \rho^3(X)$ and so on

until we obtain $z \in \rho^{m+1}(X)$.

Proof of Theorem 9: The proof follows exactly the proof of Theorem 7. Conditions (a) and (b) imply that ρ is an overfilter and conditions (c) and (d) imply that ρ^* is an overfilter. Notice again that conditions (c) and (d) are obtained from conditions (a) and (b) by simply exchanging the roles of α_i and β_j .

Proof of Theorem 10: The proof follows exactly the proof of Theorem 8.