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Abstract—Computer aided diagnosis (CAD) paradigms have
gained currency for discriminating malignant from benign lesions
in ultrasound breast images. But even the most sophisticated
investigators often rely on one-dimensional representations of
the image in terms of its scanlines. Such vector representations
are convenient because of the mathematical tractability of one-
dimensional time-series. However, they fail to take into account
the spatial correlations between the pixels, which is crucial
in tumor detection and classification in breast images. In this
paper, we propose a CAD system for tumor detection and
classification (cancerous v.s. benign) in ultrasound breast images
based on a two-dimensional Auto-Regressive-Moving-Average
(ARMA) model of the breast image. First, we show, using the
Wold decomposition theorem, that ultrasound breast images can
be accurately modeled by two-dimensional ARMA random fields.
As in the 1D case, the 2D ARMA parameter estimation problem is
much more difficult than its 2D AR counterpart, due to the non-
linearity in estimating the 2D moving average (MA) parameters.
We propose to estimate the 2D ARMA parameters using a
two-stage Yule-Walker Least-Squares algorithm. The estimated
parameters are then used as the basis for statistical inference and
biophysical interpretation of the breast image. We evaluate the
performance of the 2D ARMA vector features in real ultrasound
images using a k-means classifier. Our results suggest that the
proposed CAD system based on a two-dimensional ARMA model
leads to parameters that can accurately segment the ultrasound
breast image into three regions: healthy tissue, benign tumor,
and cancerous tumor. Moreover, the specificity and sensitivity
of the proposed two-dimensional CAD system is superior to its
one-dimensional homologue.

Index Terms—Breast cancer, two-dimensional ARMA models,
k-means algorithm.

I. INTRODUCTION

Breast cancer continues to be a significant public health
problem in the United States: It is the second leading cause of
female mortality, and, disturbingly, one out of eight women in
the United States will be diagnosed with breast cancer in her
life time. Until the cause of this disease is fully understood,
early detection remains the only hope to improve breast cancer
prognosis and treatment. Breast cancer screening modalities
are mainly based on clinical examination, mammography,
ultrasound imaging, magnetic resonance imaging (MRI), and
core biopsy. Mammography (breast x-ray imaging) is by far
the fastest and cheapest screening test for breast cancer. Un-
fortunately, it is also among the most difficult of radiological
images to interpret: mammograms are of low contrast, and
features indicative of breast disease are often very small.

Many studies have shown that ultrasound and MRI imaging
techniques can help supplement mammography by detecting
small breast cancers that may not be visible with mammog-
raphy. However, these techniques often fail to determine if a
detected tumor is cancerous or benign, and a biopsy may be
recommended. Consequently, many unnecessary biopsies are
often undertaken due to the high false positive rate.

Computer aided diagnosis (CAD) paradigms have recently
received great attention for lesion detection and discrimination
in X-ray and ultrasound breast mammograms [1]–[4]. The
large amount of negative biopsies encountered in clinical
practice could be reduced if a computer system was available
to help the radiologists screen breast images. Broadly, the
CAD systems proposed in the literature can be grouped into
four major categories: geometrical [1], artificial intelligence
[2], pyramidal (or multiresolution) [3], and model-based tech-
niques [4], [5]. Geometrical methods employ morphological
and other segmentation techniques to extract small specks of
calcium known as microcalcifications from breast images [1].
However, this procedure usually requires a priori knowledge of
the tumor pattern characteristics. Moreover, these techniques
also tend to rely on many stages of heuristics attempting
to eliminate false positives. Artificial intelligence techniques
include neural networks and fuzzy logic methods. The per-
formance of these systems is tied to the architecture of the
network and the number of training data. Breast cancer is a
heterogeneous disease which includes several subtypes with
distinct prognosis. In particular, the variability associated with
the appearances of the breast cancer, ranging from relative
uniformity to complex patterns of bright streaks and blobs
[2], makes the ANN require a large training data set to ensure
a certain level of reliability. Pyramidal or multiresolution tech-
niques refer mainly to the wavelet transform [3], which can be
seen from a signal decomposition view point. Specifically, a
signal is decomposed onto a set of the basis wavelet functions.
A very appealing feature of the wavelet analysis is that it
provides a uniform resolution for all the scales. However
limited by the size of the basic wavelet function, the downside
of the uniform resolution is uniformly poor resolution. Model-
based methods include linear, non-linear and finite-element
methods to build an accurate model of the breast [4], [5]. The
model is subsequently used for image matching, detection, and
classification [5]. The accuracy of the results are tied to the



accuracy of the considered model.
In this work, we propose a new model-based CAD system

for tumor detection and classification. We show that (x-
ray, ultrasound, and MRI) breast images can be accurately
modeled by two-dimensional autoregressive moving average
(ARMA) random fields. The model parameters, being the
fingerprints of the image, serve as the basis for statistical
inference and biophysical interpretation of the breast image.
ARMA models are parametric representations of wide-sense
stationary (WSS) processes with rational spectra. The Wold
decomposition theorem states that any WSS process can be
decomposed as the sum of a regular process, which spectrum
is continuous, and a predictable process, which spectrum
consists of impulses. Since rational spectra form a dense set
in the class of continuous spectra, the ARMA model renders
accurately the regular part of the WSS process. It is, therefore,
surprising that very few researchers have attempted to derive
a general ARMA representation of the breast image, and use
it for tumor detection and classification. In [5], the authors
use a one-dimensional fractional differencing autoregressive
moving average (FARMA) process to model the ultrasound RF
echo reflected from the breast tissue. However, by considering
separate scan lines, they do not take into account the two-
dimensional spatial correlation between the pixels in the
image. In [6], an autoregressive (AR) model is considered for
improving the contrast of breast cancer lesions in ultrasound
images. ARMA models, however, provide a more accurate
model of a homogeneous random field than an AR model. As
in the 1D case, the 2D ARMA parameter estimation problem
is much more difficult than its 2D AR counterpart, due to
the non-linearity in estimating the 2D moving average (MA)
parameters.

This paper is organized as follows: In Section II, we define
the 2D ARMA model of the breast image, and derive a
Yule-Walker Least squares estimates of its parameters [7]. In
Section III, we use the estimated ARMA coefficients as vector
features for the k-means classifier. The simulation results,
for ultrasound breast images showing cancerous and benign
tumors, are shown in Section IV. Finally, in Section V, we
summarize our contribution and provide concluding remarks.

II. 2D ARMA MODELING

We represent the breast image as a 2D random field
{x[n,m], (n,m) ∈ Z2}. We define a total order on the discrete
lattice as follows

(i, j) ≤ (s, t)⇐⇒ i ≤ s and j ≤ t. (1)

The 2D ARMA(p1, p2, q1, q2) model is defined for the N1×N2

image I = {x[n,m] : 0 ≤ n ≤ N1 − 1, 0 ≤ m ≤ N2 − 1} by
the following difference equation

x[n,m] +

p1∑
i=0

p2∑
j=0

(i,j)6=(0,0)

aijx[n− i,m− j] =

q1∑
i=0

q2∑
j=0

bijw[n− i,m− j], (2)

where {w[n,m]} is a stationary white noise field with variance
σ2, and the coefficients {aij}, {bij} are the parameters of the
model. From Eq. (2), the image {x[n,m]} can be viewed as
the output of the linear time-invariant causal system H(z1, z2)
excited by a white noise input, where

H(z1, z2) =
B(z1, z2)

A(z1, z2)
=

∑q1
i=0

∑q2
j=0 bij z

−i
1 z−j2∑p1

i=0

∑p2

j=0 aij z
−i
1 z−j2

, (3)

with a00 = 1.

A. Yule-Walker Least-Squares Parameter Estimation

Assume first that the noise sequence {w[n,m]} were
known. Then the problem of estimating the parameters in
the ARMA model in Eq. (2) would be a simple input-output
system parameter estimation problem, which could be solved
by several methods, the simplest of which is the least-squares
(LS) method. In the LS method, we express Eq. (2) as

x[n,m] + φt[n,m]θ = w[n,m], (4)

where

φt[n,m] = [x[n,m− 1], · · · , x[n− p1,m− p2],−w[n,m− 1],

· · · ,−w[n− q1,m− q2]],

and
θ = [a01, · · · , ap1p2

, b01, · · · , bq1q2 ]t.

Writing Eq. (4) in matrix form for n = L + 1, · · · , N1 − 1,
and m = M + 1, · · · , N2 − 1, for some L > max(p1, q1),
and M > max(p2, q2), gives

x + Φθ = w, (5)

where

x = [x[L+ 1,M + 1], · · · , x[N1 − 1, N2 − 1]]t,

w = [w[L+ 1,M + 1], · · · , x[N1 − 1, N2 − 1]]t,

and Φ is displayed below. Assume we know Φ, then we can
obtain a least-squares estimate of the parameter vector θ in
Eq. (5) as

θ̂ = −(ΦtΦ)−1Φtx. (6)

Observe that the input model noise {w[n,m]} in Φ is un-
known. Nevertheless, it can be estimated by considering
the noise process w[n,m] as the output of the linear filter

1
H(z1,z2)

= A(z1,z2)
B(z1,z2)

with input x[n,m]. From Nirenberg’s
proof of the division theorem in multi-dimensional spaces [8],
we can write the inverse ARMA filter A(z1,z2)

B(z1,z2)
as the infinite

order AR filter
∑∞

i=0

∑∞
j=0 αijz

−i
1 z−j2 . In the time domain,

we obtain

x[n,m] +

∞∑
i=0

∞∑
j=0

(i,j)6=(0,0)

αij x[n− i,m− j] = w[n,m]. (7)

Therefore, we can estimate {w[n,m]} by first estimating
the AR parameters {αij} and next obtaining {w[n,m]} by
filtering {x[n,m]} as in Eq. (7). Since we cannot estimate



Φ =


x[L+ 1,M ] · · · x[L+ 1− p1,M + 1− p2] −w[L+ 1,M ] · · · −w[L+ 1− q1,M + 1− q2]
x[L+ 2,M ] · · · x[L+ 2− p1,M + 1− p2] −w[L+ 2,M ] · · · −w[L+ 2− q1,M + 1− q2]

...
...

...
...

x[N1 − 1, N2 − 2] · · · x[N1 − 1− p1, N2 − 1− p2] −w[N1 − 1, N2 − 2] · · · −w[N1 − 1− q1, N2 − 1− q2]

 .

an infinite number of (independent) parameters from a finite
number of samples, we approximate the finite AR model
by one of finite order, say (K1,K2). The parameters in the
truncated AR model can be estimated by using a 2D extension
of the Yule-Walker equations as follows

r[k, l] +

K1∑
i=0

K2∑
j=0

(i,j)6=(0,0)

αijr[k − i, l − j] = σ2δ[k, l], (8)

where {r[k, l]} are the autocorrelation values of the field
{x[n,m]}, computed as follows

r[k, l] =
1

(N − k)(M − l)

N−k∑
i=1

M−l∑
j=1

x[i, j]x[i+ k, j + l],

r[−k,−l] = r[k, l], for (k, l) ≥ (0, 0)

r[k,−l] = r[−k, l], for (k, l) ≥ (1, 1), (9)

and δ[k, l] is the 2D Kronecker delta function. Equation (8) is
a system of linear equations that can be written in matrix form
and solved for the coefficients αij . Finally, the Yule-Walker
Least-Squares algorithm is summarized below

1) Estimate the parameters {αij} in an AR(K1,K2) model
of x[n,m] by the Yule-Walker method in (8). Obtain an
estimate of the noise field {w[n,m]} as

ŵ[n,m] = x[n,m] +

K1∑
i=0

K2∑
j=0

(i,j) 6=(0,0)

α̂ijx[n− i,m− j],

for n = K1 + 1, · · · , N1, and m = K2 + 1, · · · , N2.
2) Replace the w[n,m] by ŵ[n,m] computed in Step 1.

Obtain θ̂ in (6) with L = K1 + q1, and M = K2 + q2.

III. TUMOR DETECTION AND CLASSIFICATION

The estimated ARMA parameters, {aij}, {bij}, are used as
a basis for inference about the presence of a tumor and its
nature: benign or cancerous. We use the k-means algorithm
to segment the breast image into 3 classes: healthy tissue,
benign tumor and cancerous tumor. Our method consists of
representing each pixel in the image by an ARMA model
whose parameters are estimated by using an appropriate neigh-
borhood for the pixel. We make the assumption that all pixels
in the considered neighborhood belong to the same class,
and hence, for computational efficiency, we replace the entire
neighborhood by the vector value of the estimated ARMA
parameters. This procedure is repeated for the entire image,
creating a new block by block vector-valued image, which will
be the input to the k-means classifier.

IV. SIMULATIONS

Although the proposed algorithm is independent of the
imaging modality of the breast, we perform our simulations on
ultrasound images, collected from the Radiology department,
College of Medicine at the University of Illinois at Chicago.
Our database of cancerous images show intraductal carcinoma,
which is the most common type of breast cancer in women.
Intraductal carcinoma is usually discovered through a mam-
mogram or an ultrasound as microcalcifications. Our benign
tumor images show the Fibroadenoma of the breast, which is
a benign fibroepithelial tumor characterized by proliferation
of both glandular and stromal elements.

Our extensive simulations indicate that ARMA[2, 2, 2, 2] is
a sufficient model order, in terms of mean square error, to
accurately represent ultrasound breast images. Figure 1 shows
two ultrasound images, one with a cancerous tumor and one
with a benign tumor, and their respective 2-D ARMA[2, 2, 2, 2]
and 1-D ARMA[2, 2] models. It is visually clear that the 2D-
ARMA model accurately represents both ultrasound images,
whereas the 1-D model fails to capture any image feature.
We estimate the 2D-ARMA parameters using a window of
size 16 × 16. The choice of the window size presents an
inherent trade-off between the accuracy of the representation
and the accuracy of the classification. A large window size
would lead a better representation of the 2D-ARMA model,
but might include pixels from different classes. We found that
for 256× 256 images, a 16× 16 window size leads to a good
segmentation performance. Each image is therefore repre-
sented by a number of 1×8 2D-ARMA feature vectors, which
contain the 8 parameters a00, a01, a10, a11, b00, b01, b10, b11 for
each 16 × 16 sub-block image. Without loss of generality,
we chose a00 = b00 = 1. Therefore, the size of the feature
vectors reduces to 6 instead of 8. We decide that an image
has a cancerous (resp., benign) tumor if at least one of the
sub-block images is classified as a cancerous (resp., benign)
tumor. Otherwise, we conclude that the image is healthy and
contains no tumors.

We conducted our simulations using 573 ARMA feature
vectors of healthy, benign and cancerous ultrasound breast
images. The ARMA feature vectors were used as the input
to a k-means classifier. Figures 1(c) and 1(f) show the seg-
mentation outputs of the cancerous and benign tumor images,
respectively. We can observe clear delineations of the tumors
from the healthy tissues in both cases. The accuracy, sensitivity
and specificity of the 2D-ARMA and 1D-ARMA k-means
classifiers are shown in Table I. It is clear that the 2D-ARMA
feature vectors are more selective than their one-dimensional
homologue.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. ARMA modeling and segmentation of ultrasound breast images: (a) cancerous ultrasound image; (b) 2D-ARMA[2,2,2,2] representation of (a); (c)
Segmentation of (b) using an appropriate threshold; (d) 1D-ARMA[2,2] representation of (a); (e) benign tumor ultrasound image; (f) 2D-ARMA[2,2,2,2]
representation of (e); (g) Segmentation of (f) using an appropriate threshold; (h) 1D-ARMA[2,2] representation of (e).

TABLE I
CLASSIFICATION ACCURACY OF CANCEROUS AND BENIGN TUMORS

Accuracy Sensitivity Specificity
2D-ARMA 93.87% 92.03% 94.14%
1D-ARMA 78.51% 59.54% 79.76%

V. CONCLUSIONS

We propose to exploit the high spatial correlation inherent in
neighboring pixels to improve tumor detection and classifica-
tion in ultrasound breast images. We achieve this goal by using
a two-dimensional autoregressive moving average (ARMA)
field model of the image. Current techniques often rely on
one-dimensional representations of the image in terms of its
scan lines in order to process it as a one-dimensional time-
series [5], [6]. Such one-dimensional projections are advocated
solely on the basis of the simplicity of their mathematical
formulations. The analysis of two-dimensional fields is more
involved mathematically and computationally than the study
of one-dimensional time-series. In this work, we derive an
efficient two-stage algorithm to estimate the parameters of the
two-dimensional ARMA field model of the breast image. The
estimated ARMA parameters are excellent discriminative fea-
tures, which are used as the basis for statistical detection and
classification of tumors in the breast image. Our simulation
results on a library of benign and cancerous ultrasound breast
images show the superiority, in terms of accuracy, sensitivity
and specificity, of the two-dimensional ARMA model to its
one-dimensional homologue. The proposed algorithm can be
efficiently incorporated within a computer-aided diagnosis
(CAD) system that clinically portends an accurate prognosis
of breast cancer.
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