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M-Idempotent and Self-Dual Morphological
Filters: Supplemental Material

A. PROPERTIES OFINCREASINGOPERATORS

The following propositions will be useful for the subsequent
proofs.

Proposition 5 [3] Let α1 andα2 be two increasing operators.
We haveα1 ⊆ α2 if and only if Ker(α1) ⊆ Ker(α2).

Proposition 6 [6] Let α1 andα2 be two increasing operators.
We have

Ker(α1) ∪ Ker(α2) ⊆ Ker(α1 ∪ α2), (38)

Ker(α1 ∩ α2) = Ker(α1) ∩ Ker(α2). (39)

B. PROOF OFLEMMAS AND COROLLARIES

Proof of Corollary 1: Let α∗
2 ⊆ ρ ⊆ α∗

1. From Theorem
2, we have

ρ = ρ∗ ⇐⇒ Id ∩ α∗
1 ⊆ ρ ⊆ Id ∪ α∗

2 (40)

⇐⇒ Id ∩ α∗
1 ⊆ (Id ∪ α1) ∩ α2 =⊆ Id ∪ α∗

2

⇐⇒ Id ∩ α∗
1 ⊆ α2 and α1 ⊆ Id ∪ α∗

2.

Proof of Corollary 2: The proof follows from Lemma 2
and Theorem 3, by lettingθi(z) = (Ai)z for every i ∈ I and
for everyz ∈ E, and then by lettingz = 0.

Proof of Corollary 3: The proof follows immediately
from Theorem 5 by lettingθi(z) = (Ai)z for every z ∈ E

and for everyi ∈ I and then by lettingz = 0.
Proof of Corollary 4: The proof follows immediately

from Proposition 1 by lettingθi(z) = (Ai)z for everyz ∈ E

and for everyi ∈ I and then by lettingz = 0.
Proof of Corollary 5: The proof follows immediately

from Theorem 6 by lettingθi(z) = (Ai)z, for everyz ∈ E

and for everyi ∈ I and then by lettingz = 0.
Proof of Corollary 6: The proof is obtained from

Theorem 7 by lettingθi(z) = (Ai)z , for every i ∈ I and
for every z ∈ E and then by lettingz = 0 in conditions (a)
and (b) of Theorem 7.

Proof of Corollary 7: The proof can be obtained from
Theorem 8 by lettingθi(z) = (Ai)z for every i ∈ I and
for every z ∈ E, and then lettingz = 0 in conditions
(1) and (2) of Theorem 8. Condition (1) of Corollary 7 is
similar to Condition (a) of Corollary 6. Condition (2) of
Corollary 7 can be obtained from Condition (2) of Theorem
8 by noticing that the latter condition can be written in
the increasing and translation-invariant case as: “There exists
(x1, x2, · · · , x2m) ∈ E

2m such thatx1, x2m ∈
⋂

i∈I Ai and
xi+1 − xi ∈

⋂

i∈I Ai for i = 1, 2, · · · , 2m − 1.” This last
condition is equivalent to Condition (2) of Corollary 7.

Proof of Corollary 8: The proof can be obtained from
Theorem 9 by lettingαi(z) = (Ai)z andβj(z) = (Bj)z , for
every i ∈ I, j ∈ J and for everyz ∈ E and then by letting
z = 0.

Proof of Corollary 9: The proof can be obtained from
Theorem 10 by lettingαi(z) = (Ai)z andβj(z) = (Bj)z, for

every i ∈ I, j ∈ J and for everyz ∈ E and then by letting
z = 0.

Proof of Lemma 1: α2 = α∗
1 ⇒ α1 = α∗

2. Hence, we
have

ρ = (Id ∪ α∗
2) ∩ α

∗
1 = [(Id ∩ α2) ∪ α1]

∗ = ρ∗. (41)

Proof of Lemma 2: Let α1 =
⋃

i∈I Eθi
. We haveα∗

1 =
⋂

i∈I Dθ′

i
. It follows that

α1 ⊆ α∗
1 ⇔ ∀ i, j, Eθi

⊆ Dθ′

j
(42)

⇔ ∀i, j, z,X, (θi(z) ⊆ X) ⇒ (θj(z) ∩X 6= ∅).

By takingX = θi(z), we obtain∀i, j, z, θj(z)∩ θi(z) 6= ∅.
Proof of Lemma 3:By recalling the identity:X ⊆ (Y ∪

Z) ⇐⇒ (X ∩ Zc) ⊆ Y , we have

α = Id ∩ α2 ∪ α1, α1 ⊆ α2 (43)

⇐⇒ α1 ⊆ α ⊆ α2 andId ∩ α2 ⊆ α ⊆ Id ∪ α1

⇐⇒ α1 ⊆ α ⊆ Id ∪ α1 andId ∩ α2 ⊆ α ⊆ α2

⇐⇒ α ∩ Idc ⊆ α1 ⊆ α andα ⊆ α2 ⊆ α ∪ Idc.

Proof of Lemma 4: Assume thatα is an overfilter. For
everyz ∈ E and for everyX ∈ P(E) we have

z ∈ α(X) =⇒ z ∈ α(α(X)) = α2(X) (44)

⇐⇒ ∃i : z ∈ Eθi
(X) =⇒ ∃j ∈ I : z ∈ Eθj

(α(X))

⇐⇒ ∃i : θi(z) ⊆ X =⇒ ∃j ∈ I : θj(z) ⊆ α(X).

By lettingX = θi(z), we obtain the result.

C. PROOF OFPROPOSITIONS

Proof of Proposition 1: From the increasing property of
α, we haveα(Id ∩ α) ⊆ α. Thus,

α is an inf-overfilter

⇐⇒ α ⊆ α(Id ∩ α)

⇐⇒ Ker(α) ⊆ Ker(α(Id ∩ α))

⇐⇒ θ ∈ Ker(α) =⇒ θ ∈ Ker(α(Id ∩ α))

⇐⇒ ∀z ∈ E, z ∈ α(θ(z)) =⇒ z ∈ α(θ(z) ∩ α(θ(z)))

⇐⇒ ∀z ∈ E, ∃i ∈ I : θi(z) ⊆ θ(z) =⇒ ∃j ∈ I :

θj(z) ⊆ (θ(z) ∩ α(θ(z))).

By letting θ = θi, we obtain

∀z ∈ E, ∀i ∈ I, ∃j ∈ I : θj(z) ⊆ θi(z) andθj(z) ⊆ α(θi(z)). (45)

Since we assume that there is no inclusion between the
elements of the kernel generatingα, we haveθj = θi, and
thus∀z ∈ E, ∀i ∈ I, θi(z) ⊆ α(θi(z)).

Proof of Proposition 2: From the increasing property of
α, we haveα ⊆ α(Id ∪ α). Thus,α is an sup-underfilter

⇐⇒ α(Id ∪ α) ⊆ α

⇐⇒ ∀ X ∈ P(E), 0 ∈ α(X ∪ α(X)) =⇒ 0 ∈ α(X)

⇐⇒ ∀ X ∈ P(E), ∃Ai ⊆ X ∪ α(X) =⇒ ∃Aj ⊆ X

⇐⇒ ∀i ∈ I, ∀Bi ⊆ Ai, ∀ mappingk : Ai \Bi 7→ I,

∃j ∈ I : Bi ∪
⋃

y∈Ai\Bi

(Ak(y))y ⊇ Aj .
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Proof of Proposition 3:First, notice thatα∗ =
⋂

i∈I Dθ′

i
.

We have

θ ∈ Ker(α∗) ⇐⇒ z ∈ α∗(θ(z)), ∀z ∈ E (46)

⇐⇒ θ(z) ∩ θi(z) 6= ∅, ∀i ∈ I, ∀z ∈ E

⇐⇒ ∃yi ∈ θi(z) andyi ∈ θ(z), ∀i ∈ I, ∀z ∈ E

⇐⇒
⋃

yi∈θi(z)
i∈I

{yi} ⊆ θ(z), ∀z ∈ E. (47)

Assume now thatθ ∈ Ker(ρ). The kernel ofρ is generated
by the kernel ofId ∩ α∗ and the kernel ofα. From Eq. (47),
Ker(Id∩α∗) is generated by the mappings of the formθ(z) =
{z} ∪

⋃

yi∈θi(z)
i∈I

{yi} for every z ∈ E and the kernel ofα is

generated by the mappings of the formθ(z) = θi(z) for every
z ∈ E and everyi ∈ I.

The proof of the translation-invariant case is simply ob-
tained from the proof above by lettingθi(z) = (Ai)z for every
z ∈ E and everyi ∈ I and then by lettingz = 0.

Proof of Proposition 4: The proof of this proposition
follows exactly the same steps involved in the proof of
Proposition 4.

D. PROOF OFTHEOREMS

Proof of Theorem 2:We have

ρ = ρ∗ ⇐⇒ ρ = Id ∩ α∗
1 ∪ α

∗
2 = Id ∪ α∗

2 ∩ α
∗
1 (48)

⇐⇒ Id ∩ α∗
1 ⊆ ρ ⊆ Id ∪ α∗

2 and α∗
2 ⊆ ρ ⊆ α∗

1.

Proof of Theorem 3:The proof follows immediately from
Lemmas 1 and 2.

Proof of Theorem 4:Assume that there existsα1 ⊆ α∗
1

such thatα = Id ∩ α∗
1 ∪ α1. From Lemma 1,α is self-dual.

Assume thatα ∈ O is self-dual. Letα1 = α − Id and
α2 = α ∪ Idc. Notice thatα2 = α∗

1, and α1 ⊆ α2. From
Lemma 3, we haveα = Id ∩ α∗

1 ∪ α1.
Proof of Theorem 5:From Lemma 4, we have

α is an overfilter (49)

⇐⇒ ∀z ∈ E, ∀i ∈ I, ∃j ∈ I : θj(z) ⊆ α(θi(z)) (50)

⇐⇒ ∀z ∈ E, ∀i ∈ I, ∃j ∈ I : ∀y ∈ θj(z), y ∈ α(θi(z))

⇐⇒ ∀z ∈ E, ∀i ∈ I, ∃j ∈ I : ∀y ∈ θj(z), ∃k(y) ∈ I

such thatθk(y)(y) ⊆ θi(z).

Proof of Theorem 6:From Proposition 5 and the increas-
ing property ofα, we have

α2 ⊆ α

⇐⇒ z ∈ α(α(X)) =⇒ z ∈ α(X), ∀z ∈ E, ∀X ∈ P(E)

⇐⇒ ∃i ∈ I : θi(z) ⊆ α(X) =⇒ ∃l ∈ I : θl(z) ⊆ X,

∀z ∈ E, ∀X ∈ P(E)

⇐⇒ ∃i ∈ I : ∀y ∈ θi(z), ∃k(y) ∈ I : θk(y)(y) ⊆ X =⇒

∃l ∈ I : θl(z) ⊆ X, ∀z ∈ E, ∀X ∈ P(E)

⇐⇒ ∀z ∈ E, ∀i ∈ I, ∀ mappingk : θi(z) 7→ I, ∃l ∈ I :

θl(z) ⊆ ∪
y∈θi(z)

θk(y)(y).

Proof of Theorem 7:Sinceρ is self-dual, it is sufficient
to prove that it is an overfilter. From Proposition 3, recall that
the kernel ofρ is generated by the mappingsθ of the form
either (i) θ(z) = {z} ∪

⋃

i∈I{yi, yi ∈ θi(z)} for everyz ∈ E

or (ii) θ(z) = θi(z) for every i ∈ I and for everyz ∈ E. We
will cosnider both cases. From Theorem 5, we have

Case (i) Assume thatθ has the form (i). Fory = z we
obviously haveθ(z) ⊆ θ(z). For y = yi ∈ θi(z),
by using the symmetry assumption we haveθ(z) =
{z} ∪ {yi} ∪

⋃

j∈I,j 6=i{yj : yi 6= θj(z), yj ∈ θj(z)}
because ifyi ∈ θj(z) then z ∈ θj(yi). From
Condition (a) and the symmetry assumption, we have
θ(z) = {yi} ∪ {z} ∪

⋃

j∈I,j 6=i{yj : yj ∈ θj(yi)} =

{yi}∪
⋃

j∈I{tj : tj ∈ θj(yi)} = θ̃(yi) ⊆ θ(z), where
θ̃ is a mapping of the form (i). Thus, we have proved
that Theorem 5 holds for mappingsθ of the form (i).

Case (ii) Assume thatθ has the form (ii). From Condi-
tion (b), there existsx ∈

⋂

i∈I θi(z) and therefore
θ1(z) = {z, x} is an element of the kernel ofρ. For
y = z, we have obviouslyθi(z) ⊆ θ(z) = θi(z).
For y = x, by using Condition (b) and the symmetry
assumption and by lettingθ2(z) = {x} ∪

⋃

i∈I{yi :
yi ∈ θi(x)}, we haveθ2(x) = {x} ∪

⋃

i∈I{yi : yi ∈
θi(z)} ⊆ θ(z). Thus, we have proved that Theorem
5 holds forθ(z) of the form (ii).

Proof of Theorem 8:We will show that under conditions
(1) and (2), we haveρm ⊆ ρm+1 and from the self-duality
of ρ, it can be deduced thatρm+1 = ρm. Let z ∈ ρm(X)
for someX ∈ P(E). From the SV kernel representation ofρ
and proposition 3, there exists someθ(z) of the form either
(i) θ(z) = {z} ∪

⋃

i∈I{yi : yi ∈ θi(z)} or of the form (ii)
θ(z) = θi(z) for somei ∈ I, such thatθ(z) ⊆ ρm−1(X).

Case (i) Let θ(z) be of the form (i). From Condition
(1), from the symmetry assumption and by using a
similar argument as in the proof of Theorem 7 for
the case (i), we haveθ(z) = {z} ∪

⋃

j∈I,j 6=i{yj :

yj ∈ θj(z)} = θ̃(yi) ⊆ ρm−1(X). This shows
that yi ∈ ρm(X) for every yi ∈ θ(z). Therefore,
θ(z) ⊆ ρm(X) andz ∈ ρm+1(X).

Case (ii) Letθ(z) be of the form (ii). From condition 2
and the symmetry assumption, there existsx1, x2m ∈
ρm−1(X) such that x1, x2m ∈

⋂

j∈I θj(z) and
there existxi, xm+i ∈ ρm−i(X) such thatxi ∈
⋂

j∈I θj(xi−1) for i = 2, · · · ,m − 1. If x1 ∈
ρm−2(X), we have{x2, x1} = θ2(x2) ⊆ ρm−2(X).
This proves thatx2 ∈ ρm−1(X). Consequently, we
havex1 ∈ ρm(X) and therefore{z, x1} = θ3(z) ⊆
ρm(X). The latter is equivalent toz ∈ ρm+1(X). A
similar argument can be made ifx2m ∈ ρm−2(X).
If x1 and x2m /∈ ρm−2(X), thenx2 and x2m−2 ∈
ρm−2(X) and the above process can be repeated. In
the worst case, we getxm and xm+1 ∈ ρ(X). In
this case, by going backwards and using Condition
(2) it is easy to see thatxm−1 ∈ ρ2(X) and as
xm−2 ∈ ρ2(X) we havexm−3 ∈ ρ3(X) and so on
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until we obtainz ∈ ρm+1(X).

Proof of Theorem 9: The proof follows exactly the
proof of Theorem 7. Conditions (a) and (b) imply thatρ is
an overfilter and conditions (c) and (d) imply thatρ∗ is an
overfilter. Notice again that conditions (c) and (d) are obtained
from conditions (a) and (b) by simply exchanging the roles of
αi andβj .

Proof of Theorem 10:The proof follows exactly the proof
of Theorem 8.


