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Abstract

Exact reconstruction of a sparse signal for an under-determined linear system using the `0-measure
is, in general, an NP-hard problem. The most popular approach is to relax the `0-optimization prob-
lem to an `1-approximation. However, the strength of this convex approximation relies upon rigid
properties on the system, which are not verifiable in practice. Greedy algorithms have been pro-
posed in the past to speed up the optimization of the `1 problem, but their computational efficiency
comes at the expense of a larger error. In an effort to control error and complexity, this paper goes
beyond the `1-approximation by growing neighborhoods of the `1-solution that moves towards the
optimal solution. The size of the neighborhood is tunable depending on the computational re-
sources. The proposed algorithm, termed Approximate Kernel RecONstruction (AKRON), yields
significantly smaller errors than current greedy methods with a controllable computational cost. By
construction, the error of AKRON is smaller than or to equal the `1-solution. AKRON enjoys all
the error bounds of `1 under the restricted isometry property condition. We benchmarked AKRON
on simulated data from several under-determined systems, and the results show that AKRON can
significantly improve the reconstruction error with slightly more computational cost than solving
the `1 problem directly.

1. Introduction1

Many engineering problems are formulated as inverse problems, which is where the number2

of parameters (p) greatly exceeds the number of measurements (n) available. Examples include:3
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source estimation of electroencephalographic (EEG) and magnetoencephalographic (MEG) data4

[1, 2], reverse-engineering of genetic regulatory networks from high-throughput gene expression5

data [3, 4], magnetic resonance imaging [5], information theory and communication engineering6

[6], and electromagnetics and antenna design [7]. These inverse problems, known as “large p small7

n”, pose a challenge, because of the non-identifiability of a solution. Additional constraints or prior8

knowledge are needed to solve such under-determined systems. In many cases, such as inference9

of genetic regulatory networks [3, 4], we are interested in the sparsest solution. The objective is10

then to recover the sparsest signal, x ∈ Cp, from a measurement matrix, A ∈ Cn×p, and observed11

vector y ∈ Cn such that y = Ax, where n � p. In a noisy setting, the problem is formulated as12

y = Ax + e, where e is a vector of measurement noise with a bounded variance, i.e., ‖e‖2 ≤ ε.13

Without loss of generality, it is assumed that A is full-rank; otherwise, the observations would be14

redundant.15

Finding the sparsest solution amounts to solving the following optimization problem:

x∗ = argmin {‖x‖0 : Ax = y} , (1)

where ‖x‖0 denotes the `0-measure of vector x, i.e., the number of non-zero elements of x. Ob-
serve that `0 is not a proper norm and that is why we refer to it as a “measure” although, by abuse
of notation, we may also write `0-norm. Unfortunately, (1) is in general an NP-hard combinato-
rial problem since it involves finding the number and positions of the zeros in a p-dimensional
space [8]. The field of compressive sensing (CS) addresses this problem by solving the under-
determined system with a unique sparsest solution under specific conditions on the system. The
`0-norm objective in (1) can be relaxed to the `1-norm, solving the following convex optimization
problem:

x̂1 = argmin {‖x‖1 : Ax = y} . (2)

This convex relaxation makes the problem more tractable; however, in general, the solutions16

of (1) and (2) are not equivalent. CS theory has shown that, if A satisfies the null space property17

(NSP) or the restricted isometry property (RIP), then the `1 problem yields the optimal `0 solution18

[8]. Unfortunately, these conditions are not verifiable in practice. In particular, one cannot check19

if the obtained `1-solution is the sparsest solution or not! Through examples and simulations,20

we show that, in general, the `1-solution may be far from the `0-optimal solution. Hence, it is21

crucial to develop greedy algorithms that achieve a balance between computational complexity22

and reconstruction error.23

2. Related Work24

Recent efforts focused on greedy algorithms to infer a sparse solution. In particular, a family25

of Hard Thresholding (HT) algorithms have been suggested in [9], which makes an initial guess26

for the support of x and then projects the measurements y onto this support. An iterative version27

called Iterative Hard Thresholding (IHT) updates the residual and estimates a new x at every it-28

eration until the stopping criterion is satisfied. Another version of lower complexity per iteration,29

called Matching Pursuit (MP), has been suggested. The Orthogonal Matching Pursuit (OMP) [10]30

is an iterative greedy algorithm that selects at each step the column which is most correlated with31
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the current residuals, and estimates the nonzero entries in the vector x with a computational com-32

plexity O(k log p). OMP’s computational improvements, however, come at the cost of increased33

reconstruction error. Compressive Sampling Matching Pursuit (CoSaMP) [10] combines the ap-34

proaches of OMP and HT in a two-stage greedy algorithm that aims to improve the reconstruction35

error of OMP. Unfortunately, these methods sacrifice accuracy of the reconstruction for the runtime36

as they approximate the `0-norm by other cost functions. Recently, SL0, or smoothed `0, has been37

proposed as a fast algorithm to directly approximate the `0 solution [11]. Candés et al. proposed an38

iterative re-weighted `1 minimization algorithm that has theoretical guarantees that is can improve39

the `1 solution [12].40

In our previous work, we presented Kernel RecONstruction (KRON), a greedy algorithm, that41

achieves an exact solution to (1), without exhaustively searching Cp [13]. In KRON, finding the42

sparsest solution amounts to solving
(

p
s=p−n

)
linear equations. All

(
p
s

)
potential solutions have at43

least s zeros. The sparsest solution is guaranteed to be one of them. The computational complexity44

of KRON isO(ps). KRON yields the optimal sparsest solution (zero reconstruction error) at a high45

computational cost.46

Against this background, we seek to develop an approach for approximating (1) yielding re-47

construction errors lower than `1-norm, and other approaches such as OMP and CoSaMP, and at48

the same time having comparable, or at least controllable, computational cost.49

3. Approximate Kernel Reconstruction50

3.1. Central Idea behind AKRON51

In this section, we motivate the central idea behind AKRON, given general linear algebra52

knowledge about the under-determined system. First, we know that the system Ax = y always53

admits solutions with s = (p − n) zeros because s is the dimension of the Kernel of A; hence54

the name Kernel RecONstruction (KRON) in [13]. KRON distributes s zeros among the p entries55

then searches for all the solutions with exactly s zeros. The sparsest solution is guaranteed to be56

among these
(
p
s

)
solutions. However, we do not know in advance which one it will be. KRON57

tries all possible
(
p
s

)
solutions then chooses the sparsest. Notice that no conditions are imposed on58

the matrix A; that is, KRON recovers the optimal sparsest solution whether the RIP condition is59

satisfied or not. The central issue with KRON is that it becomes computationally prohibitive when60

p is large and s in the order of p
2
. Therefore, we propose AKRON to reduce the number of enu-61

merations that need to be performed in KRON. To achieve this, the central idea behind AKRON is62

to use the standard `1-approximation to “guess” the locations of the s zeros that will result in the63

sparsest solution. Finding s correct zero locations is sufficient to find the optimal sparsest solution.64

This idea can also be viewed as a “perturbation” of the `1-approximation to make it closer to the65

`0-norm. Formally, we define a δ-neighborhood of the `1-approximation that allows AKRON to66

find sparser solutions and reduce the reconstruction error. The size of the neighborhood is tunable67

depending on the computational power available, and vary from 0 (`1-approximation) to n (KRON,68

i.e., perfect reconstruction). In particular, when the `1-approximation is optimal (RIP conditions69

satisfied), AKRON is also optimal, but when the `1-solution is suboptimal, AKRON results in a70

better (i.e., sparser) solution with smaller recovery error.71

3.2. The Noiseless Case72

AKRON begins by solving the `1 convex optimization problem in (2). Denote the solution by73

x̂1. In general, x̂1 is different from the desired `0-solution. However, since `1 is the closest convex74
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norm to `0, we can use x̂1 to find the locations of s zeros, which would correspond to the s-smallest75

magnitudes in x̂1. The central idea behind AKRON’s 0-neighborhood solution is as follows: (1)76

find the indices (Q) with the s-smallest magnitudes of the `1 solution, (2) set these indices to zero,77

then (3) re-solve the system Ax = y. Call this solution x̂∗δ=0. The following proposition bounds78

the error between the `1-solution and the (δ = 0)-neighborhood solution x̂∗δ=0.79

Proposition 1. Let x̂1 denote the `1-solution of the under-determined problem in (2). Without loss
of generality, we assume that A ∈ Cn×p is full-rank, and call s = p−n. Let {|x̂1(i1)|, . . . , |x̂1(is)|}
be the set of the s-smallest magnitudes of x̂1. Then, we have

‖x̂1 − x̂∗δ=0‖2 ≤
√
s CAmax {|x̂1(i1)|, · · · , |x̂1(is)|} , (3)

where CA is a constant that depends only on the matrix A: CA = (1 + ‖A−1Q ‖2‖AQ⊥‖2), where80

AQ is the (n × n) sub-matrix of A obtained by removing the s columns indexed by {i1, · · · , is},81

and AQ⊥ ∈ Cn×s is the complement matrix, i.e., the matrix that contains only the columns corre-82

sponding to these s-smallest elements.83

Proof. Denote by AQ ∈ Cn×n the reduced matrix, where the columns corresponding to the indices84

of the s-smallest elements in x̂1 were removed. Notice that AQ is invertible because A is full-85

rank. Let AQ⊥ ∈ Cn×s be the complement matrix, i.e., the matrix that contains only the columns86

corresponding to the s-smallest elements {i1, · · · , is}. We adopt similar notations for x̂1Q ∈ Cn×1
87

and x̂1
Q⊥
∈ Cs×1. We have88

Ax̂1 = Ax̂∗δ=0 = y (4)
⇐⇒

AQx̂1Q +AQ⊥x̂1
Q⊥

= Ax̂∗δ=0. (5)

Observe that since, by construction, x̂∗δ=0
Q⊥

= 0, we have that

AQx̂
∗
δ=0Q

= Ax̂∗δ=0. (6)

From Eqs. (5) and (6), we have

AQ(x̂
∗
δ=0Q

− x̂1Q) = AQ⊥ x̂1
Q⊥
.

Therefore,
x̂∗δ=0Q

− x̂1Q = A−1Q AQ⊥ x̂1
Q⊥
.

Using norm inequalities, we obtain

‖x̂∗δ=0Q
− x̂1Q‖2 ≤ ‖A−1Q ‖2‖AQ⊥‖2 ‖x̂1

Q⊥
‖2. (7)

On the other hand, we have by triangle inequality

‖x̂1 − x̂∗δ=0‖2 ≤ ‖x̂1Q − x̂∗δ=0Q
‖2 + ‖x̂1

Q⊥
− x̂∗δ=0

Q⊥
‖2.
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But, by construction, x̂∗δ=0
Q⊥

= 0, hence89

‖x̂1 − x̂∗δ=0‖2 ≤ ‖x̂1Q − x̂∗δ=0Q
‖2 + ‖x̂1

Q⊥
‖2

≤ ‖x̂1
Q⊥
‖2
(
1 + ‖A−1Q ‖2‖AQ⊥‖2

)
(8)

where the inequality in (8) follows from (7). By using the fact that

‖x̂1
Q⊥
‖2 ≤

√
smax {|x̂1(i1)|, · · · , |x̂1(is)|} ,

we obtain the desired result with CA = (1 + ‖A−1Q ‖‖AQ⊥‖).90

The interpretation of the bound in Proposition 1 is quite intuitive: if the s-smallest elements91

of the `1-approximation are all “small”, then x̂∗δ=0 will be close to the `1-solution. However, if at92

least one of these s-smallest elements is “large”, then the obtained x̂∗δ=0 will be “far” from the `1-93

approximation. In other words, the s-smallest elements of the `1-approximation are all “small” if `194

is a “good” approximation of `0; In that case, the AKRON solution x̂∗δ=0 will be close to this “good”95

`1 solution. On the other hand, having a large element among the s-smallest indices indicates that96

`1-solution is not a “good” estimate of the optimal sparsest solution, and hence AKRON solution97

will be sparser and further from `1 solution.98

The following theorem derives an error bound of the AKRON recovery. We first need to recall
the restricted isometry property (RIP). The restricted isometry constant αk of a matrix A ∈ Cn×p

is the smallest number such that

(1− αk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + αk)‖x‖22

for all k-sparse x. A matrix A is said to satisfy the RIP of order k with constant αk if αk ∈ (0, 1).99

Theorem 1. Assume that A ∈ Cn×p satisfies the RIP of order 3k with α3k <
1
3
, and let s = p− n.

Let |x̂1(i1)|, · · · , |x̂1(is)| be the s-smallest magnitude elements of the `1-solution x̂1. Then, letting
x∗ be the optimal `0-solution, we have

‖x∗ − x̂∗δ=0‖2 ≤
√
s CAmax {|x̂1(i1)|, · · · , |x̂1(is)|}+ C

σk(x
∗)1√
k

, (9)

where σk(x)1 = infz∈{z∈Cp:‖z‖0≤k} ‖z− x‖1 is the best k-term approximation error of the vector x100

in `1, C is a constant that depends on α3k [8], and CA is a constant that depends on the matrix A101

as defined in Proposition 1.102

Proof. From [8], we have, under the RIP condition, for all x,

‖x− x̂1‖2 ≤ C
σk(x)1√

k
, (10)
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with C = 2
1−γ

(
γ+1√

2
+ γ
)
, γ =

√
1+α3k

2(1−α3k)
[8]. From the triangle inequality, we have

‖x∗ − x̂∗δ=0‖2 ≤ ‖x̂∗δ=0 − x̂1‖2 + ‖x∗ − x̂1‖2

≤
√
s CAmax {|x̂1(i1)|, · · · , |x̂1(is)|}+ C

σk(x
∗)1√
k

, (11)

where, in (11), the first inequality follows from Proposition 1 and the second inequality follows103

from (10) in [8].104

δ-neighborhoods of `1 in quest of sparser solutions: The solution given by x̂∗δ=0 is sparser105

than the `1-approximation; however, x̂∗δ=0 may still be far from the optimal `0 solution in (1).106

We can improve upon x̂∗δ=0 by finding sparser solutions that increase “the neighborhood of the107

`1-approximation” as follows: consider the (s + δ)-smallest elements of x̂1, where the “true” s108

zeros, that lead to the optimal sparsest solution, may be located. Then, consider all possible
(
s+δ
s

)
109

combinations of setting s elements to zero. For each of these s zero locations, AKRON re-solves110

the system. The sparsity of the solution is recorded for each combination and the sparsest solution,111

x̂∗δ , is returned by AKRON. It is important to note that AKRON is highly parallelizable once the112 (
s+δ
s

)
combinations are known.113

We state that x̂∗δ is the optimal solution within the δ-neighborhood of the `1-approximation.114

If the `1-approximation is close to the `0-solution, then we can find the optimal solution within115

a small δ-neighborhood. To observe this result, let x∗ be the optimal `0-solution, and assume it116

is unique and has K > s zeros and that x̂1 is close to x∗. These assumptions imply that the117

corresponding K entries of x̂1 are close to zero. By choosing δ = K − s, AKRON will surely118

find the optimal solution. It may appear that if K � s, then δ � 1 and significant computational119

resources are needed. However, if x̂1 is close to x∗, then even putting the smallest s elements to120

zero will lead to the exact solution by uniqueness. Therefore, we suggest a step-wise approach.121

First, consider δ = 0. We may find the optimal sparsest solution (i.e., number of zeros� s) right122

away by uniqueness of the sparsest solution and the fact that `1-approximation may be close (for123

the specific system at hand) to the optimal `0-solution. Otherwise, we increase δ ∈ [1, n] depending124

on the available computational power. The entire process can be repeated for growing values of125

δ = 1, . . . , δmax ≤ n, where δmax is set depending on the computational power available or until126

we reach a sufficiently sparse solution. Note that computational complexity of AKRON is of the127

order of O(sδ), and when δ = n, AKRON reduces to the perfect reconstruction KRON algorithm128

in [13].129

State-of-the-art approaches, such as OMP and CoSaMP, require that the sparsity level be spec-130

ified in advance, which is, in general, impossible to correctly guess. AKRON, on the other hand,131

starts with an educated initial estimate of the level of sparsity, given by the s smallest elements132

in the `1 solution. This initial estimate has well-known theoretical properties in the compressive133

sensing literature [8]. We derived a theoretical bound between AKRON (with δ = 0) and the opti-134

mal solution. We then improve upon this estimate by exploring higher δ-neighborhoods in quest of135

sparser solutions. In particular, the parameter δ controls the tradeoff between sparsity and compu-136

tational complexity. The sensitivity of this free parameter δ is evaluated in Section 4. The pseudo137

code for AKRON is detailed in Algorithm 1.138

Example 1: To understand the AKRON algorithm and illustrate the importance of the δ-
neighborhoods, we present a simple numerical example. Consider the following randomly gen-
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erated noiseless system

A =

 −0.4588 1.5977 −0.8724 −0.1121 −1.3068
0.2942 3.0954 −1.0530 0.3454 1.5257
−0.1948 −0.7558 −0.9756 0.1549 0.9586

 ;

y =
(
−1.2316 1.1739 0.8135

)T
The optimal `0-norm sparsest solution is given by

x∗ =
(
0 0 0 −1.2372 1.04858

)T (12)

The `1 solution, which solves (2), is given by

x̂1 =
(
0.0 −0.034 0.047 0.0 0.870

)T
Clearly, the `1-solution is not as sparse as the optimal solution and has incorrect zero locations. We139

have n = 3, p = 5 and thus s = 2. If we choose δ = 1 the AKRON considers the s+δ = 3-smallest140

magnitudes of x̂1, which are located at indices 1, 2 and 4. We set s = 2 locations to zero among141

these 3 indices. We consider all
(
s+δ
s

)
=
(
3
2

)
= 3 combinations of two zeros in indices 1, 2 and 4 of142

x̂1. The combination of indices 1 and 2 set to zero leads to the sparsest optimal solution x∗ in (12).143

Thus, in this case, the `1-norm solution is sub-optimal; but by considering a δ = 1-neighborhood144

of this approximation, AKRON is able to exactly recover the sparsest optimal `0-solution.145

3.3. The Noisy Case146

AKRON can be reformulated to cope with noise (AKRONoi) in a system given by y = Ax+e,
where e is the noise vector. The noisy case is formulated as the following optimization problem

x∗ε = argmin{‖x‖0 : ‖Ax− y‖2 ≤ ε}, (13)

where ε is the fixed error bound. In the noisy case, the sparsest solution can be sparser than the147

solution of the homologous noiseless system. Intuitively, the noise allows a “margin of error”148

where more entries can be set to zero as long as the constraint in (13) is satisfied.149

Following this logic of ‘noise enhances sparsity’, one may start by solving the noiseless case150

using the algorithm in Section 3.2, and then further set more elements to zero while ensuring the151

constraint in (13) is satisfied. This approach is promising if the corresponding noiseless system152

Ax = y admits a sparse solution, i.e., with a number of zeros K � s. However, in general,153

the pair (A,y), corresponding to the noisy system in (13), may not admit sparse solutions to the154

noiseless homologue Ax = y. In this case, the `1-approximation of the noiseless system will be155

very far from the optimal `0 solution, and small perturbations (small δ) of the `1-solution may not156

be sufficient to approximate the optimal solution with desired accuracy.157

Instead, consider the corresponding `1 approximation of the noisy system x̂ε = argmin{‖x‖1 :158

‖Ax−y‖2 ≤ ε}. AKRONoi starts from x̂ε and considers a δ-neighborhood to obtain the locations159

of the s + δ smallest magnitude elements of x̂ε. For all possible combinations of s zeros among160

these s + δ locations, we obtain the corresponding solutions to the noisy system with constraint161

‖Ax − y‖2 ≤ ε. Call these solutions x̂qδ, where q = 1, · · · ,
(
s+δ
s

)
. We can further make these162

exact solutions sparser by putting “small” elements to zero until the constraint ‖Ax − y‖2 ≤ ε is163
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satisfied. This can be done, for instance, by putting to zero all elements in x̂qδ such that |x̂qδ(i)| ≤164

ε√
p‖A‖F

, where ‖A‖F is the Frobenius norm of A. A more direct approach would be to put the165

smallest elements to zero one at a time then check if the constraint in (13) is satisfied. On the other166

hand, AKRONoi is not guaranteed to lead to the exact optimal `0 solution for large neighborhoods167

because the exact value of y for which one attains the sparsest solution is not known. The following168

numerical example illustrates the premise behind AKRONoi.169

Example 2: Let A and x∗ be as provided in Example 1, and consider the noisy system y =170

Ax∗+e, where e = (−0.011, 0.017, 0.028)T is a sample noise vector that was randomly generated171

from a Gaussian distribution. Observe that the power of the noise is about 21% the power of the172

signal. The starting point for AKRONoi is the `1 solution of the noisy system, which is given by173

x̂ε = (0,−0.046, 0, 0, 0.752)T, where ε is the norm of the noise vector e. Clearly this solution is174

far from the optimal solution in terms of zero locations and norm. AKRONoi with δ = 2 yields175

the solution (0, 0, 0,−1.0034, 1.023)T. Although this solution is not exact, AKRONoi is able to176

correctly recover the locations of the non-zero entries in x∗. Furthermore, the reconstruction error177

of AKRONoi is significantly lower than that of noisy `1. The following section demonstrates the178

effectiveness of AKRON and AKRONoi on a variety of different under-determined linear systems.179

4. Experiments180

AKRON was benchmarked against OMP [14], CoSaMP [10], SL0 [11], Iterative Re-weighted181

`1 Minimization (IRLM) [12], and the `1-norm using CVX [15]. The data sets are designed as182

follows: A’s entries are randomly sampled and x has k indices sampled from N (0, 1), but all183

other entries are set to zero. The matrix A is full rank. We assess the performance of the different184

algorithms using two criteria: The reconstruction error defined as err(x) = ‖x∗ − x‖2/‖x∗‖2,185

where x is the solution from an algorithm, and x∗ is the optimal solution. However, this error does186

not always capture the correct location of zeros. For instance, assume that x∗ = [0, 0, 10]t and the187

solutions to two different algorithms are given by x1 = [5, 5, 5]t and x2 = [0, 0, 20]t. Then, we188

have err(x1) < err(x2) although, intuitively, x2 is “closer” to the desired solution. To capture the189

similarity of the zero locations, we use the Jaccard index computed as |Z
∗∩Z|

|Z∗∪Z| , where Z∗ and Z are190

the set of indices of the non-zero entries in the true solution and those returned by the algorithm,191

respectively, and | · | denotes the cardinality of a set. The sparsity level parameter for OMP and192

CoSaMP is set to k, which should give them an advantage at error evaluation. All results presented193

were averaged over 150 simulations of linear systems. Finally, reproducibles for these experiments194

are publicly available1.195

4.1. Experiment #1: Fix p Sweep n196

The first simulation examines the impact of the number of measurements n with fixed dimen-197

sion p = 20 and fixed sparsity k = 8 (here k denotes the number of nonzero elements). Intuitively,198

the reconstruction errors should decrease as n increases. Figures 1(a)-1(d) show the reconstruction199

errors and Jaccard stability indices for the noiseless and noisy cases. First, we observe that the200

reconstruction error of KRON drops to zero once n = 10, which is exactly what is expected, as201

KRON leads perfect reconstruction for n > k+1 [13]. Among all the other approaches, AKRON,202

1http://github.com/gditzler/AKRON/
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with δ = 3 in these experiments, provides the smallest error and largest Jaccard index. AKRON is203

even able to outperform SL0 and IRLM. Furthermore, AKRON outperforms the other algorithms204

in the noisy scenarios as shown in Figures 1(c) and 1(d).205

4.2. Experiment #2: Sweep p fix n206

The second simulation shows the impact, on the reconstruction error, when the dimension p207

varies from 50, . . . , 250 and k = 0.05p, corresponding to a fixed 95% sparsity level. The recon-208

struction errors (Figure 2), and Jaccard indices (Figure 3) are computed for each of the differ-209

ent values of n. AKRON used a neighborhood of δ = 3. The sparsity threshold for OMP and210

CoSaMP was set to 9. When n � p (i.e., n = 0.1p, 0.2p), the `1 error is large and AKRON,211

although with a small neighborhood, is able to improve upon the `1 approximation and provide212

nearly zero reconstruction error with high zero-location stability (for n ≥ 0.2p). Furthermore, not213

only does AKRON lead to a low reconstruction error, but it is also able to identify the locations214

of the zeros as shown in the Jaccard stability figures. When n increases (here n = 0.3p, 0.4p), the215

`1-approximation is quite good in the sense that the `1 solution is very close to the optimal sparsest216

solution (both in terms of reconstruction error and stability). AKRON has a similar performance217

as `1, but with an even smaller reconstruction error. It is also worth noting that the performance of218

CoSaMP also improved as n increases.219

4.3. Runtime Analysis220

The computational run-times for all algorithms in the different scenario cases are shown in221

Figure 4. In this simulation, p is fixed at 200 and the value of n is swept from 10 to 70. As expected,222

the computational complexity of AKRON decreases because s becomes smaller, which decreases223

the number of combinations that need to be evaluated. Finally, the run-times can be improved224

further by distributing the for loop in Figure 1 across more cores. In our ongoing work, we are225

looking into GPU implementation of the combinations involved in AKRON to further reduce the226

computational time.227

5. Conclusions228

In this paper, we presented AKRON and AKRONoi to address the issue of obtaining a trade-229

off between reconstruction error and computational complexity for recovering sparse signals from230

under-determined linear systems. The `1-norm solution may have a large or small error depend-231

ing on the algebraic properties of the system at hand. Greedy algorithms, such as OMP and232

CoSaMP, run quickly but lead to a high error. AKRON starts with the `1-approximation and builds233

δ-neighborhoods, where a sparser solution can be found. These δ-neighborhoods can grow until234

reaching the optimal sparsest `0-solution. δ is tunable depending on the available computational re-235

sources. Our simulation results showed that, for n� p, the `1-approximation can have a high error236

and AKRON can bring this error down substantially with a comparable run-time (in seconds). The237

user can control the parameter δ depending on a tradeoff between the desired sparsity/optimality238

and the computational power available.239
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Algorithm 1 AKRON pseudo-code
Input: A, y, δ ∈ [n]
Output: x∗

1: x̂1 = argmin {‖x‖1 : Ax = y}
2: s = |Ker(A)|
3: Choose Bs+δ

s to be the combinations of the smallest s+ δ magnitudes in x̂1

// Parallel Loop
4: for q = 1, . . . , |Bs+δ

s | do
5: Q = [p]\Bs+δ

s (q)
6: x̂∗δ = 0
7: x̂∗δ = A−1Q y // Update only the indices in Q
8: sparq = ‖̂̂x∗δ‖0
9: end for

10: qmin = min{sparq : q ∈ |Bs+δ
s |}

11: Q∗ = [p]\Bs+δ
s (qmin)

12: x∗ = 0
13: x∗Q∗ = A−1Q∗y
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(a) Error of noiseless system
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(b) Stability of noiseless system
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(c) Error of noisy system
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(d) Stability of noisy system

Figure 1: Performance evaluation (using reconstruction error and Jaccard stability index) of AKRON with δ = 3,
`1-approximation, CoSaMP, SL0, IRLM and OMP on synthetic data sets with fixed dimension p = 20 and increasing
number of measurements n. In the noisy systems, the error variance ε = 0.005. CoSaMP and OMP were given the
correct number of non-zero elements.
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(a) n = 0.1p
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(b) n = 0.2p

50 100 150 200 250

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r

CoSamp

OMP

AKRON

L1

SL0

IRL1M

(c) n = 0.3p

50 100 150 200 250

p

0

0.1

0.2

0.3

0.4

0.5

0.6

re
c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r

CoSamp

OMP

AKRON

L1

SL0

IRL1M

(d) n = 0.4p

Figure 2: Reconstruction error of AKRON with δ = 3, `1-approximation, CoSaMP, OMP, IRLM and SL0 on synthetic
data sets of increasing dimensionality p. k = 0.05p was fixed in all experiments, corresponding to 95% sparsity level.
KRON has been omitted due the the computational complexity mentioned in Section 1.
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(a) n = 0.1p
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(b) n = 0.2p
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(c) n = 0.3p
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(d) n = 0.4p

Figure 3: Jaccard stability index for AKRON with δ = 3, `1-approximation, CoSaMP, OMP, IRLM and SL0 on
synthetic data sets of increasing dimensionality p and fixed k = 0.05p.
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Figure 4: Run-time in seconds for CoSaMP, OMP, AKRON with δ = 3, and `1-approximation on synthetic data sets
for a fixed p = 200 and an increasing n.
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