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Abstract—The key to surgical planning for breast conservation
is tumor localization. An accurate localization of the breast tumor
is essential to guide the surgeon to the lesion, and ensure its
correct and adequate removal with satisfactory excision margins.
Current breast tumor localization techniques are invasive and
often result in a cosmetic disfigurement. In this paper, we use the
ultrawide band radar-based microwave breast imaging technique
to non-invasively localize (impalpable) tumors in the breast. We
consider four clinically important lesion features: location, size,
depth and spatial orientation within the breast. A comparison
of the energy of the received signal from healthy and cancerous
breasts exhibits some significant differences in some frequency
bands. We, therefore, use the energy spectrum of the receiving
antenna signal decomposed by wavelet transform as the input
to a genetic neural network (GNN) classifier. Furthermore, for
improved efficiency, we optimize the structure of the GNN for
optimum initial weights and number of hidden nodes. We use
CST Microwave Studio to simulate benign and malignant breast
conditions, and generate a data set of 1024 cancer cases with
various tumor location, size, depth and spatial orientation within
the breast. Our results show that the proposed algorithm gives
accurate localization of the breast lesion, and possesses a high
sensitivity to small tumor sizes. Additionally, it can accurately
detect and classify multiple tumors.

Index Terms—Breast cancer localization, radar-based mi-
crowave breast imaging, wavelet decomposition, genetic algo-
rithm, neural networks.

I. INTRODUCTION

A complete understanding of the distribution of tumor
before therapy is a key factor in managing any case of
advanced breast cancer. This is particularly true if preoperative
chemotherapy is used in an attempt to allow breast preserva-
tion. The key to surgical planning for breast conservation is
tumor localization. If the tumor shrinks to 50% or more after
chemotherapy to less than 2 cm, then the surgeon would need
an accurate guide to the lesion in order to remove it from the
breast with satisfactory excision margins.

Although a number of techniques have been proposed to
localize impalpable lesions prior to surgery, needle or hook-
wire localization is still the most common used technique
to help guide definitive resection of a cancer [1]. This pro-
cedure presents a number of disadvantages to the patient
including discomfort and vasovagal syncope [2]. There are
also clinical complications, which include pneumothoraces and
wire migration, displacement or transection [2]. Radioguided
occult lesion localization (ROLL) was proposed to reduce the

excision volume, and enable better lesion centering within
the specimen. However, the procedure is still invasive, and
there is the potential for radiation exposure to the patient and
surgeon. Cash et al. [2] proposed a noninvasive method of
breast tumor localization based on the coregistration of three-
dimensional (3D) ultrasonographic (US) data with surface
contour laser data. However, as the authors point out, this
technique fails in general with large breast patients because
the image definition diminishes with depth, thus resulting in
the need for compression. Compression will distort the breast
contour and result in a poor coregistration of US data with
laser data.

In this paper, we propose a new noninvasive tumor lo-
calization method based on the ultrawide band microwave
backscatter technique. We use the wavelet decomposition to
accentuate the backscattered signal’s signature in the frequency
domain, and an optimized genetic neural network for accu-
rate tumor localization. Microwave imaging is an alternative
imaging method for detecting breast cancer [3]. It is based
on the electrical properties of the breast tissues. Cancerous
tissues exhibit electrical characteristics that show significant
and consistent contrast with healthy breast tissues [4]. Ultra
wideband radar-based microwave imaging uses an antenna
to irradiate the breast with low-power ultra wideband pulses
of microwave energy. The scattered energy is received by
a receiving antenna. We propose to localize breast lesions
in terms of their (i) location, (ii) size, (iii) depth, and (iv)
spatial orientation within the breast. Spatial orientation of
the tumor with respect to the nipple may illustrate ductal
extension of tumor, and this factor may have an influence on
the shape and volume of the excised specimen. We found that
there are significant differences in specific frequency bands
between healthy and tumor tissues. We foster this difference
in the frequency domain for tumor localization by using the
wavelet transform of the received signal’s energy to obtain
a discriminative feature vector for the GNN. An important
byproduct of the wavelet decomposition is the compression
of the total number of input data to few wavelet coefficients.
In order to avoid the common neural network problems of
local minima, convergence, and overfitting of the data, we use
the genetic algorithm to select the optimum number of hidden
nodes and the optimum initial weights for the network.



II. THE BREAST MODEL

We model the breast as a homogenous region, which can
possibly contain one or multiple lesions. The transmitting
antenna operates at a frequency of 6 GHz [5]. The distance
between the breast and the antenna array is set to 2 cm with
total feeding power of 300mW. The breast cancer model with
the antenna position is described in Fig. 1. The received signal
carries information about the tumor status inside the breast,
and is related, through the Maxwell equations, to the dielectric
permittivity of the breast [6].

In our breast model, we take into account the dependence
of the relative dielectric permittivity of the breast, εr, on the
frequency by using the following first-order Debye dispersion
formula:

εr = ε∞ +
εs − ε∞
1 + ω2τ2

, (1)

where εs and ε∞ are the space permittivity, and the high
frequency permittivity, respectively. ω denotes the angular
frequency, and τ is the time constant. The values of the
Debye parameters for normal and cancerous tissues have been
determined experimentally in [6]. Figure 2 shows an example
of the time domain measurement of the received signal for a
healthy and cancerous breasts.

III. WAVELET-BASED FEATURE VECTOR

Even though the response signal of the breast to an ultra
wideband microwave frequency can be easily measured using
receiving antennas [5], the raw received signal cannot be used
directly to fully identify the abnormal lesions within the breast
due to the high amount of clutter from healthy tissues. An
appropriate representative index vector has to be constructed
from the received signal, and used for tumor characterization
and classification. A comparison of the energy of the received
signal from healthy and cancerous breasts exhibits significant
differences in specific frequency bands (see Fig. 2). This is
because tumors will suppress or enhance certain frequency
components of the received signal, and consequently cause
energy increase or decrease of the received signal. Therefore,
the energy of the received signal contains information on
abnormal lesions. Additionally, the energy variation of one
or several frequency components of the signal can indicate
a special characteristic of the lesion. In order to extract the
tumor information from the breast response signal, we first
decompose the signal into multiple sub-signals in various
frequency bands using the wavelet decomposition as follows

S0,0[n] =

2k−1∑
j=1

Sk,j [n], n = 0, 1, · · · , N − 1, (2)

where S0,0[n] denotes the sampled received signal of length
N , and Sk,j [n] is the sub-signal with orthogonal frequency
band and k indicates the layer number of the tree structure of

the wavelet decomposition. The energy of the jth order sub-
signals can be expressed as

Uk,j =

N∑
n=1

|Sk,j [n]|2. (3)

Assuming that the energy of the jth-order sub-signals of the
healthy and cancerous tissues are Uh

k,j and U c
k,j respectively,

the wavelet index vector can be constructed as follows:

Vd = [v1, v2, , v2k−1 ]T

= [1−
U c
k,1

Uh
k,1

, 1−
U c
k,2

Uh
k,2

, · · · , 1−
U c
k,2k−1

Uh
k,2k−1

]T (4)

The elements of different index vectors not only indicate the
differences between healthy and cancerous tissues, but also
suggest the differences between various lesion types. We will
use the energy vector as the input feature vector to the genetic
neural network classifier.

IV. OPTIMUM DESIGN OF THE NEURAL NETWORK USING
THE GENETIC ALGORITHM

A. Genetic algorithm

The genetic algorithm (GA) is a search technique, based on
an abstraction of biological evolution, whereby chromosomes
are used to encode possible solutions to an optimization
problem. In GA, a population of chromosomes, which are
represented as binary vectors, evolves into a new population
using the natural selection forces of crossover and mutation.
Some chromosomes are selected and allowed to reproduce
and the more “fit” chromosomes produce more offspring. The
quality of a solution is represented by its fitness, which is the
objective function to be optimized. In our case, the objective
function is the mean-square error.

We use the genetic algorithm to determine the optimal initial
weights and the optimum number of nodes in the hidden
layer of the neural network. The optimal initial weights will
guarantee a faster convergence to the global minimum of the
objective function, and the optimum number of nodes in the
hidden layer will avoid the bias-variance dilemma of neural
networks. Given a data set, a small number of nodes in the
hidden layer captures the data trend only in a small region of
the pattern, whereas a large number of nodes in the hidden
layer results in overfitting the data. In the tumor localization
problem, it is important to obtain a high accuracy in order to
design a computer-aided system, which will ultimately replace
preoperative invasive techniques for tumor localization.

B. Genetic neural network

We use a three-layer artificial neural network (ANN) with:
(1) an input layer that receives the index vector of the received
signal, which has 32 nodes; (2) a hidden layer, which processes
the data; and (3) an output layer that indicates the tumor status
we are interested in classifying.

In this paper, we consider the following breast cancer
statuses:



Fig. 1. (a) Breast model with transmitting and receiving antennas; (b) Time-domain measurements of the received signal for a healthy and cancerous breasts;
(c) Wavelet tree decomposition of the cancerous signal in (b).

Fig. 2. Wavelet spectrogram of the (a) healthy and (b) cancerous signals shown in Fig. 1(b).

(a) (b)

Fig. 3. (a) A representation of 60 statuses of tumor characteristics. (b) Mean square error (MSE) versus number of epochs.

1) Tumor spatial orientation of 0o and 90o corresponding
to a longitudinal or a transverse lesion, and expressed
using one bipolar nodal output of -1 or 1.

2) Three possible tumor depth: 5%H, 10%H, and 15%H
denoted using the nodal outputs with two digits (1,-1),(-
1,1), and (11), respectively.

3) 15 possible tumor cell lengths: 1%L, 2%L, · · · 15%L
represented using the nodal outputs with four dig-
its (1,−1,−1,−1), (−1, 1,−1,−1), · · · , (1, 1, 1, 1), re-
spectively.

4) 15 possible ranges of x-coordinates, with respect to the
breast length L, and 15 possible ranges of y-coordinates,
with respect to the breast width B, of the tumor location
at 5%, 15%, 25%, 30%, 35%, 40%
, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 85%, and 95%.
The x, y coordinates are described using two sets of
nodal outputs with four digits (1,−1,−1,−1),
(−1, 1,−1,−1), · · · (1, 1, 1, 1), respectively.

Figure 3(a) shows 60 examples of cancer statuses among
the 32,767 possible cancer statuses that can be described by
the NN. Observe that we need 15 nodes in the output layer of
this NN. The healthy case (no tumor) will be represented by
the value 0 at all 15 nodes in the output layer.

V. SIMULATION RESULTS

We use CST Microwave Studio to simulate the backscat-
tered microwave signal from cancerous breasts. We model
the breast as a homogenous cylindrical shape attached to
a half-sphere, and containing a tumor, modeled as a small
sphere inside the breast. In this reported set of simulations,
we use a tumor of radius 8 mm. Observe that it is very
difficult to observe such a small size tumor using the standard
imaging methods like mammography and ultrasound imaging.
The Debye parameters for healthy breast tissues are given by
εs = 10, ε∞ = 7, τ = 6.4 ps, and for cancerous tissues are
εs = 40, ε∞ = 5.573, τ = 9.149 ps at 6 GHz [6]. Therefore,



TABLE I
TARGET OUTPUTS AND REAL OUTPUTS OF THE GNN FOR FIVE SELECTED VERIFICATION SAMPLES.

Output bit Sample case 1 Sample case 2 Sample case 3 Sample case 4 Sample case 5
1 1 0.967 1 0.96 1 0.97 1 0.97 1 1.02
2 1 1.02 1 1.04 1 1.03 1 0.94 1 0.96
3 1 0.941 1 1.08 1 0.97 1 0.92 1 0.97
4 1 0.97 1 1.13 -1 -1.03 1 0.95 1 0.98
5 -1 -0.94 1 1.02 1 0.94 -1 -0.96 1 1.03
6 -1 -0.97 1 0.96 1 0.97 -1 -0.95 1 0.98
7 -1 -0.94 -1 -1.03 -1 -1.03 -1 -1.03 1 1.02
8 1 1.06 -1 -0.97 -1 -0.93 -1 -0.97 1 0.97
9 -1 -0.94 -1 -0.95 -1 -0.95 -1 -0.94 1 0.99

10 -1 -0.94 1 0.99 -1 -0.98 1 1.02 1 0.94
11 -1 -0.95 -1 -1.03 1 0.95 1 0.97 1 0.98
12 1 0.95 1 0.94 1 0.97 1 0.98 1 0.97
13 1 0.94 1 0.96 1 0.94 1 0.94 1 0.95
14 1 1.05 1 1.03 1 0.98 1 0.96 1 1.02
15 1 0.98 1 1.02 1 1.02 1 0.94 1 0.94

TABLE II
PERFORMANCE OF THE PROPOSED CLASSIFIER WITH AND WITHOUT NOISE

Noise level Accuracy False positive rate False negative rate
0% noise 94% 2.8% 1.8 %
5% noise 91.6 % 4.6 % 3.7 %

10% noise 90.7 % 5.5 % 3.7 %

using Eq. (1), the relative dielectric permittivity of a healthy
(resp., cancerous) breast is εr = 9.89 (resp., εr = 38.20).

Applying the genetic algorithm to find the optimal neural
network parameters, we found that the optimal number of
nodes in the hidden layer is 18. We train the NN on 1024 cases,
and we test it on 216 cancer statuses, that are different from
the learning statuses, and one healthy (no tumor) case. Figure
3(a) displays the training error, which decreases monotonically
with the number of iteration and reaches the desired value
of 0.02 after about 60 epochs. Table I shows the desired (or
target) outputs and the obtained outputs of the genetic neural
network for five selected samples. The proposed algorithm was
able to discriminate between healthy and cancerous breasts
with an accuracy of 94.9%, with a false positive rate of 2.77%
and a false negative rate of 1.85%. The classification error of
the cancer cases is evaluated at about 6%, thus leading to
an accuracy of 94%. In real experiments, the acquired data
is noisy and the noise level may reduce the accuracy of the
classifier. In a second experiment, we introduce noise to the
data and perform the same classification again. The results are
summarized in Table II.

VI. CONCLUSION

In this paper, we showed that we can accurately localize
breast tumors using the antenna spectrum of the microwave
backscattered breast response, decomposed by wavelet trans-
form and fed to an optimized genetic neural network. Our
simulations show that the required number of inputs to the
neural network is greatly reduced, thus reducing the time and
effort needed for the genetic neural network training. The
genetic algorithm gave us the optimal number of hidden nodes

with the best initial weights as well.
A computer-aided diagnosis system based on the proposed

algorithm for tumor localization will save health care cost and
patient discomfort by avoiding expensive (and sometimes not
very safe) invasive techniques to localize the exact position
of small tumors prior to surgery. Finally, it is important to
mention that the proposed algorithm is not restricted to breast
tumor localization, but can be applied to any tumor localization
within the body as long as the tumor and healthy tissue
properties exhibit significant differences in the wavelet or
frequency domain.
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